
NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track H. Wang
Expires: April 25, 2019 Huawei
 October 22, 2018

 Common YANG Data Types for Cryptography
 draft-ietf-netconf-crypto-types-02

Abstract

 This document defines YANG identities, typedefs, the groupings useful
 for cryptographic applications.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix B. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Watsen & Wang Expires April 25, 2019 [Page 1]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. The Crypto Types Module 3
 2.1. Tree Diagram . 3
 2.2. YANG Module . 4
 3. Security Considerations 39
 4. IANA Considerations . 40
 4.1. The IETF XML Registry 40
 4.2. The YANG Module Names Registry 40
 5. References . 40
 5.1. Normative References 40
 5.2. Informative References 44
 Appendix A. Examples . 45
 A.1. The "asymmetric-key-pair-with-certs-grouping" Grouping . 45
 A.2. The "generate-hidden-key" Action 47
 A.3. The "install-hidden-key" Action 48
 A.4. The "generate-certificate-signing-request" Action 49
 A.5. The "certificate-expiration" Notification 50
 Appendix B. Change Log . 51
 B.1. I-D to 00 . 51
 B.2. 00 to 01 . 51
 B.3. 01 to 02 . 51
 Acknowledgements . 52
 Authors’ Addresses . 52

Watsen & Wang Expires April 25, 2019 [Page 2]

Internet-Draft Common YANG Data Types for Cryptography October 2018

1. Introduction

 This document defines a YANG 1.1 [RFC7950] module specifying
 identities, typedefs, and groupings useful for cryptography.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. The Crypto Types Module

2.1. Tree Diagram

 This section provides a tree diagram [RFC8340] for the "ietf-crypto-
 types" module. Only the groupings as represented, as tree diagrams
 have no means to represent identities or typedefs.

 [Note: ’\’ line wrapping for formatting only]

 module: ietf-crypto-types

 grouping asymmetric-key-pair-grouping
 +-- algorithm? asymmetric-key-encryption-algorithm-r\
 ef
 +-- public-key? binary
 +-- private-key? union
 +---x generate-hidden-key
 | +---w input
 | +---w algorithm asymmetric-key-encryption-algorithm-ref
 +---x install-hidden-key
 +---w input
 +---w algorithm asymmetric-key-encryption-algorithm-r\
 ef
 +---w public-key? binary
 +---w private-key? binary
 grouping public-key-grouping
 +-- algorithm? asymmetric-key-encryption-algorithm-ref
 +-- public-key? binary
 grouping asymmetric-key-pair-with-certs-grouping
 +-- algorithm?
 | asymmetric-key-encryption-algorithm-ref
 +-- public-key? binary
 +-- private-key? union
 +---x generate-hidden-key
 | +---w input

Watsen & Wang Expires April 25, 2019 [Page 3]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 | +---w algorithm asymmetric-key-encryption-algorithm-ref
 +---x install-hidden-key
 | +---w input
 | +---w algorithm asymmetric-key-encryption-algorithm-r\
 ef
 | +---w public-key? binary
 | +---w private-key? binary
 +-- certificates
 | +-- certificate* [name]
 | +-- name? string
 | +-- cert? end-entity-cert-cms
 | +---n certificate-expiration
 | +-- expiration-date yang:date-and-time
 +---x generate-certificate-signing-request
 +---w input
 | +---w subject binary
 | +---w attributes? binary
 +--ro output
 +--ro certificate-signing-request binary
 grouping end-entity-cert-grouping
 +-- cert? end-entity-cert-cms
 +---n certificate-expiration
 +-- expiration-date yang:date-and-time
 grouping trust-anchor-cert-grouping
 +-- cert? trust-anchor-cert-cms
 +---n certificate-expiration
 +-- expiration-date yang:date-and-time

2.2. YANG Module

 This module has normative references to [RFC2404], [RFC2986],
 [RFC3174], [RFC3565], [RFC3686], [RFC4106], [RFC4253], [RFC4279],
 [RFC4309], [RFC4493], [RFC4494], [RFC4543], [RFC4868], [RFC5280],
 [RFC5652], [RFC5656], [RFC5915], [RFC6187], [RFC6234], [RFC6239],
 [RFC6507], [RFC6991], [RFC7539], [RFC7919], [RFC8017], [RFC8032],
 [RFC8268], [RFC8332], [RFC8341], [RFC8422], [RFC8446], and
 [ITU.X690.2015].

 This module has an informational reference to [RFC6125].

 <CODE BEGINS> file "ietf-crypto-types@2018-10-22.yang"
 module ietf-crypto-types {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-crypto-types";
 prefix "ct";

 import ietf-yang-types {

Watsen & Wang Expires April 25, 2019 [Page 4]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Wang Haiguang
 <wang.haiguang.shieldlab@huawei.com>";

 description
 "This module defines common YANG types for cryptographic
 applications.

 Copyright (c) 2018 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Simplified
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2018-10-22" {
 description
 "Initial version";
 reference
 "RFC XXXX: Common YANG Data Types for Cryptography";
 }

Watsen & Wang Expires April 25, 2019 [Page 5]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 /**************************************/
 /* Identities for Hash Algorithms */
 /**************************************/

 identity hash-algorithm {
 description
 "A base identity for hash algorithm verification.";
 }

 identity sha-224 {
 base "hash-algorithm";
 description "The SHA-224 algorithm.";
 reference "RFC 6234: US Secure Hash Algorithms.";
 }

 identity sha-256 {
 base "hash-algorithm";
 description "The SHA-256 algorithm.";
 reference "RFC 6234: US Secure Hash Algorithms.";
 }

 identity sha-384 {
 base "hash-algorithm";
 description "The SHA-384 algorithm.";
 reference "RFC 6234: US Secure Hash Algorithms.";
 }

 identity sha-512 {
 base "hash-algorithm";
 description "The SHA-512 algorithm.";
 reference "RFC 6234: US Secure Hash Algorithms.";
 }

 /**/
 /* Identities for Asymmetric Key Encyption Algorithms */
 /**/

 identity asymmetric-key-encryption-algorithm {
 description
 "Base identity from which all asymmetric key
 encryption Algorithm.";
 }

 identity rsa1024 {
 base asymmetric-key-encryption-algorithm;
 description
 "The RSA algorithm using a 1024-bit key.";
 reference

Watsen & Wang Expires April 25, 2019 [Page 6]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 "RFC 8017:
 PKCS #1: RSA Cryptography Specifications Version 2.2.";
 }

 identity rsa2048 {
 base asymmetric-key-encryption-algorithm;
 description
 "The RSA algorithm using a 2048-bit key.";
 reference
 "RFC 8017:
 PKCS #1: RSA Cryptography Specifications Version 2.2.";
 }

 identity rsa3072 {
 base asymmetric-key-encryption-algorithm;
 description
 "The RSA algorithm using a 3072-bit key.";
 reference
 "RFC 8017:
 PKCS #1: RSA Cryptography Specifications Version 2.2.";
 }

 identity rsa4096 {
 base asymmetric-key-encryption-algorithm;
 description
 "The RSA algorithm using a 4096-bit key.";
 reference
 "RFC 8017:
 PKCS #1: RSA Cryptography Specifications Version 2.2.";
 }

 identity rsa7680 {
 base asymmetric-key-encryption-algorithm;
 description
 "The RSA algorithm using a 7680-bit key.";
 reference
 "RFC 8017:
 PKCS #1: RSA Cryptography Specifications Version 2.2.";
 }

 identity rsa15360 {
 base asymmetric-key-encryption-algorithm;
 description
 "The RSA algorithm using a 15360-bit key.";
 reference
 "RFC 8017:
 PKCS #1: RSA Cryptography Specifications Version 2.2.";
 }

Watsen & Wang Expires April 25, 2019 [Page 7]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 /*************************************/
 /* Identities for MAC Algorithms */
 /*************************************/

 identity mac-algorithm {
 description
 "A base identity for mac generation.";
 }

 identity hmac-sha1 {
 base "mac-algorithm";
 description "Generating MAC using SHA1 hash function";
 reference "RFC 3174: US Secure Hash Algorithm 1 (SHA1)";
 }

 identity hmac-sha1-96 {
 base "mac-algorithm";
 description "Generating MAC using SHA1 hash function";
 reference "RFC 2404: The Use of HMAC-SHA-1-96 within ESP and AH";
 }

 identity hmac-sha2-224 {
 base "mac-algorithm";
 description
 "Generating MAC using SHA2 hash function";
 reference
 "RFC 6234:
 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)";
 }

 identity hmac-sha2-256 {
 base "mac-algorithm";
 description
 "Generating MAC using SHA2 hash function";
 reference
 "RFC 6234:
 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)";
 }

 identity hmac-sha2-256-128 {
 base "mac-algorithm";
 description
 "Generating a 256 bits MAC using SHA2 hash function and truncate
 it to 128 bits";
 reference
 "RFC 4868:
 Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with
 IPsec";

Watsen & Wang Expires April 25, 2019 [Page 8]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 }

 identity hmac-sha2-384 {
 base "mac-algorithm";
 description
 "Generating MAC using SHA2 hash function";
 reference
 "RFC 6234:
 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)";
 }

 identity hmac-sha2-384-192 {
 base "mac-algorithm";
 description
 "Generating a 384 bits MAC using SHA2 hash function and truncate
 it to 192 bits";
 reference
 "RFC 4868:
 Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with
 IPsec";
 }

 identity hmac-sha2-512 {
 base "mac-algorithm";
 description "Generating MAC using SHA2 hash function";
 reference
 "RFC 6234:
 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)";
 }

 identity hmac-sha2-512-256 {
 base "mac-algorithm";
 description
 "Generating a 512 bits MAC using SHA2 hash function and
 truncating it to 256 bits";
 reference
 "RFC 4868:
 Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with
 IPsec";
 }

 identity aes-128-gmac {
 base "mac-algorithm";
 description
 "Generating MAC using the Advanced Encryption Standard (AES)
 Galois Message Authentication Code (GMAC) as a mechanism to
 provide data origin authentication";
 reference

Watsen & Wang Expires April 25, 2019 [Page 9]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 "RFC 4543:
 The Use of Galois Message Authentication Code (GMAC) in
 IPsec ESP and AH";
 }

 identity aes-192-gmac {
 base "mac-algorithm";
 description
 "Generating MAC using the Advanced Encryption Standard (AES)
 Galois Message Authentication Code (GMAC) as a mechanism to
 provide data origin authentication";
 reference
 "RFC 4543:
 The Use of Galois Message Authentication Code (GMAC) in
 IPsec ESP and AH";

 }

 identity aes-256-gmac {
 base "mac-algorithm";
 description
 "Generating MAC using the Advanced Encryption Standard (AES)
 Galois Message Authentication Code (GMAC) as a mechanism to
 provide data origin authentication";
 reference
 "RFC 4543:
 The Use of Galois Message Authentication Code (GMAC) in
 IPsec ESP and AH";
 }

 identity aes-cmac-96 {
 base "mac-algorithm";
 description
 "Generating MAC using Advanced Encryption Standard (AES)
 Cipher-based Message Authentication Code (CMAC)";
 reference
 "RFC 4494: The AES-CMAC-96 Algorithm and its Use with IPsec";
 }

 identity aes-cmac-128 {
 base "mac-algorithm";
 description
 "Generating MAC using Advanced Encryption Standard (AES)
 Cipher-based Message Authentication Code (CMAC)";
 reference
 "RFC 4493: The AES-CMAC Algorithm";
 }

Watsen & Wang Expires April 25, 2019 [Page 10]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 identity mac-aes-128-ccm {
 base "mac-algorithm";
 description
 "Generating MAC using Advanced Encryption Standard (AES) in
 CCM (Counter with CBC-MAC) mode (AES CCM)";
 reference
 "RFC 4309:
 Using Advanced Encryption Standard (AES) CCM Mode with
 IPsec Encapsulating Security Payload (ESP)";
 }

 identity mac-aes-192-ccm {
 base "mac-algorithm";
 description
 "Generating MAC using Advanced Encryption Standard (AES) in
 CCM (Counter with CBC-MAC) mode (AES CCM)";
 reference
 "RFC 4309:
 Using Advanced Encryption Standard (AES) CCM Mode with
 IPsec Encapsulating Security Payload (ESP)";
 }

 identity mac-aes-256-ccm {
 base "mac-algorithm";
 description
 "Generating MAC using Advanced Encryption Standard (AES) in
 CCM (Counter with CBC-MAC) mode (AES CCM)";
 reference
 "RFC 4309:
 Using Advanced Encryption Standard (AES) CCM Mode with
 IPsec Encapsulating Security Payload (ESP)";
 }

 identity mac-aes-128-gcm {
 base "mac-algorithm";
 description
 "Generating MAC when using Advanced Encryption Standard (AES)
 GCM mode for encryption";
 reference
 "RFC 4106:
 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
 Security Payload (ESP)";
 }

 identity mac-aes-192-gcm {
 base "mac-algorithm";
 description
 "Generating MAC when using Advanced Encryption Standard (AES)

Watsen & Wang Expires April 25, 2019 [Page 11]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 GCM mode for encryption";
 reference
 "RFC 4106:
 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
 Security Payload (ESP)";
 }

 identity mac-aes-256-gcm {
 base "mac-algorithm";
 description
 "Generating MAC when using Advanced Encryption Standard (AES)
 GCM mode for encryption";
 reference
 "RFC 4106:
 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
 Security Payload (ESP)";
 }

 identity mac-chacha20-poly1305 {
 base "mac-algorithm";
 description
 "Generating MAC using poly1305 algorithm";
 reference
 "RFC 7539: ChaCha20 and Poly1305 for IETF Protocols";
 }

 /***/
 /* Identities for Symmetric Key Encryption Algorithms*/
 /***/

 identity symmetric-key-encryption-algorithm {
 description
 "A base identity for encryption algorithm.";
 }

 identity aes-128-cbc {
 base "symmetric-key-encryption-algorithm";
 description
 "Encrypt message with AES algorithm in CBC mode with a key
 length of 128 bits";
 reference
 "RFC 3565:
 Use of the Advanced Encryption Standard (AES) Encryption
 Algorithm in Cryptographic Message Syntax (CMS)";
 }

 identity aes-192-cbc {

Watsen & Wang Expires April 25, 2019 [Page 12]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 base "symmetric-key-encryption-algorithm";
 description
 "Encrypt message with AES algorithm in CBC mode with a key
 length of 192 bits";
 reference
 "RFC 3565:
 Use of the Advanced Encryption Standard (AES) Encryption
 Algorithm in Cryptographic Message Syntax (CMS)";
 }

 identity aes-256-cbc {
 base "symmetric-key-encryption-algorithm";
 description
 "Encrypt message with AES algorithm in CBC mode with a key
 length of 256 bits";
 reference
 "RFC 3565:
 Use of the Advanced Encryption Standard (AES) Encryption
 Algorithm in Cryptographic Message Syntax (CMS)";
 }

 identity aes-128-ctr {
 base "symmetric-key-encryption-algorithm";
 description
 "Encrypt message with AES algorithm in CTR mode with a key
 length of 128 bits";
 reference
 "RFC 3686:
 Using Advanced Encryption Standard (AES) Counter Mode with
 IPsec Encapsulating Security Payload (ESP)";
 }

 identity aes-192-ctr {
 base "symmetric-key-encryption-algorithm";
 description
 "Encrypt message with AES algorithm in CTR mode with a key
 length of 192 bits";
 reference
 "RFC 3686:
 Using Advanced Encryption Standard (AES) Counter Mode with
 IPsec Encapsulating Security Payload (ESP)";
 }

 identity aes-256-ctr {
 base "symmetric-key-encryption-algorithm";
 description
 "Encrypt message with AES algorithm in CTR mode with a key
 length of 256 bits";

Watsen & Wang Expires April 25, 2019 [Page 13]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 reference
 "RFC 3686:
 Using Advanced Encryption Standard (AES) Counter Mode with
 IPsec Encapsulating Security Payload (ESP)";
 }

 identity enc-aes-128-ccm {
 base "symmetric-key-encryption-algorithm";
 description
 "Encrypt message with AES algorithm in CCM mode with a key
 length of 128 bits";
 reference
 "RFC 4309:
 Using Advanced Encryption Standard (AES) CCM Mode with IPsec
 Encapsulating Security Payload (ESP)";
 }

 identity enc-aes-192-ccm {
 base "symmetric-key-encryption-algorithm";
 description
 "Encrypt message with AES algorithm in CCM mode with a key
 length of 192 bits";
 reference
 "RFC 4309:
 Using Advanced Encryption Standard (AES) CCM Mode with IPsec
 Encapsulating Security Payload (ESP)";
 }

 identity enc-aes-256-ccm {
 base "symmetric-key-encryption-algorithm";
 description
 "Encrypt message with AES algorithm in CCM mode with a key
 length of 256 bits";
 reference
 "RFC 4309:
 Using Advanced Encryption Standard (AES) CCM Mode with IPsec
 Encapsulating Security Payload (ESP)";
 }

 identity enc-aes-128-gcm {
 base "symmetric-key-encryption-algorithm";
 description
 "Encrypt message with AES algorithm in GCM mode with a key
 length of 128 bits";
 reference
 "RFC 4106:
 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
 Security Payload (ESP)";

Watsen & Wang Expires April 25, 2019 [Page 14]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 }

 identity enc-aes-192-gcm {
 base "symmetric-key-encryption-algorithm";
 description
 "Encrypt message with AES algorithm in GCM mode with a key
 length of 192 bits";
 reference
 "RFC 4106:
 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
 Security Payload (ESP)";
 }

 identity enc-aes-256-gcm {
 base "symmetric-key-encryption-algorithm";
 description
 "Encrypt message with AES algorithm in GCM mode with a key
 length of 256 bits";
 reference
 "RFC 4106:
 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating
 Security Payload (ESP)";
 }

 identity enc-chacha20-poly1305 {
 base "symmetric-key-encryption-algorithm";
 description
 "Encrypt message with chacha20 algorithm and generate MAC with
 POLY1305";
 reference
 "RFC 7539: ChaCha20 and Poly1305 for IETF Protocols";
 }

 /**/
 /* Identities for signature algorithm */
 /**/

 identity signature-algorithm {
 description
 "A base identity for asymmetric key encryption algorithm.";
 }

 identity dsa-sha1 {
 base "signature-algorithm";
 description
 "The signature algorithm using DSA algorithm with SHA1 hash
 algorithm";
 reference

Watsen & Wang Expires April 25, 2019 [Page 15]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
 }

 identity rsa-pkcs1-sha1 {
 base "signature-algorithm";
 description
 "The signature algorithm using RSASSA-PKCS1-v1_5 with the SHA1
 hash algorithm.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
 }

 identity rsa-pkcs1-sha256 {
 base "signature-algorithm";
 description
 "The signature algorithm using RSASSA-PKCS1-v1_5 with the
 SHA256 hash algorithm.";
 reference
 "RFC 8332:
 Use of RSA Keys with SHA-256 and SHA-512 in the Secure Shell
 (SSH) Protocol
 RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity rsa-pkcs1-sha384 {
 base "signature-algorithm";
 description
 "The signature algorithm using RSASSA-PKCS1-v1_5 with the
 SHA384 hash algorithm.";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity rsa-pkcs1-sha512 {
 base "signature-algorithm";
 description
 "The signature algorithm using RSASSA-PKCS1-v1_5 with the
 SHA512 hash algorithm.";
 reference
 "RFC 8332:
 Use of RSA Keys with SHA-256 and SHA-512 in the Secure Shell
 (SSH) Protocol
 RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

Watsen & Wang Expires April 25, 2019 [Page 16]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 identity rsa-pss-rsae-sha256 {
 base "signature-algorithm";
 description
 "The signature algorithm using RSASSA-PSS with mask generation
 function 1 and SHA256 hash algorithm. If the public key is
 carried in an X.509 certificate, it MUST use the rsaEncryption
 OID";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity rsa-pss-rsae-sha384 {
 base "signature-algorithm";
 description
 "The signature algorithm using RSASSA-PSS with mask generation
 function 1 and SHA384 hash algorithm. If the public key is
 carried in an X.509 certificate, it MUST use the rsaEncryption
 OID";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity rsa-pss-rsae-sha512 {
 base "signature-algorithm";
 description
 "The signature algorithm using RSASSA-PSS with mask generation
 function 1 and SHA512 hash algorithm. If the public key is
 carried in an X.509 certificate, it MUST use the rsaEncryption
 OID";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity rsa-pss-pss-sha256 {
 base "signature-algorithm";
 description
 "The signature algorithm using RSASSA-PSS with mask generation
 function 1 and SHA256 hash algorithm. If the public key is
 carried in an X.509 certificate, it MUST use the RSASSA-PSS
 OID";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

Watsen & Wang Expires April 25, 2019 [Page 17]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 identity rsa-pss-pss-sha384 {
 base "signature-algorithm";
 description
 "The signature algorithm using RSASSA-PSS with mask generation
 function 1 and SHA256 hash algorithm. If the public key is
 carried in an X.509 certificate, it MUST use the RSASSA-PSS
 OID";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity rsa-pss-pss-sha512 {
 base "signature-algorithm";
 description
 "The signature algorithm using RSASSA-PSS with mask generation
 function 1 and SHA256 hash algorithm. If the public key is
 carried in an X.509 certificate, it MUST use the RSASSA-PSS
 OID";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity ecdsa-secp256r1-sha256 {
 base "signature-algorithm";
 description
 "The signature algorithm using ECDSA wtih curve name secp256r1
 and SHA256 hash algorithm.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer
 RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity ecdsa-secp384r1-sha384 {
 base "signature-algorithm";
 description
 "The signature algorithm using ECDSA wtih curve name secp384r1
 and SHA384 hash algorithm.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer
 RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

Watsen & Wang Expires April 25, 2019 [Page 18]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 identity ecdsa-secp521r1-sha512 {
 base "signature-algorithm";
 description
 "The signature algorithm using ECDSA wtih curve name secp521r1
 and SHA512 hash algorithm.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer
 RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity x509v3-rsa-pkcs1-sha1 {
 base "signature-algorithm";
 description
 "The signature algorithm using x509v3-ssh-rsa key format and
 RSASSA-PKCS1-v1_5 with the SHA1 hash algorithm.";
 reference
 "RFC 6187:
 X.509v3 Certificates for Secure Shell Authentication";
 }

 identity x509v3-rsa2048-pkcs1-sha256 {
 base "signature-algorithm";
 description
 "The signature algorithm using x509v3-rsa2048-sha256
 key format and RSASSA-PKCS1-v1_5 with the SHA-256
 hash algorithm.";
 reference
 "RFC 6187:
 X.509v3 Certificates for Secure Shell Authentication";
 }

 identity x509v3-ecdsa-secp256r1-sha256 {
 base "signature-algorithm";
 description
 "The signature algorithm using x509v3-ecdsa-sha2-secp256r1 key
 format and ECDSA algorithm with the SHA-256 hash algorithm.";
 reference
 "RFC 6187:
 X.509v3 Certificates for Secure Shell Authentication";
 }

 identity x509v3-ecdsa-secp384r1-sha384 {
 base "signature-algorithm";
 description
 "The signature algorithm using x509v3-ecdsa-sha2-secp384r1 key
 format and ECDSA algorithm with the SHA-384 hash algorithm.";

Watsen & Wang Expires April 25, 2019 [Page 19]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 reference
 "RFC 6187:
 X.509v3 Certificates for Secure Shell Authentication";
 }

 identity x509v3-ecdsa-secp521r1-sha512 {
 base "signature-algorithm";
 description
 "The signature algorithm using x509v3-ecdsa-sha2-secp521r1 key
 format and ECDSA algorithm with the SHA-512 hash algorithm.";
 reference
 "RFC 6187:
 X.509v3 Certificates for Secure Shell Authentication";
 }

 identity ed25519 {
 base "signature-algorithm";
 description
 "The signature algorithm using EdDSA as defined in RFC 8032 or
 its successors.";
 reference
 "RFC 8032: Edwards-Curve Digital Signature Algorithm (EdDSA)";
 }

 identity ed448 {
 base "signature-algorithm";
 description
 "The signature algorithm using EdDSA as defined in RFC 8032 or
 its successors.";
 reference
 "RFC 8032: Edwards-Curve Digital Signature Algorithm (EdDSA)";
 }

 identity eccsi {
 base "signature-algorithm";
 description
 "The signature algorithm using ECCSI signature as defined in
 RFC 6507.";
 reference
 "RFC 6507:
 Elliptic Curve-Based Certificateless Signatures for
 Identity-based Encryption (ECCSI)";
 }

 /**/
 /* Identities for key exchange algorithms */
 /**/

Watsen & Wang Expires April 25, 2019 [Page 20]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 identity key-exchange-algorithm {
 description
 "A base identity for Diffe-Hellman based key exchange
 algorithm.";
 }

 identity psk-only {
 base "key-exchange-algorithm";
 description
 "Using Pre-shared key for authentication and key exhange";
 reference
 "RFC 4279:
 Pre-Shared Key Ciphersuites for Transport Layer Security
 (TLS)";
 }

 identity dhe-ffdhe2048 {
 base "key-exchange-algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with 2048 bit
 finite field";
 reference
 "RFC 7919:
 Negotiated Finite Field Diffie-Hellman Ephemeral Parameters
 for Transport Layer Security (TLS)";
 }

 identity dhe-ffdhe3072 {
 base "key-exchange-algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with 3072 bit finite
 field";
 reference
 "RFC 7919:
 Negotiated Finite Field Diffie-Hellman Ephemeral Parameters
 for Transport Layer Security (TLS)";
 }

 identity dhe-ffdhe4096 {
 base "key-exchange-algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with 4096 bit
 finite field";
 reference
 "RFC 7919:
 Negotiated Finite Field Diffie-Hellman Ephemeral Parameters
 for Transport Layer Security (TLS)";
 }

Watsen & Wang Expires April 25, 2019 [Page 21]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 identity dhe-ffdhe6144 {
 base "key-exchange-algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with 6144 bit
 finite field";
 reference
 "RFC 7919:
 Negotiated Finite Field Diffie-Hellman Ephemeral Parameters
 for Transport Layer Security (TLS)";
 }

 identity dhe-ffdhe8192 {
 base "key-exchange-algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with 8192 bit
 finite field";
 reference
 "RFC 7919:
 Negotiated Finite Field Diffie-Hellman Ephemeral Parameters
 for Transport Layer Security (TLS)";
 }

 identity psk-dhe-ffdhe2048 {
 base "key-exchange-algorithm";
 description
 "Key exchange using pre-shared key with Diffie-Hellman key
 generation mechansim, where the DH group is FFDHE2048";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity psk-dhe-ffdhe3072 {
 base "key-exchange-algorithm";
 description
 "Key exchange using pre-shared key with Diffie-Hellman key
 generation mechansim, where the DH group is FFDHE3072";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity psk-dhe-ffdhe4096 {
 base "key-exchange-algorithm";
 description
 "Key exchange using pre-shared key with Diffie-Hellman key
 generation mechansim, where the DH group is FFDHE4096";
 reference

Watsen & Wang Expires April 25, 2019 [Page 22]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity psk-dhe-ffdhe6144 {
 base "key-exchange-algorithm";
 description
 "Key exchange using pre-shared key with Diffie-Hellman key
 generation mechansim, where the DH group is FFDHE6144";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity psk-dhe-ffdhe8192 {
 base "key-exchange-algorithm";
 description
 "Key exchange using pre-shared key with Diffie-Hellman key
 generation mechansim, where the DH group is FFDHE8192";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity ecdhe-secp256r1 {
 base "key-exchange-algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with elliptic group
 over curve secp256r1";
 reference
 "RFC 8422:
 Elliptic Curve Cryptography (ECC) Cipher Suites for
 Transport Layer Security (TLS) Versions 1.2 and Earlier";
 }

 identity ecdhe-secp384r1 {
 base "key-exchange-algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with elliptic group
 over curve secp384r1";
 reference
 "RFC 8422:
 Elliptic Curve Cryptography (ECC) Cipher Suites for
 Transport Layer Security (TLS) Versions 1.2 and Earlier";
 }

 identity ecdhe-secp521r1 {
 base "key-exchange-algorithm";

Watsen & Wang Expires April 25, 2019 [Page 23]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 description
 "Ephemeral Diffie Hellman key exhange with elliptic group
 over curve secp521r1";
 reference
 "RFC 8422:
 Elliptic Curve Cryptography (ECC) Cipher Suites for
 Transport Layer Security (TLS) Versions 1.2 and Earlier";
 }

 identity ecdhe-x25519 {
 base "key-exchange-algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with elliptic group
 over curve x25519";
 reference
 "RFC 8422:
 Elliptic Curve Cryptography (ECC) Cipher Suites for
 Transport Layer Security (TLS) Versions 1.2 and Earlier";
 }

 identity ecdhe-x448 {
 base "key-exchange-algorithm";
 description
 "Ephemeral Diffie Hellman key exhange with elliptic group
 over curve x448";
 reference
 "RFC 8422:
 Elliptic Curve Cryptography (ECC) Cipher Suites for
 Transport Layer Security (TLS) Versions 1.2 and Earlier";
 }

 identity psk-ecdhe-secp256r1 {
 base "key-exchange-algorithm";
 description
 "Key exchange using pre-shared key with elliptic group-based
 Ephemeral Diffie Hellman key exhange over curve secp256r1";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity psk-ecdhe-secp384r1 {
 base "key-exchange-algorithm";
 description
 "Key exchange using pre-shared key with elliptic group-based
 Ephemeral Diffie Hellman key exhange over curve secp384r1";
 reference
 "RFC 8446:

Watsen & Wang Expires April 25, 2019 [Page 24]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity psk-ecdhe-secp521r1 {
 base "key-exchange-algorithm";
 description
 "Key exchange using pre-shared key with elliptic group-based
 Ephemeral Diffie Hellman key exhange over curve secp521r1";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity psk-ecdhe-x25519 {
 base "key-exchange-algorithm";
 description
 "Key exchange using pre-shared key with elliptic group-based
 Ephemeral Diffie Hellman key exhange over curve x25519";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity psk-ecdhe-x448 {
 base "key-exchange-algorithm";
 description
 "Key exchange using pre-shared key with elliptic group-based
 Ephemeral Diffie Hellman key exhange over curve x448";
 reference
 "RFC 8446:
 The Transport Layer Security (TLS) Protocol Version 1.3";
 }

 identity diffie-hellman-group14-sha1 {
 base "key-exchange-algorithm";
 description
 "Using DH group14 and SHA1 for key exchange";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
 }

 identity diffie-hellman-group14-sha256 {
 base "key-exchange-algorithm";
 description
 "Using DH group14 and SHA256 for key exchange";
 reference
 "RFC 8268:
 More Modular Exponentiation (MODP) Diffie-Hellman (DH)

Watsen & Wang Expires April 25, 2019 [Page 25]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 Key Exchange (KEX) Groups for Secure Shell (SSH)";
 }

 identity diffie-hellman-group15-sha512 {
 base "key-exchange-algorithm";
 description
 "Using DH group15 and SHA512 for key exchange";
 reference
 "RFC 8268:
 More Modular Exponentiation (MODP) Diffie-Hellman (DH)
 Key Exchange (KEX) Groups for Secure Shell (SSH)";
 }

 identity diffie-hellman-group16-sha512 {
 base "key-exchange-algorithm";
 description
 "Using DH group16 and SHA512 for key exchange";
 reference
 "RFC 8268:
 More Modular Exponentiation (MODP) Diffie-Hellman (DH)
 Key Exchange (KEX) Groups for Secure Shell (SSH)";
 }

 identity diffie-hellman-group17-sha512 {
 base "key-exchange-algorithm";
 description
 "Using DH group17 and SHA512 for key exchange";
 reference
 "RFC 8268:
 More Modular Exponentiation (MODP) Diffie-Hellman (DH)
 Key Exchange (KEX) Groups for Secure Shell (SSH)";
 }

 identity diffie-hellman-group18-sha512 {
 base "key-exchange-algorithm";
 description
 "Using DH group18 and SHA512 for key exchange";
 reference
 "RFC 8268:
 More Modular Exponentiation (MODP) Diffie-Hellman (DH)
 Key Exchange (KEX) Groups for Secure Shell (SSH)";
 }

 identity ecdh-sha2-secp256r1 {
 base "key-exchange-algorithm";
 description
 "Elliptic curve-based Diffie Hellman key exhange over curve
 secp256r1 and using SHA2 for MAC generation";

Watsen & Wang Expires April 25, 2019 [Page 26]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 reference
 "RFC 6239: Suite B Cryptographic Suites for Secure Shell (SSH)";
 }

 identity ecdh-sha2-secp384r1 {
 base "key-exchange-algorithm";
 description
 "Elliptic curve-based Diffie Hellman key exhange over curve
 secp384r1 and using SHA2 for MAC generation";
 reference
 "RFC 6239: Suite B Cryptographic Suites for Secure Shell (SSH)";
 }

 /***/
 /* Typedefs for identityrefs to above base identites */
 /***/

 typedef hash-algorithm-ref {
 type identityref {
 base "hash-algorithm";
 }
 description
 "This typedef enables importing modules to easily define an
 identityref to the ’hash-algorithm’ base identity.";
 }

 typedef signature-algorithm-ref {
 type identityref {
 base "signature-algorithm";
 }
 description
 "This typedef enables importing modules to easily define an
 identityref to the ’signature-algorithm’ base identity.";
 }

 typedef mac-algorithm-ref {
 type identityref {
 base "mac-algorithm";
 }
 description
 "This typedef enables importing modules to easily define an
 identityref to the ’mac-algorithm’ base identity.";
 }

 typedef symmetric-key-encryption-algorithm-ref {
 type identityref {
 base "symmetric-key-encryption-algorithm";
 }

Watsen & Wang Expires April 25, 2019 [Page 27]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 description
 "This typedef enables importing modules to easily define an
 identityref to the ’symmetric-key-encryption-algorithm’
 base identity.";
 }

 typedef asymmetric-key-encryption-algorithm-ref {
 type identityref {
 base "asymmetric-key-encryption-algorithm";
 }
 description
 "This typedef enables importing modules to easily define an
 identityref to the ’asymmetric-key-encryption-algorithm’
 base identity.";
 }

 typedef key-exchange-algorithm-ref {
 type identityref {
 base "key-exchange-algorithm";
 }
 description
 "This typedef enables importing modules to easily define an
 identityref to the ’key-exchange-algorithm’ base identity.";
 }

 /***/
 /* Typedefs for ASN.1 structures from RFC 5280 */
 /***/

 typedef x509 {
 type binary;
 description
 "A Certificate structure, as specified in RFC 5280,
 encoded using ASN.1 distinguished encoding rules (DER),
 as specified in ITU-T X.690.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }

 typedef crl {
 type binary;

Watsen & Wang Expires April 25, 2019 [Page 28]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 description
 "A CertificateList structure, as specified in RFC 5280,
 encoded using ASN.1 distinguished encoding rules (DER),
 as specified in ITU-T X.690.";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }

 /***/
 /* Typedefs for ASN.1 structures from 5652 */
 /***/

 typedef cms {
 type binary;
 description
 "A ContentInfo structure, as specified in RFC 5652,
 encoded using ASN.1 distinguished encoding rules (DER),
 as specified in ITU-T X.690.";
 reference
 "RFC 5652:
 Cryptographic Message Syntax (CMS)
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }

 typedef data-content-cms {
 type cms;
 description
 "A CMS structure whose top-most content type MUST be the
 data content type, as described by Section 4 in RFC 5652.";
 reference
 "RFC 5652: Cryptographic Message Syntax (CMS)";
 }

 typedef signed-data-cms {
 type cms;
 description
 "A CMS structure whose top-most content type MUST be the

Watsen & Wang Expires April 25, 2019 [Page 29]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 signed-data content type, as described by Section 5 in
 RFC 5652.";
 reference
 "RFC 5652: Cryptographic Message Syntax (CMS)";
 }

 typedef enveloped-data-cms {
 type cms;
 description
 "A CMS structure whose top-most content type MUST be the
 enveloped-data content type, as described by Section 6
 in RFC 5652.";
 reference
 "RFC 5652: Cryptographic Message Syntax (CMS)";
 }

 typedef digested-data-cms {
 type cms;
 description
 "A CMS structure whose top-most content type MUST be the
 digested-data content type, as described by Section 7
 in RFC 5652.";
 reference
 "RFC 5652: Cryptographic Message Syntax (CMS)";
 }

 typedef encrypted-data-cms {
 type cms;
 description
 "A CMS structure whose top-most content type MUST be the
 encrypted-data content type, as described by Section 8
 in RFC 5652.";
 reference
 "RFC 5652: Cryptographic Message Syntax (CMS)";
 }

 typedef authenticated-data-cms {
 type cms;
 description
 "A CMS structure whose top-most content type MUST be the
 authenticated-data content type, as described by Section 9
 in RFC 5652.";
 reference
 "RFC 5652: Cryptographic Message Syntax (CMS)";
 }

 /***/
 /* Typedefs for structures related to RFC 4253 */

Watsen & Wang Expires April 25, 2019 [Page 30]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 /***/

 typedef ssh-host-key {
 type binary;
 description
 "The binary public key data for this SSH key, as
 specified by RFC 4253, Section 6.6, i.e.:

 string certificate or public key format
 identifier
 byte[n] key/certificate data.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer
 Protocol";
 }

 /***/
 /* Typedefs for ASN.1 structures related to RFC 5280 */
 /***/

 typedef trust-anchor-cert-x509 {
 type x509;
 description
 "A Certificate structure that MUST encode a self-signed
 root certificate.";
 }

 typedef end-entity-cert-x509 {
 type x509;
 description
 "A Certificate structure that MUST encode a certificate
 that is neither self-signed nor having Basic constraint
 CA true.";
 }

 /***/
 /* Typedefs for ASN.1 structures related to RFC 5652 */
 /***/

 typedef trust-anchor-cert-cms {
 type signed-data-cms;
 description
 "A CMS SignedData structure that MUST contain the chain of
 X.509 certificates needed to authenticate the certificate
 presented by a client or end-entity.

 The CMS MUST contain only a single chain of certificates.
 The client or end-entity certificate MUST only authenticate

Watsen & Wang Expires April 25, 2019 [Page 31]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 to last intermediate CA certificate listed in the chain.

 In all cases, the chain MUST include a self-signed root
 certificate. In the case where the root certificate is
 itself the issuer of the client or end-entity certificate,
 only one certificate is present.

 This CMS structure MAY (as applicable where this type is
 used) also contain suitably fresh (as defined by local
 policy) revocation objects with which the device can
 verify the revocation status of the certificates.

 This CMS encodes the degenerate form of the SignedData
 structure that is commonly used to disseminate X.509
 certificates and revocation objects (RFC 5280).";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile.";
 }

 typedef end-entity-cert-cms {
 type signed-data-cms;
 description
 "A CMS SignedData structure that MUST contain the end
 entity certificate itself, and MAY contain any number
 of intermediate certificates leading up to a trust
 anchor certificate. The trust anchor certificate
 MAY be included as well.

 The CMS MUST contain a single end entity certificate.
 The CMS MUST NOT contain any spurious certificates.

 This CMS structure MAY (as applicable where this type is
 used) also contain suitably fresh (as defined by local
 policy) revocation objects with which the device can
 verify the revocation status of the certificates.

 This CMS encodes the degenerate form of the SignedData
 structure that is commonly used to disseminate X.509
 certificates and revocation objects (RFC 5280).";
 reference
 "RFC 5280:
 Internet X.509 Public Key Infrastructure Certificate
 and Certificate Revocation List (CRL) Profile.";
 }

Watsen & Wang Expires April 25, 2019 [Page 32]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 /**/
 /* Groupings for keys and/or certificates */
 /**/

 grouping public-key-grouping {
 description
 "A public key.";
 leaf algorithm {
 type asymmetric-key-encryption-algorithm-ref;
 description
 "Identifies the key’s algorithm. More specifically,
 this leaf specifies how the ’public-key’ binary leaf
 is encoded.";
 reference
 "RFC CCCC: Common YANG Data Types for Cryptography";
 }
 leaf public-key {
 type binary;
 description
 "A binary that contains the value of the public key. The
 interpretation of the content is defined by the key
 algorithm. For example, a DSA key is an integer, an RSA
 key is represented as RSAPublicKey as defined in
 RFC 8017, and an Elliptic Curve Cryptography (ECC) key
 is represented using the ’publicKey’ described in
 RFC 5915.";
 reference
 "RFC 8017: Public-Key Cryptography Standards (PKCS) #1:
 RSA Cryptography Specifications Version 2.2.
 RFC 5915: Elliptic Curve Private Key Structure.";
 }
 } // end public-key-grouping

 grouping asymmetric-key-pair-grouping {
 description
 "A private/public key pair.";
 uses public-key-grouping;
 leaf private-key {
 nacm:default-deny-all;
 type union {
 type binary;
 type enumeration {
 enum "permanently-hidden" {
 description
 "The private key is inaccessible due to being
 protected by the system (e.g., a cryptographic
 hardware module). It is not possible to

Watsen & Wang Expires April 25, 2019 [Page 33]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 configure a permanently hidden key, as a real
 private key value must be set. Permanently
 hidden keys cannot be archived or backed up.";
 }
 }
 }
 description
 "A binary that contains the value of the private key. The
 interpretation of the content is defined by the key
 algorithm. For example, a DSA key is an integer, an RSA
 key is represented as RSAPrivateKey as defined in
 RFC 8017, and an Elliptic Curve Cryptography (ECC) key
 is represented as ECPrivateKey as defined in RFC 5915.";
 reference
 "RFC 8017: Public-Key Cryptography Standards (PKCS) #1:
 RSA Cryptography Specifications Version 2.2.
 RFC 5915: Elliptic Curve Private Key Structure.";
 } // end private-key

 action generate-hidden-key {
 description
 "Requests the device to generate a hidden key using the
 specified asymmetric key algorithm. This action is
 used to request the system to generate a key that
 is ’permanently-hidden’, perhaps protected by a
 cryptographic hardware module. The resulting
 asymmetric key values are considered operational
 state and hence present only in <operational>.";
 input {
 leaf algorithm {
 type asymmetric-key-encryption-algorithm-ref;
 mandatory true;
 description
 "The algorithm to be used when generating the
 asymmetric key.";
 reference
 "RFC CCCC: Common YANG Data Types for Cryptography";
 }
 }
 } // end generate-hidden-key

 action install-hidden-key {
 description
 "Requests the device to load the specified values into
 a hidden key. The resulting asymmetric key values are
 considered operational state and hence present only in
 <operational>.";
 input {

Watsen & Wang Expires April 25, 2019 [Page 34]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 leaf algorithm {
 type asymmetric-key-encryption-algorithm-ref;
 mandatory true;
 description
 "The algorithm to be used when generating the
 asymmetric key.";
 reference
 "RFC CCCC: Common YANG Data Types for Cryptography";
 }
 leaf public-key {
 type binary;
 description
 "A binary that contains the value of the public key.
 The interpretation of the content is defined by the key
 algorithm. For example, a DSA key is an integer, an
 RSA key is represented as RSAPublicKey as defined in
 RFC 8017, and an Elliptic Curve Cryptography (ECC) key
 is represented using the ’publicKey’ described in
 RFC 5915.";
 reference
 "RFC 8017: Public-Key Cryptography Standards (PKCS) #1:
 RSA Cryptography Specifications Version 2.2.
 RFC 5915: Elliptic Curve Private Key Structure.";
 }
 leaf private-key {
 type binary;
 description
 "A binary that contains the value of the private key.
 The interpretation of the content is defined by the key
 algorithm. For example, a DSA key is an integer, an RSA
 key is represented as RSAPrivateKey as defined in
 RFC 8017, and an Elliptic Curve Cryptography (ECC) key
 is represented as ECPrivateKey as defined in RFC 5915.";
 reference
 "RFC 8017: Public-Key Cryptography Standards (PKCS) #1:
 RSA Cryptography Specifications Version 2.2.
 RFC 5915: Elliptic Curve Private Key Structure.";
 }
 }
 } // end install-hidden-key
 } // end asymmetric-key-pair-grouping

 grouping trust-anchor-cert-grouping {
 description
 "A certificate, and a notification for when it might expire.";
 leaf cert {
 type trust-anchor-cert-cms;

Watsen & Wang Expires April 25, 2019 [Page 35]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 description
 "The binary certificate data for this certificate.";
 reference
 "RFC YYYY: Common YANG Data Types for Cryptography";
 }
 notification certificate-expiration {
 description
 "A notification indicating that the configured certificate
 is either about to expire or has already expired. When to
 send notifications is an implementation specific decision,
 but it is RECOMMENDED that a notification be sent once a
 month for 3 months, then once a week for four weeks, and
 then once a day thereafter until the issue is resolved.";
 leaf expiration-date {
 type yang:date-and-time;
 mandatory true;
 description
 "Identifies the expiration date on the certificate.";
 }
 }
 } // end trust-anchor-cert-grouping

 grouping end-entity-cert-grouping {
 description
 "A certificate, and a notification for when it might expire.";
 leaf cert {
 type end-entity-cert-cms;
 description
 "The binary certificate data for this certificate.";
 reference
 "RFC YYYY: Common YANG Data Types for Cryptography";
 }
 notification certificate-expiration {
 description
 "A notification indicating that the configured certificate
 is either about to expire or has already expired. When to
 send notifications is an implementation specific decision,
 but it is RECOMMENDED that a notification be sent once a
 month for 3 months, then once a week for four weeks, and
 then once a day thereafter until the issue is resolved.";
 leaf expiration-date {
 type yang:date-and-time;
 mandatory true;
 description
 "Identifies the expiration date on the certificate.";
 }
 }

Watsen & Wang Expires April 25, 2019 [Page 36]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 } // end end-entity-cert-grouping

 grouping asymmetric-key-pair-with-certs-grouping {
 description
 "A private/public key pair and associated certificates.";
 uses asymmetric-key-pair-grouping;
 container certificates {
 description
 "Certificates associated with this asymmetric key.
 More than one certificate supports, for instance,
 a TPM-protected asymmetric key that has both IDevID
 and LDevID certificates associated.";
 list certificate {
 key name;
 description
 "A certificate for this asymmetric key.";
 leaf name {
 type string;
 description
 "An arbitrary name for the certificate. If the name
 matches the name of a certificate that exists
 independently in <operational> (i.e., an IDevID),
 then the ’cert’ node MUST NOT be configured.";

 }
 uses end-entity-cert-grouping;
 } // end certificate
 } // end certificates

 action generate-certificate-signing-request {
 description
 "Generates a certificate signing request structure for
 the associated asymmetric key using the passed subject
 and attribute values. The specified assertions need
 to be appropriate for the certificate’s use. For
 example, an entity certificate for a TLS server
 SHOULD have values that enable clients to satisfy
 RFC 6125 processing.";
 input {
 leaf subject {
 type binary;
 mandatory true;
 description
 "The ’subject’ field per the CertificationRequestInfo
 structure as specified by RFC 2986, Section 4.1
 encoded using the ASN.1 distinguished encoding
 rules (DER), as specified in ITU-T X.690.";

Watsen & Wang Expires April 25, 2019 [Page 37]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 reference
 "RFC 2986:
 PKCS #10: Certification Request Syntax
 Specification Version 1.7.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 leaf attributes {
 type binary;
 description
 "The ’attributes’ field from the structure
 CertificationRequestInfo as specified by RFC 2986,
 Section 4.1 encoded using the ASN.1 distinguished
 encoding rules (DER), as specified in ITU-T X.690.";
 reference
 "RFC 2986:
 PKCS #10: Certification Request Syntax
 Specification Version 1.7.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";
 }
 }
 output {
 leaf certificate-signing-request {
 type binary;
 mandatory true;
 description
 "A CertificationRequest structure as specified by
 RFC 2986, Section 4.2 encoded using the ASN.1
 distinguished encoding rules (DER), as specified
 in ITU-T X.690.";
 reference
 "RFC 2986:
 PKCS #10: Certification Request Syntax
 Specification Version 1.7.
 ITU-T X.690:
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER),
 Canonical Encoding Rules (CER) and Distinguished
 Encoding Rules (DER).";

 }

Watsen & Wang Expires April 25, 2019 [Page 38]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 }
 } // end generate-certificate-signing-request
 } // end asymmetric-key-pair-with-certs-grouping

 }
 <CODE ENDS>

3. Security Considerations

 In order to use YANG identities for algorithm identifiers, only the
 most commonly used RSA key lengths are supported for the RSA
 algorithm. Additional key lengths can be defined in another module
 or added into a future version of this document.

 This document limits the number of elliptical curves supported. This
 was done to match industry trends and IETF best practice (e.g.,
 matching work being done in TLS 1.3). If additional algorithms are
 needed, they can be defined by another module or added into a future
 version of this document.

 Some of the operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 generate-certificate-signing-request: For this action, it is
 RECOMMENDED that implementations assert channel binding
 [RFC5056], so as to ensure that the application layer that sent
 the request is the same as the device authenticated when the
 secure transport layer was established.

 This document uses PKCS #10 [RFC2986] for the "generate-certificate-
 signing-request" action. The use of Certificate Request Message
 Format (CRMF) [RFC4211] was considered, but is was unclear if there
 was market demand for it. If it is desired to support CRMF in the
 future, placing a "choice" statement in both the input and output
 statements, along with an "if-feature" statement on the CRMF option,
 would enable a backwards compatible solution.

 NACM:default-deny-all is set on asymmetric-key-pair-grouping’s
 "private-key" node, as private keys should never be revealed without
 explicit permission.

Watsen & Wang Expires April 25, 2019 [Page 39]

Internet-Draft Common YANG Data Types for Cryptography October 2018

4. IANA Considerations

4.1. The IETF XML Registry

 This document registers one URI in the "ns" subregistry of the IETF
 XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registration is requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-crypto-types
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

4.2. The YANG Module Names Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registration is requested:

 name: ietf-crypto-types
 namespace: urn:ietf:params:xml:ns:yang:ietf-crypto-types
 prefix: ct
 reference: RFC XXXX

5. References

5.1. Normative References

 [ITU.X690.2015]
 International Telecommunication Union, "Information
 Technology - ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, ISO/IEC 8825-1, August 2015,
 <https://www.itu.int/rec/T-REC-X.690/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2404] Madson, C. and R. Glenn, "The Use of HMAC-SHA-1-96 within
 ESP and AH", RFC 2404, DOI 10.17487/RFC2404, November
 1998, <https://www.rfc-editor.org/info/rfc2404>.

 [RFC2986] Nystrom, M. and B. Kaliski, "PKCS #10: Certification
 Request Syntax Specification Version 1.7", RFC 2986,
 DOI 10.17487/RFC2986, November 2000,
 <https://www.rfc-editor.org/info/rfc2986>.

Watsen & Wang Expires April 25, 2019 [Page 40]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 [RFC3174] Eastlake 3rd, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, DOI 10.17487/RFC3174, September 2001,
 <https://www.rfc-editor.org/info/rfc3174>.

 [RFC3565] Schaad, J., "Use of the Advanced Encryption Standard (AES)
 Encryption Algorithm in Cryptographic Message Syntax
 (CMS)", RFC 3565, DOI 10.17487/RFC3565, July 2003,
 <https://www.rfc-editor.org/info/rfc3565>.

 [RFC3686] Housley, R., "Using Advanced Encryption Standard (AES)
 Counter Mode With IPsec Encapsulating Security Payload
 (ESP)", RFC 3686, DOI 10.17487/RFC3686, January 2004,
 <https://www.rfc-editor.org/info/rfc3686>.

 [RFC4106] Viega, J. and D. McGrew, "The Use of Galois/Counter Mode
 (GCM) in IPsec Encapsulating Security Payload (ESP)",
 RFC 4106, DOI 10.17487/RFC4106, June 2005,
 <https://www.rfc-editor.org/info/rfc4106>.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <https://www.rfc-editor.org/info/rfc4253>.

 [RFC4279] Eronen, P., Ed. and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)",
 RFC 4279, DOI 10.17487/RFC4279, December 2005,
 <https://www.rfc-editor.org/info/rfc4279>.

 [RFC4309] Housley, R., "Using Advanced Encryption Standard (AES) CCM
 Mode with IPsec Encapsulating Security Payload (ESP)",
 RFC 4309, DOI 10.17487/RFC4309, December 2005,
 <https://www.rfc-editor.org/info/rfc4309>.

 [RFC4493] Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
 AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
 2006, <https://www.rfc-editor.org/info/rfc4493>.

 [RFC4494] Song, JH., Poovendran, R., and J. Lee, "The AES-CMAC-96
 Algorithm and Its Use with IPsec", RFC 4494,
 DOI 10.17487/RFC4494, June 2006,
 <https://www.rfc-editor.org/info/rfc4494>.

 [RFC4543] McGrew, D. and J. Viega, "The Use of Galois Message
 Authentication Code (GMAC) in IPsec ESP and AH", RFC 4543,
 DOI 10.17487/RFC4543, May 2006,
 <https://www.rfc-editor.org/info/rfc4543>.

Watsen & Wang Expires April 25, 2019 [Page 41]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 [RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
 384, and HMAC-SHA-512 with IPsec", RFC 4868,
 DOI 10.17487/RFC4868, May 2007,
 <https://www.rfc-editor.org/info/rfc4868>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/info/rfc5652>.

 [RFC5656] Stebila, D. and J. Green, "Elliptic Curve Algorithm
 Integration in the Secure Shell Transport Layer",
 RFC 5656, DOI 10.17487/RFC5656, December 2009,
 <https://www.rfc-editor.org/info/rfc5656>.

 [RFC5915] Turner, S. and D. Brown, "Elliptic Curve Private Key
 Structure", RFC 5915, DOI 10.17487/RFC5915, June 2010,
 <https://www.rfc-editor.org/info/rfc5915>.

 [RFC6187] Igoe, K. and D. Stebila, "X.509v3 Certificates for Secure
 Shell Authentication", RFC 6187, DOI 10.17487/RFC6187,
 March 2011, <https://www.rfc-editor.org/info/rfc6187>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6239] Igoe, K., "Suite B Cryptographic Suites for Secure Shell
 (SSH)", RFC 6239, DOI 10.17487/RFC6239, May 2011,
 <https://www.rfc-editor.org/info/rfc6239>.

 [RFC6507] Groves, M., "Elliptic Curve-Based Certificateless
 Signatures for Identity-Based Encryption (ECCSI)",
 RFC 6507, DOI 10.17487/RFC6507, February 2012,
 <https://www.rfc-editor.org/info/rfc6507>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

Watsen & Wang Expires April 25, 2019 [Page 42]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 [RFC7539] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015,
 <https://www.rfc-editor.org/info/rfc7539>.

 [RFC7919] Gillmor, D., "Negotiated Finite Field Diffie-Hellman
 Ephemeral Parameters for Transport Layer Security (TLS)",
 RFC 7919, DOI 10.17487/RFC7919, August 2016,
 <https://www.rfc-editor.org/info/rfc7919>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",
 RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8268] Baushke, M., "More Modular Exponentiation (MODP) Diffie-
 Hellman (DH) Key Exchange (KEX) Groups for Secure Shell
 (SSH)", RFC 8268, DOI 10.17487/RFC8268, December 2017,
 <https://www.rfc-editor.org/info/rfc8268>.

 [RFC8332] Bider, D., "Use of RSA Keys with SHA-256 and SHA-512 in
 the Secure Shell (SSH) Protocol", RFC 8332,
 DOI 10.17487/RFC8332, March 2018,
 <https://www.rfc-editor.org/info/rfc8332>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8422] Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
 Curve Cryptography (ECC) Cipher Suites for Transport Layer
 Security (TLS) Versions 1.2 and Earlier", RFC 8422,
 DOI 10.17487/RFC8422, August 2018,
 <https://www.rfc-editor.org/info/rfc8422>.

Watsen & Wang Expires April 25, 2019 [Page 43]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

5.2. Informative References

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC4211] Schaad, J., "Internet X.509 Public Key Infrastructure
 Certificate Request Message Format (CRMF)", RFC 4211,
 DOI 10.17487/RFC4211, September 2005,
 <https://www.rfc-editor.org/info/rfc4211>.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
 <https://www.rfc-editor.org/info/rfc5056>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/info/rfc6125>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Watsen & Wang Expires April 25, 2019 [Page 44]

Internet-Draft Common YANG Data Types for Cryptography October 2018

Appendix A. Examples

A.1. The "asymmetric-key-pair-with-certs-grouping" Grouping

 The following example module has been constructed to illustrate use
 of the "asymmetric-key-pair-with-certs-grouping" grouping defined in
 the "ietf-crypto-types" module.

 Note that the "asymmetric-key-pair-with-certs-grouping" grouping uses
 both the "asymmetric-key-pair-grouping" and "end-entity-cert-
 grouping" groupings, and that the "asymmetric-key-pair-grouping"
 grouping uses the "public-key-grouping" grouping. Thus, a total of
 four of the five groupings defined in the "ietf-crypto-types" module
 are illustrated through the use of this one grouping. The only
 grouping not represented is the "trust-anchor-cert-grouping"
 grouping.

Watsen & Wang Expires April 25, 2019 [Page 45]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 module ex-crypto-types-usage {
 yang-version 1.1;

 namespace "http://example.com/ns/example-crypto-types-usage";
 prefix "ectu";

 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC XXXX: Common YANG Data Types for Cryptography";
 }

 organization
 "Example Corporation";

 contact
 "Author: YANG Designer <mailto:yang.designer@example.com>";

 description
 "This module illustrates the grouping
 defined in the crypto-types draft called
 ’asymmetric-key-pair-with-certs-grouping’.";

 revision "1001-01-01" {
 description
 "Initial version";
 reference
 "RFC ????: Usage Example for RFC XXXX";
 }

 container keys {
 description
 "A container of keys.";
 list key {
 key name;
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ct:asymmetric-key-pair-with-certs-grouping;
 description
 "An asymmetric key pair with associated certificates.";
 }
 }
 }

Watsen & Wang Expires April 25, 2019 [Page 46]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 Given the above example usage module, the following example
 illustrates some configured keys.

 <keys xmlns="http://example.com/ns/example-crypto-types-usage">
 <key>
 <name>ex-key</name>
 <algorithm
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">
 ct:rsa2048
 </algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <certificates>
 <certificate>
 <name>ex-cert</name>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </certificates>
 </key>
 </keys>

A.2. The "generate-hidden-key" Action

 The following example illustrates the "generate-hidden-key" action in
 use with the NETCONF protocol.

Watsen & Wang Expires April 25, 2019 [Page 47]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 REQUEST

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <action xmlns="urn:ietf:params:xml:ns:yang:1">
 <keys xmlns="http://example.com/ns/example-crypto-types-usage">
 <key>
 <name>empty-key</name>
 <generate-hidden-key>
 <algorithm
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">
 ct:rsa2048
 </algorithm>
 </generate-hidden-key>
 </key>
 </keys>
 </action>
 </rpc>

 RESPONSE

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

A.3. The "install-hidden-key" Action

 The following example illustrates the "install-hidden-key" action in
 use with the NETCONF protocol.

Watsen & Wang Expires April 25, 2019 [Page 48]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 REQUEST

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <action xmlns="urn:ietf:params:xml:ns:yang:1">
 <keys xmlns="http://example.com/ns/example-crypto-types-usage">
 <key>
 <name>empty-key</name>
 <install-hidden-key>
 <algorithm
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">
 ct:rsa2048
 </algorithm>
 <public-key>base64encodedvalue==</public-key>
 <private-key>base64encodedvalue==</private-key>
 </install-hidden-key>
 </key>
 </keys>
 </action>
 </rpc>

 RESPONSE

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

A.4. The "generate-certificate-signing-request" Action

 The following example illustrates the "generate-certificate-signing-
 request" action in use with the NETCONF protocol.

Watsen & Wang Expires April 25, 2019 [Page 49]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 REQUEST

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <action xmlns="urn:ietf:params:xml:ns:yang:1">
 <keys xmlns="http://example.com/ns/example-crypto-types-usage">
 <key>
 <name>ex-key-sect571r1</name>
 <generate-certificate-signing-request>
 <subject>base64encodedvalue==</subject>
 <attributes>base64encodedvalue==</attributes>
 </generate-certificate-signing-request>
 </key>
 </keys>
 </action>
 </rpc>

 RESPONSE

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <certificate-signing-request
 xmlns="http://example.com/ns/example-crypto-types-usage">
 base64encodedvalue==
 </certificate-signing-request>
 </rpc-reply>

A.5. The "certificate-expiration" Notification

 The following example illustrates the "certificate-expiration"
 notification in use with the NETCONF protocol.

Watsen & Wang Expires April 25, 2019 [Page 50]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2018-05-25T00:01:00Z</eventTime>
 <keys xmlns="http://example.com/ns/example-crypto-types-usage">
 <key>
 <name>locally-defined key</name>
 <certificates>
 <certificate>
 <name>my-cert</name>
 <certificate-expiration>
 <expiration-date>
 2018-08-05T14:18:53-05:00
 </expiration-date>
 </certificate-expiration>
 </certificate>
 </certificates>
 </key>
 </keys>
 </notification>

Appendix B. Change Log

B.1. I-D to 00

 o Removed groupings and notifications.

 o Added typedefs for identityrefs.

 o Added typedefs for other RFC 5280 structures.

 o Added typedefs for other RFC 5652 structures.

 o Added convenience typedefs for RFC 4253, RFC 5280, and RFC 5652.

B.2. 00 to 01

 o Moved groupings from the draft-ietf-netconf-keystore here.

B.3. 01 to 02

 o Removed unwanted "mandatory" and "must" statements.

 o Added many new crypto algorithms (thanks Haiguang!)

 o Clarified in asymmetric-key-pair-with-certs-grouping, in
 certificates/certificate/name/description, that if the name MUST
 not match the name of a certificate that exists independently in

Watsen & Wang Expires April 25, 2019 [Page 51]

Internet-Draft Common YANG Data Types for Cryptography October 2018

 <operational>, enabling certs installed by the manufacturer (e.g.,
 an IDevID).

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Martin Bjorklund,
 Balazs Kovacs, Eric Voit, and Liang Xia.

Authors’ Addresses

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

 Wang Haiguang
 Huawei

 EMail: wang.haiguang.shieldlab@huawei.com

Watsen & Wang Expires April 25, 2019 [Page 52]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track October 22, 2018
Expires: April 25, 2019

 YANG Data Model for a Centralized Keystore Mechanism
 draft-ietf-netconf-keystore-07

Abstract

 This document defines a YANG 1.1 module called "ietf-keystore" that
 enables centralized configuration of asymmetric keys and their
 associated certificates, and notification for when configured
 certificates are about to expire.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "VVVV" --> the assigned RFC value for this draft

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix A. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Watsen Expires April 25, 2019 [Page 1]

Internet-Draft A Centralized Keystore Mechanism October 2018

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Requirements Language . 3
 3. The Keystore Model . 4
 3.1. Tree Diagram . 4
 3.2. Example Usage . 6
 3.3. YANG Module . 11
 4. Security Considerations 16
 5. IANA Considerations . 17
 5.1. The IETF XML Registry 17
 5.2. The YANG Module Names Registry 17
 6. References . 17
 6.1. Normative References 17
 6.2. Informative References 18
 Appendix A. Change Log . 20
 A.1. 00 to 01 . 20
 A.2. 01 to 02 . 20
 A.3. 02 to 03 . 20
 A.4. 03 to 04 . 20
 A.5. 04 to 05 . 21
 A.6. 05 to 06 . 21
 A.7. 06 to 07 . 21
 Acknowledgements . 21
 Author’s Address . 21

Watsen Expires April 25, 2019 [Page 2]

Internet-Draft A Centralized Keystore Mechanism October 2018

1. Introduction

 This document defines a YANG 1.1 [RFC7950] module called "ietf-
 keystore" that enables centralized configuration of asymmetric keys
 and their associated certificates, and notification for when
 configured certificates are about to expire.

 This module also defines Six groupings designed for maximum reuse.
 These groupings include one for the public half of an asymmetric key,
 one for both the public and private halves of an asymmetric key, one
 for both halves of an asymmetric key and a list of associated
 certificates, one for an asymmetric key that may be configured
 locally or via a reference to an asymmetric key in the keystore, one
 for a trust anchor certificate and, lastly, one for an end entity
 certificate.

 Special consideration has been given for systems that have
 cryptographic hardware, such as a Trusted Protection Module (TPM).
 These systems are unique in that the cryptographic hardware
 completely hides the private keys and must perform all private key
 operations. To support such hardware, the "private-key" can be the
 special value "permanently-hidden" and the actions "generate-hidden-
 key" and "generate-certificate-signing-request" can be used to direct
 these operations to the hardware .

 This document in compliant with Network Management Datastore
 Architecture (NMDA) [RFC8342]. For instance, to support keys and
 associated certificates installed during manufacturing (e.g., for a
 IDevID [Std-802.1AR-2009] certificate), it is expected that such data
 may appear only in <operational>.

 While only asymmetric keys are currently supported, the module has
 been designed to enable other key types to be introduced in the
 future.

 The module does not support protecting the contents of the keystore
 (e.g., via encryption), though it could be extended to do so in the
 future.

 It is not required that a system has an operating system level
 keystore utility to implement this module.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

Watsen Expires April 25, 2019 [Page 3]

Internet-Draft A Centralized Keystore Mechanism October 2018

 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. The Keystore Model

3.1. Tree Diagram

 This section provides a tree diagrams [RFC8340] for the "ietf-
 keystore" module that presents both the protocol-accessible
 "keystore" as well the all the groupings intended for external usage.

 module: ietf-keystore
 +--rw keystore
 +--rw asymmetric-keys
 +--rw asymmetric-key* [name]
 +--rw name string
 +--rw algorithm?
 | asymmetric-key-encryption-algorithm-ref
 +--rw public-key? binary
 +--rw private-key? union
 +---x generate-hidden-key
 | +---w input
 | +---w algorithm
 | asymmetric-key-encryption-algorithm-ref
 +---x install-hidden-key
 | +---w input
 | +---w algorithm
 | | asymmetric-key-encryption-algorithm-ref
 | +---w public-key? binary
 | +---w private-key? binary
 +--rw certificates
 | +--rw certificate* [name]
 | +--rw name string
 | +--rw cert? end-entity-cert-cms
 | +---n certificate-expiration
 | +-- expiration-date yang:date-and-time
 +---x generate-certificate-signing-request
 +---w input
 | +---w subject binary
 | +---w attributes? binary
 +--ro output
 +--ro certificate-signing-request binary

 grouping local-or-keystore-end-entity-cert-with-key-grouping
 +-- (local-or-keystore)
 +--:(local) {local-keys-supported}?
 | +-- algorithm?
 | | asymmetric-key-encryption-algorithm-ref

Watsen Expires April 25, 2019 [Page 4]

Internet-Draft A Centralized Keystore Mechanism October 2018

 | +-- public-key? binary
 | +-- private-key? union
 | +---x generate-hidden-key
 | | +---w input
 | | +---w algorithm
 | | asymmetric-key-encryption-algorithm-ref
 | +---x install-hidden-key
 | | +---w input
 | | +---w algorithm
 | | | asymmetric-key-encryption-algorithm-ref
 | | +---w public-key? binary
 | | +---w private-key? binary
 | +-- cert? end-entity-cert-cms
 | +---n certificate-expiration
 | +-- expiration-date yang:date-and-time
 +--:(keystore) {keystore-supported}?
 +-- reference?
 ks:asymmetric-key-certificate-ref
 grouping local-or-keystore-asymmetric-key-grouping
 +-- (local-or-keystore)
 +--:(local) {local-keys-supported}?
 | +-- algorithm?
 | | asymmetric-key-encryption-algorithm-ref
 | +-- public-key? binary
 | +-- private-key? union
 | +---x generate-hidden-key
 | | +---w input
 | | +---w algorithm
 | | asymmetric-key-encryption-algorithm-ref
 | +---x install-hidden-key
 | +---w input
 | +---w algorithm
 | | asymmetric-key-encryption-algorithm-ref
 | +---w public-key? binary
 | +---w private-key? binary
 +--:(keystore) {keystore-supported}?
 +-- reference? ks:asymmetric-key-ref
 grouping local-or-keystore-asymmetric-key-with-certs-grouping
 +-- (local-or-keystore)
 +--:(local) {local-keys-supported}?
 | +-- algorithm?
 | | asymmetric-key-encryption-algorithm-ref
 | +-- public-key? binary
 | +-- private-key? union
 | +---x generate-hidden-key
 | | +---w input
 | | +---w algorithm
 | | asymmetric-key-encryption-algorithm-ref

Watsen Expires April 25, 2019 [Page 5]

Internet-Draft A Centralized Keystore Mechanism October 2018

 | +---x install-hidden-key
 | | +---w input
 | | +---w algorithm
 | | | asymmetric-key-encryption-algorithm-ref
 | | +---w public-key? binary
 | | +---w private-key? binary
 | +-- certificates
 | | +-- certificate* [name]
 | | +-- name? string
 | | +-- cert? end-entity-cert-cms
 | | +---n certificate-expiration
 | | +-- expiration-date yang:date-and-time
 | +---x generate-certificate-signing-request
 | +---w input
 | | +---w subject binary
 | | +---w attributes? binary
 | +--ro output
 | +--ro certificate-signing-request binary
 +--:(keystore) {keystore-supported}?
 +-- reference?
 ks:asymmetric-key-ref

3.2. Example Usage

 The following example illustrates what a fully configured keystore
 might look like in <operational>, as described by Section 5.3 in
 [RFC8342]. This datastore view illustrates data set by the
 manufacturing process alongside conventional configuration. This
 keystore instance has four keys, two having one associated
 certificate, one having two associated certificates, and one empty
 key.

 [Note: ’\’ line wrapping for formatting only]

 <keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
 or:origin="or:intended">
 <asymmetric-keys>

 <asymmetric-key>
 <name>ex-rsa-key</name>
 <algorithm>ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <certificates>
 <certificate>

Watsen Expires April 25, 2019 [Page 6]

Internet-Draft A Centralized Keystore Mechanism October 2018

 <name>ex-rsa-cert</name>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </certificates>
 </asymmetric-key>

 <!-- waiting for Haiguang fix...
 <asymmetric-key>
 <name>tls-ec-key</name>
 <algorithm>ct:secp256r1</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <certificates>
 <certificate>
 <name>tls-ec-cert</name>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </certificates>
 </asymmetric-key>
 -->

 <asymmetric-key>
 <name>tpm-protected-key</name>
 <algorithm or:origin="or:system">ct:rsa2048</algorithm>
 <private-key or:origin="or:system">permanently-hidden</private\
 -key>
 <public-key or:origin="or:system">base64encodedvalue==</public\
 -key>
 <certificates>
 <certificate or:origin="or:system">
 <name>builtin-idevid-cert</name>
 <cert or:origin="or:system">base64encodedvalue==</cert>
 </certificate>
 <certificate>
 <name>my-ldevid-cert</name>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </certificates>
 </asymmetric-key>

 <asymmetric-key>
 <name>tpm-protected-key2</name>
 <certificates>
 <certificate>
 <name>builtin-idevid-cert2</name>
 </certificate>
 <certificate>
 <name>my-ldevid-cert2</name>

Watsen Expires April 25, 2019 [Page 7]

Internet-Draft A Centralized Keystore Mechanism October 2018

 <cert>base64encodedvalue==</cert>
 </certificate>
 </certificates>
 </asymmetric-key>

 </asymmetric-keys>
 </keystore>

 The following example module has been constructed to illustrate the
 "local-or-keystore-asymmetric-key-grouping" grouping defined in the
 "ietf-keystore" module.

 module ex-keystore-usage {
 yang-version 1.1;

 namespace "http://example.com/ns/example-keystore-usage";
 prefix "eku";

 import ietf-keystore {
 prefix ks;
 reference
 "RFC VVVV: YANG Data Model for a ’Keystore’ Mechanism";
 }

 organization
 "Example Corporation";

 contact
 "Author: YANG Designer <mailto:yang.designer@example.com>";

 description
 "This module illustrates the grouping in the keystore draft called
 ’local-or-keystore-asymmetric-key-with-certs-grouping’.";

 revision "YYYY-MM-DD" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Data Model for a ’Keystore’ Mechanism";
 }

 container keystore-usage {
 description
 "An illustration of the various keystore groupings.";

 list just-a-key {
 key name;

Watsen Expires April 25, 2019 [Page 8]

Internet-Draft A Centralized Keystore Mechanism October 2018

 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:local-or-keystore-asymmetric-key-grouping;
 description
 "An asymmetric key, with no certs, that may be configured
 locally or be a reference to an asymmetric key in the
 keystore. The intent is to reference just the asymmetric
 key, not any certificates that may also be associated
 with the asymmetric key.";
 }

 list key-with-certs {
 key name;
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:local-or-keystore-asymmetric-key-with-certs-grouping;
 description
 "An asymmetric key and its associated certs, that may be
 configured locally or be a reference to an asymmetric key
 (and its associated certs) in the keystore.";
 }

 list end-entity-cert-with-key {
 key name;
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:local-or-keystore-end-entity-cert-with-key-grouping;
 description
 "An end-entity certificate, and its associated private key,
 that may be configured locally or be a reference to a
 specific certificate (and its associated private key) in
 the keystore.";
 }
 }

 }

 The following example illustrates what two configured keys, one local
 and the other remote, might look like. This example consistent with

Watsen Expires April 25, 2019 [Page 9]

Internet-Draft A Centralized Keystore Mechanism October 2018

 other examples above (i.e., the referenced key is in an example
 above).

 [Note: ’\’ line wrapping for formatting only]

 <keystore-usage xmlns="http://example.com/ns/example-keystore-usage">

 <!-- ks:local-or-keystore-asymmetric-key-grouping -->

 <just-a-key>
 <name>a locally-defined key</name>
 <algorithm
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">
 ct:rsa2048
 </algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 </just-a-key>

 <just-a-key>
 <name>a keystore-defined key (and its associated certs)</name>
 <reference>ex-rsa-key</reference>
 </just-a-key>

 <!-- ks:local-or-keystore-key-and-end-entity-cert-grouping -->

 <key-with-certs>
 <name>a locally-defined key with certs</name>
 <algorithm
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">
 ct:rsa2048
 </algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <certificates>
 <certificate>
 <name>a locally-defined cert</name>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </certificates>
 </key-with-certs>

 <key-with-certs>
 <name>a keystore-defined key (and its associated certs)</name>
 <reference>ex-rsa-key</reference>
 </key-with-certs>

Watsen Expires April 25, 2019 [Page 10]

Internet-Draft A Centralized Keystore Mechanism October 2018

 <!-- ks:local-or-keystore-end-entity-cert-with-key-grouping -->

 <end-entity-cert-with-key>
 <name>a locally-defined end-entity cert with key</name>
 <algorithm
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">
 ct:rsa2048
 </algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <cert>base64encodedvalue==</cert>
 </end-entity-cert-with-key>

 <end-entity-cert-with-key>
 <name>a keystore-defined certificate (and its associated key)</n\
 ame>
 <reference>ex-rsa-cert</reference>
 </end-entity-cert-with-key>

 </keystore-usage>

3.3. YANG Module

 This YANG module has normative references to [RFC8341] and
 [I-D.ietf-netconf-crypto-types], and an informative reference to
 [RFC8342].

 <CODE BEGINS> file "ietf-keystore@2018-10-22.yang"
 module ietf-keystore {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-keystore";
 prefix "ks";

 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC CCCC: Common YANG Data Types for Cryptography";
 }

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

Watsen Expires April 25, 2019 [Page 11]

Internet-Draft A Centralized Keystore Mechanism October 2018

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>";

 description
 "This module defines a keystore to centralize management
 of security credentials.

 Copyright (c) 2018 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Simplified
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC VVVV; see
 the RFC itself for full legal notices.";

 revision "2018-10-22" {
 description
 "Initial version";
 reference
 "RFC VVVV:
 YANG Data Model for a Centralized Keystore Mechanism";
 }

 // Features

 feature keystore-supported {
 description
 "The ’keystore-supported’ feature indicates that the server
 supports the keystore.";
 }

 feature local-keys-supported {
 description
 "The ’local-keys-supported’ feature indocates that the
 server supports locally-defined keys.";
 }

 // Typedefs

Watsen Expires April 25, 2019 [Page 12]

Internet-Draft A Centralized Keystore Mechanism October 2018

 typedef asymmetric-key-ref {
 type leafref {
 path "/ks:keystore/ks:asymmetric-keys/ks:asymmetric-key"
 + "/ks:name";
 }
 description
 "This typedef enables modules to easily define a reference
 to an asymmetric key stored in the keystore.";
 reference
 "RFC 8342: Network Management Datastore Architecture (NMDA)";
 }

 typedef asymmetric-key-certificate-ref {
 type leafref {
 path "/ks:keystore/ks:asymmetric-keys/ks:asymmetric-key"
 + "/ks:certificates/ks:certificate/ks:name";
 }
 description
 "This typedef enables modules to easily define a reference
 to a specific certificate associated with an asymmetric key
 stored in the keystore.";
 reference
 "RFC 8342: Network Management Datastore Architecture (NMDA)";
 }

 // Groupings

 grouping local-or-keystore-asymmetric-key-grouping {
 description
 "A grouping that expands to allow the asymmetric key to be
 either stored locally, within the using data model, or be
 a reference to an asymmetric key stored in the keystore.";
 choice local-or-keystore {
 mandatory true;
 case local {
 if-feature "local-keys-supported";
 uses ct:asymmetric-key-pair-grouping;
 }
 case keystore {
 if-feature "keystore-supported";
 leaf reference {
 type ks:asymmetric-key-ref;
 description
 "A reference to an asymmetric key that exists in
 the keystore. The intent is to reference just the
 asymmetric key, not any certificates that may also
 be associated with the asymmetric key.";

Watsen Expires April 25, 2019 [Page 13]

Internet-Draft A Centralized Keystore Mechanism October 2018

 }
 }
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 }
 }

 grouping local-or-keystore-asymmetric-key-with-certs-grouping {
 description
 "A grouping that expands to allow an asymmetric key and its
 associated certificates to be either stored locally, within
 the using data model, or be a reference to an asymmetric key
 (and its associated certificates) stored in the keystore.";
 choice local-or-keystore {
 mandatory true;
 case local {
 if-feature "local-keys-supported";
 uses ct:asymmetric-key-pair-with-certs-grouping;
 }
 case keystore {
 if-feature "keystore-supported";
 leaf reference {
 type ks:asymmetric-key-ref;
 description
 "A reference to a value that exists in the keystore.";
 }
 }
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 }
 }

 grouping local-or-keystore-end-entity-cert-with-key-grouping {
 description
 "A grouping that expands to allow an end-entity certificate
 (and its associated private key) to be either stored locally,
 within the using data model, or be a reference to a specific
 certificate in the keystore.";
 choice local-or-keystore {
 mandatory true;
 case local {
 if-feature "local-keys-supported";
 uses ct:asymmetric-key-pair-grouping;
 uses ct:end-entity-cert-grouping;
 }
 case keystore {

Watsen Expires April 25, 2019 [Page 14]

Internet-Draft A Centralized Keystore Mechanism October 2018

 if-feature "keystore-supported";
 leaf reference {
 type ks:asymmetric-key-certificate-ref;
 description
 "A reference to a specific certificate, and its
 associated private key, stored in the keystore.";
 }
 }
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 }
 }

 // protocol accessible nodes

 container keystore {
 nacm:default-deny-write;

 description
 "The keystore contains a list of keys.";

 container asymmetric-keys {
 description
 "A list of asymmetric keys.";
 list asymmetric-key {
 must "(algorithm and public-key and private-key)
 or not (algorithm or public-key or private-key)";
 key name;
 description
 "An asymmetric key.";
 leaf name {
 type string;
 description
 "An arbitrary name for the asymmetric key. If the name
 matches the name of a key that exists independently in
 <operational> (i.e., a ’permanently-hidden’ key), then
 the ’algorithm’, ’public-key’, and ’private-key’ nodes
 MUST NOT be configured.";
 }
 uses ct:asymmetric-key-pair-with-certs-grouping;
 } // end asymmetric-key

 } // end asymmetric-keys
 } // end keystore

Watsen Expires April 25, 2019 [Page 15]

Internet-Draft A Centralized Keystore Mechanism October 2018

 }
 <CODE ENDS>

4. Security Considerations

 The YANG module defined in this document is designed to be accessed
 via YANG based management protocols, such as NETCONF [RFC6241] and
 RESTCONF [RFC8040]. Both of these protocols have mandatory-to-
 implement secure transport layers (e.g., SSH, TLS) with mutual
 authentication.

 The NETCONF access control model (NACM) [RFC8341] provides the means
 to restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /: The entire data tree defined by this module is sensitive to
 write operations. For instance, the addition or removal of
 keys, certificates, etc., can dramatically alter the
 implemented security policy. For this reason, the NACM
 extension "default-deny-write" has been set for the entire data
 tree.

 /keystore/asymmetric-keys/asymmetric-key/private-key: When
 writing this node, implementations MUST ensure that the
 strength of the key being configured is not greater than the
 strength of the underlying secure transport connection over
 which it is communicated. Implementations SHOULD fail the
 write-request if ever the strength of the private key is
 greater then the strength of the underlying transport, and
 alert the client that the strength of the key may have been
 compromised. Additionally, when deleting this node,
 implementations SHOULD automatically (without explicit request)
 zeroize these keys in the most secure manner available, so as
 to prevent the remnants of their persisted storage locations
 from being analyzed in any meaningful way.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or

Watsen Expires April 25, 2019 [Page 16]

Internet-Draft A Centralized Keystore Mechanism October 2018

 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 /keystore/asymmetric-keys/asymmetric-key/private-key: This node
 is additionally sensitive to read operations such that, in
 normal use cases, it should never be returned to a client. The
 best reason for returning this node is to support backup/
 restore type workflows. For this reason, the NACM extension
 "default-deny-all" has been set for this data node. Note that
 this extension is inherited from the grouping in the
 [I-D.ietf-netconf-crypto-types] module.

5. IANA Considerations

5.1. The IETF XML Registry

 This document registers one URI in the "ns" subregistry of the IETF
 XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registration is requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-keystore
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

5.2. The YANG Module Names Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registration is requested:

 name: ietf-keystore
 namespace: urn:ietf:params:xml:ns:yang:ietf-keystore
 prefix: ks
 reference: RFC VVVV

6. References

6.1. Normative References

 [I-D.ietf-netconf-crypto-types]
 Watsen, K., "Common YANG Data Types for Cryptography",
 draft-ietf-netconf-crypto-types-01 (work in progress),
 September 2018.

Watsen Expires April 25, 2019 [Page 17]

Internet-Draft A Centralized Keystore Mechanism October 2018

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

6.2. Informative References

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

Watsen Expires April 25, 2019 [Page 18]

Internet-Draft A Centralized Keystore Mechanism October 2018

 [Std-802.1AR-2009]
 IEEE SA-Standards Board, "IEEE Standard for Local and
 metropolitan area networks - Secure Device Identity",
 December 2009, <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

Watsen Expires April 25, 2019 [Page 19]

Internet-Draft A Centralized Keystore Mechanism October 2018

Appendix A. Change Log

A.1. 00 to 01

 o Replaced the ’certificate-chain’ structures with PKCS#7
 structures. (Issue #1)

 o Added ’private-key’ as a configurable data node, and removed the
 ’generate-private-key’ and ’load-private-key’ actions. (Issue #2)

 o Moved ’user-auth-credentials’ to the ietf-ssh-client module.
 (Issues #4 and #5)

A.2. 01 to 02

 o Added back ’generate-private-key’ action.

 o Removed ’RESTRICTED’ enum from the ’private-key’ leaf type.

 o Fixed up a few description statements.

A.3. 02 to 03

 o Changed draft’s title.

 o Added missing references.

 o Collapsed sections and levels.

 o Added RFC 8174 to Requirements Language Section.

 o Renamed ’trusted-certificates’ to ’pinned-certificates’.

 o Changed ’public-key’ from config false to config true.

 o Switched ’host-key’ from OneAsymmetricKey to definition from RFC
 4253.

A.4. 03 to 04

 o Added typedefs around leafrefs to common keystore paths

 o Now tree diagrams reference ietf-netmod-yang-tree-diagrams

 o Removed Design Considerations section

 o Moved key and certificate definitions from data tree to groupings

Watsen Expires April 25, 2019 [Page 20]

Internet-Draft A Centralized Keystore Mechanism October 2018

A.5. 04 to 05

 o Removed trust anchors (now in their own draft)

 o Added back global keystore structure

 o Added groupings enabling keys to either be locally defined or a
 reference to the keystore.

A.6. 05 to 06

 o Added feature "local-keys-supported"

 o Added nacm:default-deny-all and nacm:default-deny-write

 o Renamed generate-asymmetric-key to generate-hidden-key

 o Added an install-hidden-key action

 o Moved actions inside fo the "asymmetric-key" container

 o Moved some groupings to draft-ietf-netconf-crypto-types

A.7. 06 to 07

 o Removed a "require-instance false"

 o Clarified some description statements

 o Improved the keystore-usage examples

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, Balazs Kovacs, David
 Lamparter, Alan Luchuk, Ladislav Lhotka, Mahesh Jethanandani, Radek
 Krejci, Reshad Rahman, Tom Petch, Juergen Schoenwaelder, Phil Shafer,
 Sean Turner, Eric Voit, Bert Wijnen, and Liang Xia.

Author’s Address

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

Watsen Expires April 25, 2019 [Page 21]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track October 22, 2018
Expires: April 25, 2019

 NETCONF Client and Server Models
 draft-ietf-netconf-netconf-client-server-08

Abstract

 This document defines two YANG modules, one module to configure a
 NETCONF client and the other module to configure a NETCONF server.
 Both modules support both the SSH and TLS transport protocols, and
 support both standard NETCONF and NETCONF Call Home connections.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o I-D.ietf-netconf-keystore

 o I-D.ietf-netconf-ssh-client-server

 o I-D.ietf-netconf-tls-client-server

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

 o "YYYY" --> the assigned RFC value for I-D.ietf-netconf-ssh-client-
 server

 o "ZZZZ" --> the assigned RFC value for I-D.ietf-netconf-tls-client-
 server

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

Watsen Expires April 25, 2019 [Page 1]

Internet-Draft NETCONF Client and Server Models October 2018

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix A. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. The NETCONF Client Model 4
 3.1. Tree Diagram . 4
 3.2. Example Usage . 12
 3.3. YANG Module . 14
 4. The NETCONF Server Model 24
 4.1. Tree Diagram . 25

Watsen Expires April 25, 2019 [Page 2]

Internet-Draft NETCONF Client and Server Models October 2018

 4.2. Example Usage . 32
 4.3. YANG Module . 37
 5. Design Considerations . 49
 5.1. Support all NETCONF transports 49
 5.2. Enable each transport to select which keys to use 49
 5.3. Support authenticating NETCONF clients certificates . . . 49
 5.4. Support mapping authenticated NETCONF client certificates
 to usernames . 50
 5.5. Support both listening for connections and call home . . 50
 5.6. For Call Home connections 50
 5.6.1. Support more than one NETCONF client 50
 5.6.2. Support NETCONF clients having more than one endpoint 50
 5.6.3. Support a reconnection strategy 50
 5.6.4. Support both persistent and periodic connections . . 51
 5.6.5. Reconnection strategy for periodic connections . . . 51
 5.6.6. Keep-alives for persistent connections 51
 5.6.7. Customizations for periodic connections 51
 6. Security Considerations 51
 7. IANA Considerations . 52
 7.1. The IETF XML Registry 52
 7.2. The YANG Module Names Registry 53
 8. References . 53
 8.1. Normative References 53
 8.2. Informative References 54
 Appendix A. Change Log . 56
 A.1. 00 to 01 . 56
 A.2. 01 to 02 . 56
 A.3. 02 to 03 . 56
 A.4. 03 to 04 . 56
 A.5. 04 to 05 . 56
 A.6. 05 to 06 . 57
 A.7. 06 to 07 . 57
 A.8. 07 to 08 . 57
 Acknowledgements . 57
 Author’s Address . 57

1. Introduction

 This document defines two YANG [RFC7950] modules, one module to
 configure a NETCONF [RFC6241] client and the other module to
 configure a NETCONF server. Both modules support both NETCONF over
 SSH [RFC6242] and NETCONF over TLS [RFC7589] and NETCONF Call Home
 connections [RFC8071].

Watsen Expires April 25, 2019 [Page 3]

Internet-Draft NETCONF Client and Server Models October 2018

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. The NETCONF Client Model

 The NETCONF client model presented in this section supports both
 clients initiating connections to servers, as well as clients
 listening for connections from servers calling home.

 This model supports both the SSH and TLS transport protocols, using
 the SSH client and TLS client groupings defined in
 [I-D.ietf-netconf-ssh-client-server] and
 [I-D.ietf-netconf-tls-client-server] respectively.

 All private keys and trusted certificates are held in the keystore
 model defined in [I-D.ietf-netconf-keystore].

 YANG feature statements are used to enable implementations to
 advertise which parts of the model the NETCONF client supports.

3.1. Tree Diagram

 The following tree diagram [RFC8340] provides an overview of the data
 model for the "ietf-netconf-client" module. Just the container is
 displayed below, but there is also a reusable grouping called
 "netconf-client-grouping" that the container is using.

 [Note: ’\’ line wrapping for formatting only]

 module: ietf-netconf-client
 +--rw netconf-client
 +--rw initiate! {initiate}?
 | +--rw netconf-server* [name]
 | +--rw name string
 | +--rw endpoints
 | | +--rw endpoint* [name]
 | | +--rw name string
 | | +--rw (transport)
 | | +--:(ssh) {ssh-initiate}?
 | | | +--rw ssh
 | | | +--rw address? inet:host
 | | | +--rw port? inet:port-number

Watsen Expires April 25, 2019 [Page 4]

Internet-Draft NETCONF Client and Server Models October 2018

 | | | +--rw client-identity
 | | | | +--rw username? string
 | | | | +--rw (auth-type)
 | | | | +--:(password)
 | | | | | +--rw password? string
 | | | | +--:(public-key)
 | | | | | +--rw public-key
 | | | | | +--rw (local-or-keystore)
 | | | | | +--:(local)
 | | | | | | {local-keys-suppor\
 ted}?
 | | | | | | +--rw algorithm?
 | | | | | | | asymmetric-key-e\
 ncryption-algorithm-ref
 | | | | | | +--rw public-key?
 | | | | | | | binary
 | | | | | | +--rw private-key?
 | | | | | | | union
 | | | | | | +---x generate-hidden-key
 | | | | | | | +---w input
 | | | | | | | +---w algorithm
 | | | | | | | asymmetric\
 -key-encryption-algorithm-ref
 | | | | | | +---x install-hidden-key
 | | | | | | +---w input
 | | | | | | +---w algorithm
 | | | | | | | asymmetric\
 -key-encryption-algorithm-ref
 | | | | | | +---w public-key?
 | | | | | | | binary
 | | | | | | +---w private-key?
 | | | | | | binary
 | | | | | +--:(keystore)
 | | | | | {keystore-supporte\
 d}?
 | | | | | +--rw reference?
 | | | | | ks:asymmetric-ke\
 y-ref
 | | | | +--:(certificate)
 | | | | +--rw certificate
 | | | | {sshcmn:ssh-x509-certs}?
 | | | | +--rw (local-or-keystore)
 | | | | +--:(local)
 | | | | | {local-keys-suppor\
 ted}?
 | | | | | +--rw algorithm?
 | | | | | | asymmetric-key-e\
 ncryption-algorithm-ref

Watsen Expires April 25, 2019 [Page 5]

Internet-Draft NETCONF Client and Server Models October 2018

 | | | | | +--rw public-key?
 | | | | | | binary
 | | | | | +--rw private-key?
 | | | | | | union
 | | | | | +---x generate-hidden-key
 | | | | | | +---w input
 | | | | | | +---w algorithm
 | | | | | | asymmetric\
 -key-encryption-algorithm-ref
 | | | | | +---x install-hidden-key
 | | | | | | +---w input
 | | | | | | +---w algorithm
 | | | | | | | asymmetric\
 -key-encryption-algorithm-ref
 | | | | | | +---w public-key?
 | | | | | | | binary
 | | | | | | +---w private-key?
 | | | | | | binary
 | | | | | +--rw cert?
 | | | | | | end-entity-cert-\
 cms
 | | | | | +---n certificate-expira\
 tion
 | | | | | +-- expiration-date
 | | | | | yang:date-and\
 -time
 | | | | +--:(keystore)
 | | | | {keystore-supporte\
 d}?
 | | | | +--rw reference?
 | | | | ks:asymmetric-ke\
 y-certificate-ref
 | | | +--rw server-auth
 | | | | +--rw pinned-ssh-host-keys?
 | | | | | ta:pinned-host-keys-ref
 | | | | | {ta:ssh-host-keys}?
 | | | | +--rw pinned-ca-certs?
 | | | | | ta:pinned-certificates-ref
 | | | | | {sshcmn:ssh-x509-certs,ta:x509-\
 certificates}?
 | | | | +--rw pinned-server-certs?
 | | | | ta:pinned-certificates-ref
 | | | | {sshcmn:ssh-x509-certs,ta:x509-\
 certificates}?
 | | | +--rw transport-params
 | | | {ssh-client-transport-params-confi\
 g}?
 | | | +--rw host-key

Watsen Expires April 25, 2019 [Page 6]

Internet-Draft NETCONF Client and Server Models October 2018

 | | | | +--rw host-key-alg* identityref
 | | | +--rw key-exchange
 | | | | +--rw key-exchange-alg* identityref
 | | | +--rw encryption
 | | | | +--rw encryption-alg* identityref
 | | | +--rw mac
 | | | +--rw mac-alg* identityref
 | | +--:(tls) {tls-initiate}?
 | | +--rw tls
 | | +--rw address? inet:host
 | | +--rw port? inet:port-number
 | | +--rw client-identity
 | | | +--rw (auth-type)
 | | | +--:(certificate)
 | | | +--rw certificate
 | | | +--rw (local-or-keystore)
 | | | +--:(local)
 | | | | {local-keys-suppor\
 ted}?
 | | | | +--rw algorithm?
 | | | | | asymmetric-key-e\
 ncryption-algorithm-ref
 | | | | +--rw public-key?
 | | | | | binary
 | | | | +--rw private-key?
 | | | | | union
 | | | | +---x generate-hidden-key
 | | | | | +---w input
 | | | | | +---w algorithm
 | | | | | asymmetric\
 -key-encryption-algorithm-ref
 | | | | +---x install-hidden-key
 | | | | | +---w input
 | | | | | +---w algorithm
 | | | | | | asymmetric\
 -key-encryption-algorithm-ref
 | | | | | +---w public-key?
 | | | | | | binary
 | | | | | +---w private-key?
 | | | | | binary
 | | | | +--rw cert?
 | | | | | end-entity-cert-\
 cms
 | | | | +---n certificate-expira\
 tion
 | | | | +-- expiration-date
 | | | | yang:date-and\
 -time

Watsen Expires April 25, 2019 [Page 7]

Internet-Draft NETCONF Client and Server Models October 2018

 | | | +--:(keystore)
 | | | {keystore-supporte\
 d}?
 | | | +--rw reference?
 | | | ks:asymmetric-ke\
 y-certificate-ref
 | | +--rw server-auth
 | | | +--rw pinned-ca-certs?
 | | | | ta:pinned-certificates-ref
 | | | | {ta:x509-certificates}?
 | | | +--rw pinned-server-certs?
 | | | ta:pinned-certificates-ref
 | | | {ta:x509-certificates}?
 | | +--rw hello-params
 | | {tls-client-hello-params-config}?
 | | +--rw tls-versions
 | | | +--rw tls-version* identityref
 | | +--rw cipher-suites
 | | +--rw cipher-suite* identityref
 | +--rw connection-type
 | | +--rw (connection-type)
 | | +--:(persistent-connection)
 | | | +--rw persistent!
 | | | +--rw keep-alives
 | | | +--rw max-wait? uint16
 | | | +--rw max-attempts? uint8
 | | +--:(periodic-connection)
 | | +--rw periodic!
 | | +--rw period? uint16
 | | +--rw anchor-time? yang:date-and-time
 | | +--rw idle-timeout? uint16
 | +--rw reconnect-strategy
 | +--rw start-with? enumeration
 | +--rw max-attempts? uint8
 +--rw listen! {listen}?
 +--rw idle-timeout? uint16
 +--rw endpoint* [name]
 +--rw name string
 +--rw (transport)
 +--:(ssh) {ssh-listen}?
 | +--rw ssh
 | +--rw address? inet:ip-address
 | +--rw port? inet:port-number
 | +--rw client-identity
 | | +--rw username? string
 | | +--rw (auth-type)
 | | +--:(password)
 | | | +--rw password? string

Watsen Expires April 25, 2019 [Page 8]

Internet-Draft NETCONF Client and Server Models October 2018

 | | +--:(public-key)
 | | | +--rw public-key
 | | | +--rw (local-or-keystore)
 | | | +--:(local) {local-keys-supported\
 }?
 | | | | +--rw algorithm?
 | | | | | asymmetric-key-encrypt\
 ion-algorithm-ref
 | | | | +--rw public-key?
 | | | | | binary
 | | | | +--rw private-key?
 | | | | | union
 | | | | +---x generate-hidden-key
 | | | | | +---w input
 | | | | | +---w algorithm
 | | | | | asymmetric-key-e\
 ncryption-algorithm-ref
 | | | | +---x install-hidden-key
 | | | | +---w input
 | | | | +---w algorithm
 | | | | | asymmetric-key-e\
 ncryption-algorithm-ref
 | | | | +---w public-key? bin\
 ary
 | | | | +---w private-key? bin\
 ary
 | | | +--:(keystore) {keystore-supporte\
 d}?
 | | | +--rw reference?
 | | | ks:asymmetric-key-ref
 | | +--:(certificate)
 | | +--rw certificate {sshcmn:ssh-x509-cert\
 s}?
 | | +--rw (local-or-keystore)
 | | +--:(local) {local-keys-supported\
 }?
 | | | +--rw algorithm?
 | | | | asymmetric-key-encrypt\
 ion-algorithm-ref
 | | | +--rw public-key?
 | | | | binary
 | | | +--rw private-key?
 | | | | union
 | | | +---x generate-hidden-key
 | | | | +---w input
 | | | | +---w algorithm
 | | | | asymmetric-key-e\
 ncryption-algorithm-ref

Watsen Expires April 25, 2019 [Page 9]

Internet-Draft NETCONF Client and Server Models October 2018

 | | | +---x install-hidden-key
 | | | | +---w input
 | | | | +---w algorithm
 | | | | | asymmetric-key-e\
 ncryption-algorithm-ref
 | | | | +---w public-key? bin\
 ary
 | | | | +---w private-key? bin\
 ary
 | | | +--rw cert?
 | | | | end-entity-cert-cms
 | | | +---n certificate-expiration
 | | | +-- expiration-date
 | | | yang:date-and-time
 | | +--:(keystore) {keystore-supporte\
 d}?
 | | +--rw reference?
 | | ks:asymmetric-key-cert\
 ificate-ref
 | +--rw server-auth
 | | +--rw pinned-ssh-host-keys?
 | | | ta:pinned-host-keys-ref
 | | | {ta:ssh-host-keys}?
 | | +--rw pinned-ca-certs?
 | | | ta:pinned-certificates-ref
 | | | {sshcmn:ssh-x509-certs,ta:x509-certif\
 icates}?
 | | +--rw pinned-server-certs?
 | | ta:pinned-certificates-ref
 | | {sshcmn:ssh-x509-certs,ta:x509-certif\
 icates}?
 | +--rw transport-params
 | {ssh-client-transport-params-config}?
 | +--rw host-key
 | | +--rw host-key-alg* identityref
 | +--rw key-exchange
 | | +--rw key-exchange-alg* identityref
 | +--rw encryption
 | | +--rw encryption-alg* identityref
 | +--rw mac
 | +--rw mac-alg* identityref
 +--:(tls) {tls-listen}?
 +--rw tls
 +--rw address? inet:ip-address
 +--rw port? inet:port-number
 +--rw client-identity
 | +--rw (auth-type)
 | +--:(certificate)

Watsen Expires April 25, 2019 [Page 10]

Internet-Draft NETCONF Client and Server Models October 2018

 | +--rw certificate
 | +--rw (local-or-keystore)
 | +--:(local) {local-keys-supported\
 }?
 | | +--rw algorithm?
 | | | asymmetric-key-encrypt\
 ion-algorithm-ref
 | | +--rw public-key?
 | | | binary
 | | +--rw private-key?
 | | | union
 | | +---x generate-hidden-key
 | | | +---w input
 | | | +---w algorithm
 | | | asymmetric-key-e\
 ncryption-algorithm-ref
 | | +---x install-hidden-key
 | | | +---w input
 | | | +---w algorithm
 | | | | asymmetric-key-e\
 ncryption-algorithm-ref
 | | | +---w public-key? bin\
 ary
 | | | +---w private-key? bin\
 ary
 | | +--rw cert?
 | | | end-entity-cert-cms
 | | +---n certificate-expiration
 | | +-- expiration-date
 | | yang:date-and-time
 | +--:(keystore) {keystore-supporte\
 d}?
 | +--rw reference?
 | ks:asymmetric-key-cert\
 ificate-ref
 +--rw server-auth
 | +--rw pinned-ca-certs?
 | | ta:pinned-certificates-ref
 | | {ta:x509-certificates}?
 | +--rw pinned-server-certs?
 | ta:pinned-certificates-ref
 | {ta:x509-certificates}?
 +--rw hello-params
 {tls-client-hello-params-config}?
 +--rw tls-versions
 | +--rw tls-version* identityref
 +--rw cipher-suites
 +--rw cipher-suite* identityref

Watsen Expires April 25, 2019 [Page 11]

Internet-Draft NETCONF Client and Server Models October 2018

3.2. Example Usage

 The following example illustrates configuring a NETCONF client to
 initiate connections, using both the SSH and TLS transport protocols,
 as well as listening for call-home connections, again using both the
 SSH and TLS transport protocols.

 This example is consistent with the examples presented in Section 3.2
 of [I-D.ietf-netconf-keystore].

 [Note: ’\’ line wrapping for formatting only]

 <netconf-client
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-client">

 <!-- NETCONF servers to initiate connections to -->
 <initiate>
 <netconf-server>
 <name>corp-fw1</name>
 <endpoints>
 <endpoint>
 <name>corp-fw1.example.com</name>
 <ssh>
 <address>corp-fw1.example.com</address>
 <client-identity>
 <username>foobar</username>
 <public-key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:iet\
 f-crypto-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 </public-key>
 </client-identity>
 <server-auth>
 <pinned-ca-certs>explicitly-trusted-server-ca-certs</p\
 inned-ca-certs>
 <pinned-server-certs>explicitly-trusted-server-certs</\
 pinned-server-certs>
 </server-auth>
 </ssh>
 </endpoint>
 <endpoint>
 <name>corp-fw2.example.com</name>
 <ssh>
 <address>corp-fw2.example.com</address>
 <client-identity>
 <username>foobar</username>

Watsen Expires April 25, 2019 [Page 12]

Internet-Draft NETCONF Client and Server Models October 2018

 <public-key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:iet\
 f-crypto-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 </public-key>
 </client-identity>
 <server-auth>
 <pinned-ca-certs>explicitly-trusted-server-ca-certs</p\
 inned-ca-certs>
 <pinned-server-certs>explicitly-trusted-server-certs</\
 pinned-server-certs>
 </server-auth>
 </ssh>
 </endpoint>
 </endpoints>
 <connection-type>
 <persistent/>
 </connection-type>
 <reconnect-strategy>
 <start-with>last-connected</start-with>
 </reconnect-strategy>
 </netconf-server>
 </initiate>

 <!-- endpoints to listen for NETCONF Call Home connections on -->
 <listen>
 <endpoint>
 <name>Intranet-facing listener</name>
 <ssh>
 <address>192.0.2.7</address>
 <client-identity>
 <username>foobar</username>
 <public-key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-cr\
 ypto-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 </public-key>
 </client-identity>
 <server-auth>
 <pinned-ca-certs>explicitly-trusted-server-ca-certs</pinne\
 d-ca-certs>
 <pinned-server-certs>explicitly-trusted-server-certs</pinn\
 ed-server-certs>
 <pinned-ssh-host-keys>explicitly-trusted-ssh-host-keys</pi\
 nned-ssh-host-keys>
 </server-auth>

Watsen Expires April 25, 2019 [Page 13]

Internet-Draft NETCONF Client and Server Models October 2018

 </ssh>
 </endpoint>
 </listen>
 </netconf-client>

3.3. YANG Module

 This YANG module has normative references to [RFC6242], [RFC6991],
 [RFC7589], [RFC8071], [I-D.ietf-netconf-ssh-client-server], and
 [I-D.ietf-netconf-tls-client-server].

 <CODE BEGINS> file "ietf-netconf-client@2018-10-22.yang"
 module ietf-netconf-client {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-client";
 prefix "ncc";

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-ssh-client {
 prefix ss;
 revision-date 2018-10-22; // stable grouping definitions
 reference
 "RFC YYYY: YANG Groupings for SSH Clients and SSH Servers";
 }

 import ietf-tls-client {
 prefix ts;
 revision-date 2018-10-22; // stable grouping definitions
 reference
 "RFC ZZZZ: YANG Groupings for TLS Clients and TLS Servers";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact

Watsen Expires April 25, 2019 [Page 14]

Internet-Draft NETCONF Client and Server Models October 2018

 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description
 "This module contains a collection of YANG definitions for
 configuring NETCONF clients.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2018-10-22" {
 description
 "Initial version";
 reference
 "RFC XXXX: NETCONF Client and Server Models";
 }

 // Features

 feature initiate {
 description
 "The ’initiate’ feature indicates that the NETCONF client
 supports initiating NETCONF connections to NETCONF servers
 using at least one transport (e.g., SSH, TLS, etc.).";
 }

 feature ssh-initiate {
 description
 "The ’ssh-initiate’ feature indicates that the NETCONF client
 supports initiating SSH connections to NETCONF servers.";
 reference

Watsen Expires April 25, 2019 [Page 15]

Internet-Draft NETCONF Client and Server Models October 2018

 "RFC 6242:
 Using the NETCONF Protocol over Secure Shell (SSH)";
 }

 feature tls-initiate {
 description
 "The ’tls-initiate’ feature indicates that the NETCONF client
 supports initiating TLS connections to NETCONF servers.";
 reference
 "RFC 7589: Using the NETCONF Protocol over Transport
 Layer Security (TLS) with Mutual X.509
 Authentication";
 }

 feature listen {
 description
 "The ’listen’ feature indicates that the NETCONF client
 supports opening a port to accept NETCONF server call
 home connections using at least one transport (e.g.,
 SSH, TLS, etc.).";
 }

 feature ssh-listen {
 description
 "The ’ssh-listen’ feature indicates that the NETCONF client
 supports opening a port to listen for incoming NETCONF
 server call-home SSH connections.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
 }

 feature tls-listen {
 description
 "The ’tls-listen’ feature indicates that the NETCONF client
 supports opening a port to listen for incoming NETCONF
 server call-home TLS connections.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
 }

 container netconf-client {
 uses netconf-client-grouping;
 description
 "Top-level container for NETCONF client configuration.";
 }

 grouping netconf-client-grouping {
 description

Watsen Expires April 25, 2019 [Page 16]

Internet-Draft NETCONF Client and Server Models October 2018

 "Top-level grouping for NETCONF client configuration.";

 container initiate {
 if-feature initiate;
 presence "Enables client to initiate TCP connections";
 description
 "Configures client initiating underlying TCP connections.";
 list netconf-server {
 key name;
 min-elements 1;
 description
 "List of NETCONF servers the NETCONF client is to
 initiate connections to in parallel.";
 leaf name {
 type string;
 description
 "An arbitrary name for the NETCONF server.";
 }
 container endpoints {
 description
 "Container for the list of endpoints.";
 list endpoint {
 key name;
 min-elements 1;
 ordered-by user;
 description
 "A user-ordered list of endpoints that the NETCONF
 client will attempt to connect to in the specified
 sequence. Defining more than one enables
 high-availability.";
 leaf name {
 type string;
 description
 "An arbitrary name for the endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports.";
 case ssh {
 if-feature ssh-initiate;
 container ssh {
 description
 "Specifies IP and SSH specific configuration
 for the connection.";
 leaf address {
 type inet:host;
 description

Watsen Expires April 25, 2019 [Page 17]

Internet-Draft NETCONF Client and Server Models October 2018

 "The IP address or hostname of the endpoint.
 If a domain name is configured, then the
 DNS resolution should happen on each usage
 attempt. If the DNS resolution results in
 multiple IP addresses, the IP addresses will
 be tried according to local preference order
 until a connection has been established or
 until all IP addresses have failed.";
 }
 leaf port {
 type inet:port-number;
 default 830;
 description
 "The IP port for this endpoint. The NETCONF
 client will use the IANA-assigned well-known
 port for ’netconf-ssh’ (830) if no value is
 specified.";
 }
 uses ss:ssh-client-grouping;
 }
 } // end ssh
 case tls {
 if-feature tls-initiate;
 container tls {
 description
 "Specifies IP and TLS specific configuration
 for the connection.";
 leaf address {
 type inet:host;
 description
 "The IP address or hostname of the endpoint.
 If a domain name is configured, then the
 DNS resolution should happen on each usage
 attempt. If the DNS resolution results in
 multiple IP addresses, the IP addresses will
 be tried according to local preference order
 until a connection has been established or
 until all IP addresses have failed.";
 }
 leaf port {
 type inet:port-number;
 default 6513;
 description
 "The IP port for this endpoint. The NETCONF
 client will use the IANA-assigned well-
 known port for ’netconf-tls’ (6513) if no
 value is specified.";
 }

Watsen Expires April 25, 2019 [Page 18]

Internet-Draft NETCONF Client and Server Models October 2018

 uses ts:tls-client-grouping {
 refine "client-identity/auth-type" {
 mandatory true;
 description
 "NETCONF/TLS clients MUST pass some
 authentication credentials.";
 }
 }
 }
 } // end tls
 }
 }
 }

 container connection-type {
 description
 "Indicates the kind of connection to use.";
 choice connection-type {
 mandatory true;
 description
 "Selects between available connection types.";
 case persistent-connection {
 container persistent {
 presence
 "Indicates that a persistent connection is to be
 maintained.";
 description
 "Maintain a persistent connection to the NETCONF
 server. If the connection goes down, immediately
 start trying to reconnect to it, using the
 reconnection strategy.

 This connection type minimizes any NETCONF server
 to NETCONF client data-transfer delay, albeit at
 the expense of holding resources longer.";
 container keep-alives {
 description
 "Configures the keep-alive policy, to
 proactively test the aliveness of the SSH/TLS
 server. An unresponsive SSH/TLS server will
 be dropped after approximately max-attempts *
 max-wait seconds.";
 leaf max-wait {
 type uint16 {
 range "1..max";
 }
 units seconds;
 default 30;

Watsen Expires April 25, 2019 [Page 19]

Internet-Draft NETCONF Client and Server Models October 2018

 description
 "Sets the amount of time in seconds after
 which if no data has been received from the
 SSH/TLS server, a SSH/TLS-level message will
 be sent to test the aliveness of the SSH/TLS
 server.";
 }
 leaf max-attempts {
 type uint8;
 default 3;
 description
 "Sets the maximum number of sequential keep-
 alive messages that can fail to obtain a
 response from the SSH/TLS server before
 assuming the SSH/TLS server is no longer
 alive.";
 }
 }
 }
 }
 case periodic-connection {
 container periodic {
 presence
 "Indicates that a periodic connection is to be
 maintained.";
 description
 "Periodically connect to the NETCONF server. The
 NETCONF server should close the connection upon
 completing planned activities.

 This connection type increases resource
 utilization, albeit with increased delay in
 NETCONF server to NETCONF client interactions.";
 leaf period {
 type uint16;
 units "minutes";
 default 60;
 description
 "Duration of time between periodic connections.";
 }
 leaf anchor-time {
 type yang:date-and-time {
 // constrained to minute-level granularity
 pattern ’\d{4}-\d{2}-\d{2}T\d{2}:\d{2}’
 + ’(Z|[\+\-]\d{2}:\d{2})’;
 }
 description
 "Designates a timestamp before or after which a

Watsen Expires April 25, 2019 [Page 20]

Internet-Draft NETCONF Client and Server Models October 2018

 series of periodic connections are determined.
 The periodic connections occur at a whole
 multiple interval from the anchor time. For
 example, for an anchor time is 15 minutes past
 midnight and a period interval of 24 hours, then
 a periodic connection will occur 15 minutes past
 midnight everyday.";
 }
 leaf idle-timeout {
 type uint16;
 units "seconds";
 default 120; // two minutes
 description
 "Specifies the maximum number of seconds that
 a NETCONF session may remain idle. A NETCONF
 session will be dropped if it is idle for an
 interval longer than this number of seconds.
 If set to zero, then the NETCONF client will
 never drop a session because it is idle.";
 }
 }
 }
 }
 }
 container reconnect-strategy {
 description
 "The reconnection strategy directs how a NETCONF client
 reconnects to a NETCONF server, after discovering its
 connection to the server has dropped, even if due to a
 reboot. The NETCONF client starts with the specified
 endpoint and tries to connect to it max-attempts times
 before trying the next endpoint in the list (round
 robin).";
 leaf start-with {
 type enumeration {
 enum first-listed {
 description
 "Indicates that reconnections should start with
 the first endpoint listed.";
 }
 enum last-connected {
 description
 "Indicates that reconnections should start with
 the endpoint last connected to. If no previous
 connection has ever been established, then the
 first endpoint configured is used. NETCONF
 clients SHOULD be able to remember the last
 endpoint connected to across reboots.";

Watsen Expires April 25, 2019 [Page 21]

Internet-Draft NETCONF Client and Server Models October 2018

 }
 enum random-selection {
 description
 "Indicates that reconnections should start with
 a random endpoint.";
 }
 }
 default first-listed;
 description
 "Specifies which of the NETCONF server’s endpoints
 the NETCONF client should start with when trying
 to connect to the NETCONF server.";
 }
 leaf max-attempts {
 type uint8 {
 range "1..max";
 }
 default 3;
 description
 "Specifies the number times the NETCONF client tries
 to connect to a specific endpoint before moving on
 to the next endpoint in the list (round robin).";
 }
 }
 } // end netconf-server
 } // end initiate

 container listen {
 if-feature listen;
 presence "Enables client to accept call-home connections";
 description
 "Configures client accepting call-home TCP connections.";

 leaf idle-timeout {
 type uint16;
 units "seconds";
 default 3600; // one hour
 description
 "Specifies the maximum number of seconds that a NETCONF
 session may remain idle. A NETCONF session will be
 dropped if it is idle for an interval longer than this
 number of seconds. If set to zero, then the server
 will never drop a session because it is idle. Sessions
 that have a notification subscription active are never
 dropped.";
 }

 list endpoint {

Watsen Expires April 25, 2019 [Page 22]

Internet-Draft NETCONF Client and Server Models October 2018

 key name;
 min-elements 1;
 description
 "List of endpoints to listen for NETCONF connections.";
 leaf name {
 type string;
 description
 "An arbitrary name for the NETCONF listen endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports.";
 case ssh {
 if-feature ssh-listen;
 container ssh {
 description
 "SSH-specific listening configuration for inbound
 connections.";
 leaf address {
 type inet:ip-address;
 description
 "The IP address to listen on for incoming call-
 home connections. The NETCONF client will listen
 on all configured interfaces if no value is
 specified. INADDR_ANY (0.0.0.0) or INADDR6_ANY
 (0:0:0:0:0:0:0:0 a.k.a. ::) MUST be used when
 the server is to listen on all IPv4 or IPv6
 addresses, respectively.";
 }
 leaf port {
 type inet:port-number;
 default 4334;
 description
 "The port number to listen on for call-home
 connections. The NETCONF client will listen
 on the IANA-assigned well-known port for
 ’netconf-ch-ssh’ (4334) if no value is
 specified.";
 }
 uses ss:ssh-client-grouping;
 }
 }
 case tls {
 if-feature tls-listen;
 container tls {
 description
 "TLS-specific listening configuration for inbound

Watsen Expires April 25, 2019 [Page 23]

Internet-Draft NETCONF Client and Server Models October 2018

 connections.";
 leaf address {
 type inet:ip-address;
 description
 "The IP address to listen on for incoming call-
 home connections. The NETCONF client will listen
 on all configured interfaces if no value is
 specified. INADDR_ANY (0.0.0.0) or INADDR6_ANY
 (0:0:0:0:0:0:0:0 a.k.a. ::) MUST be used when
 the server is to listen on all IPv4 or IPv6
 addresses, respectively.";
 }
 leaf port {
 type inet:port-number;
 default 4335;
 description
 "The port number to listen on for call-home
 connections. The NETCONF client will listen
 on the IANA-assigned well-known port for
 ’netconf-ch-tls’ (4335) if no value is
 specified.";
 }
 uses ts:tls-client-grouping {
 refine "client-identity/auth-type" {
 mandatory true;
 description
 "NETCONF/TLS clients MUST pass some
 authentication credentials.";
 }
 }
 }
 }
 } // end transport
 } // end endpoint
 } // end listen

 } // end netconf-client
 }
 <CODE ENDS>

4. The NETCONF Server Model

 The NETCONF server model presented in this section supports servers
 both listening for connections as well as initiating call-home
 connections.

 This model supports both the SSH and TLS transport protocols, using
 the SSH server and TLS server groupings defined in

Watsen Expires April 25, 2019 [Page 24]

Internet-Draft NETCONF Client and Server Models October 2018

 [I-D.ietf-netconf-ssh-client-server] and
 [I-D.ietf-netconf-tls-client-server] respectively.

 All private keys and trusted certificates are held in the keystore
 model defined in [I-D.ietf-netconf-keystore].

 YANG feature statements are used to enable implementations to
 advertise which parts of the model the NETCONF server supports.

4.1. Tree Diagram

 The following tree diagram [RFC8340] provides an overview of the data
 model for the "ietf-netconf-server" module. Just the container is
 displayed below, but there is also a reusable grouping called
 "netconf-server-grouping" that the container is using.

 [Note: ’\’ line wrapping for formatting only]

 module: ietf-netconf-server
 +--rw netconf-server
 +--rw listen! {listen}?
 | +--rw idle-timeout? uint16
 | +--rw endpoint* [name]
 | +--rw name string
 | +--rw (transport)
 | +--:(ssh) {ssh-listen}?
 | | +--rw ssh
 | | +--rw address inet:ip-address
 | | +--rw port? inet:port-number
 | | +--rw server-identity
 | | | +--rw host-key* [name]
 | | | +--rw name string
 | | | +--rw (host-key-type)
 | | | +--:(public-key)
 | | | | +--rw public-key
 | | | | +--rw (local-or-keystore)
 | | | | +--:(local)
 | | | | | {local-keys-supported\
 }?
 | | | | | +--rw algorithm?
 | | | | | | asymmetric-key-encr\
 yption-algorithm-ref
 | | | | | +--rw public-key?
 | | | | | | binary
 | | | | | +--rw private-key?
 | | | | | | union
 | | | | | +---x generate-hidden-key

Watsen Expires April 25, 2019 [Page 25]

Internet-Draft NETCONF Client and Server Models October 2018

 | | | | | | +---w input
 | | | | | | +---w algorithm
 | | | | | | asymmetric-ke\
 y-encryption-algorithm-ref
 | | | | | +---x install-hidden-key
 | | | | | +---w input
 | | | | | +---w algorithm
 | | | | | | asymmetric-ke\
 y-encryption-algorithm-ref
 | | | | | +---w public-key?
 | | | | | | binary
 | | | | | +---w private-key?
 | | | | | binary
 | | | | +--:(keystore)
 | | | | {keystore-supported}?
 | | | | +--rw reference?
 | | | | ks:asymmetric-key-r\
 ef
 | | | +--:(certificate)
 | | | +--rw certificate
 | | | {sshcmn:ssh-x509-certs}?
 | | | +--rw (local-or-keystore)
 | | | +--:(local)
 | | | | {local-keys-supported\
 }?
 | | | | +--rw algorithm?
 | | | | | asymmetric-key-encr\
 yption-algorithm-ref
 | | | | +--rw public-key?
 | | | | | binary
 | | | | +--rw private-key?
 | | | | | union
 | | | | +---x generate-hidden-key
 | | | | | +---w input
 | | | | | +---w algorithm
 | | | | | asymmetric-ke\
 y-encryption-algorithm-ref
 | | | | +---x install-hidden-key
 | | | | | +---w input
 | | | | | +---w algorithm
 | | | | | | asymmetric-ke\
 y-encryption-algorithm-ref
 | | | | | +---w public-key?
 | | | | | | binary
 | | | | | +---w private-key?
 | | | | | binary
 | | | | +--rw cert?
 | | | | | end-entity-cert-cms

Watsen Expires April 25, 2019 [Page 26]

Internet-Draft NETCONF Client and Server Models October 2018

 | | | | +---n certificate-expiration
 | | | | +-- expiration-date
 | | | | yang:date-and-ti\
 me
 | | | +--:(keystore)
 | | | {keystore-supported}?
 | | | +--rw reference?
 | | | ks:asymmetric-key-c\
 ertificate-ref
 | | +--rw client-cert-auth {sshcmn:ssh-x509-certs}?
 | | | +--rw pinned-ca-certs?
 | | | | ta:pinned-certificates-ref
 | | | | {ta:x509-certificates}?
 | | | +--rw pinned-client-certs?
 | | | ta:pinned-certificates-ref
 | | | {ta:x509-certificates}?
 | | +--rw transport-params
 | | {ssh-server-transport-params-config}?
 | | +--rw host-key
 | | | +--rw host-key-alg* identityref
 | | +--rw key-exchange
 | | | +--rw key-exchange-alg* identityref
 | | +--rw encryption
 | | | +--rw encryption-alg* identityref
 | | +--rw mac
 | | +--rw mac-alg* identityref
 | +--:(tls) {tls-listen}?
 | +--rw tls
 | +--rw address inet:ip-address
 | +--rw port? inet:port-number
 | +--rw server-identity
 | | +--rw (local-or-keystore)
 | | +--:(local) {local-keys-supported}?
 | | | +--rw algorithm?
 | | | | asymmetric-key-encryption-algor\
 ithm-ref
 | | | +--rw public-key? binary
 | | | +--rw private-key? union
 | | | +---x generate-hidden-key
 | | | | +---w input
 | | | | +---w algorithm
 | | | | asymmetric-key-encryption\
 -algorithm-ref
 | | | +---x install-hidden-key
 | | | | +---w input
 | | | | +---w algorithm
 | | | | | asymmetric-key-encryption\
 -algorithm-ref

Watsen Expires April 25, 2019 [Page 27]

Internet-Draft NETCONF Client and Server Models October 2018

 | | | | +---w public-key? binary
 | | | | +---w private-key? binary
 | | | +--rw cert?
 | | | | end-entity-cert-cms
 | | | +---n certificate-expiration
 | | | +-- expiration-date
 | | | yang:date-and-time
 | | +--:(keystore) {keystore-supported}?
 | | +--rw reference?
 | | ks:asymmetric-key-certificate-r\
 ef
 | +--rw client-auth
 | | +--rw pinned-ca-certs?
 | | | ta:pinned-certificates-ref
 | | | {ta:x509-certificates}?
 | | +--rw pinned-client-certs?
 | | | ta:pinned-certificates-ref
 | | | {ta:x509-certificates}?
 | | +--rw cert-maps
 | | +--rw cert-to-name* [id]
 | | +--rw id uint32
 | | +--rw fingerprint
 | | | x509c2n:tls-fingerprint
 | | +--rw map-type identityref
 | | +--rw name string
 | +--rw hello-params
 | {tls-server-hello-params-config}?
 | +--rw tls-versions
 | | +--rw tls-version* identityref
 | +--rw cipher-suites
 | +--rw cipher-suite* identityref
 +--rw call-home! {call-home}?
 +--rw netconf-client* [name]
 +--rw name string
 +--rw endpoints
 | +--rw endpoint* [name]
 | +--rw name string
 | +--rw (transport)
 | +--:(ssh) {ssh-call-home}?
 | | +--rw ssh
 | | +--rw address inet:host
 | | +--rw port? inet:port-number
 | | +--rw server-identity
 | | | +--rw host-key* [name]
 | | | +--rw name string
 | | | +--rw (host-key-type)
 | | | +--:(public-key)
 | | | | +--rw public-key

Watsen Expires April 25, 2019 [Page 28]

Internet-Draft NETCONF Client and Server Models October 2018

 | | | | +--rw (local-or-keystore)
 | | | | +--:(local)
 | | | | | {local-keys-sup\
 ported}?
 | | | | | +--rw algorithm?
 | | | | | | asymmetric-ke\
 y-encryption-algorithm-ref
 | | | | | +--rw public-key?
 | | | | | | binary
 | | | | | +--rw private-key?
 | | | | | | union
 | | | | | +---x generate-hidden\
 -key
 | | | | | | +---w input
 | | | | | | +---w algorithm
 | | | | | | asymmet\
 ric-key-encryption-algorithm-ref
 | | | | | +---x install-hidden-\
 key
 | | | | | +---w input
 | | | | | +---w algorithm
 | | | | | | asymmet\
 ric-key-encryption-algorithm-ref
 | | | | | +---w public-ke\
 y?
 | | | | | | binary
 | | | | | +---w private-k\
 ey?
 | | | | | binary
 | | | | +--:(keystore)
 | | | | {keystore-suppo\
 rted}?
 | | | | +--rw reference?
 | | | | ks:asymmetric\
 -key-ref
 | | | +--:(certificate)
 | | | +--rw certificate
 | | | {sshcmn:ssh-x509-certs\
 }?
 | | | +--rw (local-or-keystore)
 | | | +--:(local)
 | | | | {local-keys-sup\
 ported}?
 | | | | +--rw algorithm?
 | | | | | asymmetric-ke\
 y-encryption-algorithm-ref
 | | | | +--rw public-key?
 | | | | | binary

Watsen Expires April 25, 2019 [Page 29]

Internet-Draft NETCONF Client and Server Models October 2018

 | | | | +--rw private-key?
 | | | | | union
 | | | | +---x generate-hidden\
 -key
 | | | | | +---w input
 | | | | | +---w algorithm
 | | | | | asymmet\
 ric-key-encryption-algorithm-ref
 | | | | +---x install-hidden-\
 key
 | | | | | +---w input
 | | | | | +---w algorithm
 | | | | | | asymmet\
 ric-key-encryption-algorithm-ref
 | | | | | +---w public-ke\
 y?
 | | | | | | binary
 | | | | | +---w private-k\
 ey?
 | | | | | binary
 | | | | +--rw cert?
 | | | | | end-entity-ce\
 rt-cms
 | | | | +---n certificate-exp\
 iration
 | | | | +-- expiration-date
 | | | | yang:date-\
 and-time
 | | | +--:(keystore)
 | | | {keystore-suppo\
 rted}?
 | | | +--rw reference?
 | | | ks:asymmetric\
 -key-certificate-ref
 | | +--rw client-cert-auth
 | | | {sshcmn:ssh-x509-certs}?
 | | | +--rw pinned-ca-certs?
 | | | | ta:pinned-certificates-ref
 | | | | {ta:x509-certificates}?
 | | | +--rw pinned-client-certs?
 | | | ta:pinned-certificates-ref
 | | | {ta:x509-certificates}?
 | | +--rw transport-params
 | | {ssh-server-transport-params-confi\
 g}?
 | | +--rw host-key
 | | | +--rw host-key-alg* identityref
 | | +--rw key-exchange

Watsen Expires April 25, 2019 [Page 30]

Internet-Draft NETCONF Client and Server Models October 2018

 | | | +--rw key-exchange-alg* identityref
 | | +--rw encryption
 | | | +--rw encryption-alg* identityref
 | | +--rw mac
 | | +--rw mac-alg* identityref
 | +--:(tls) {tls-call-home}?
 | +--rw tls
 | +--rw address inet:host
 | +--rw port? inet:port-number
 | +--rw server-identity
 | | +--rw (local-or-keystore)
 | | +--:(local) {local-keys-supported}?
 | | | +--rw algorithm?
 | | | | asymmetric-key-encryption\
 -algorithm-ref
 | | | +--rw public-key?
 | | | | binary
 | | | +--rw private-key?
 | | | | union
 | | | +---x generate-hidden-key
 | | | | +---w input
 | | | | +---w algorithm
 | | | | asymmetric-key-encr\
 yption-algorithm-ref
 | | | +---x install-hidden-key
 | | | | +---w input
 | | | | +---w algorithm
 | | | | | asymmetric-key-encr\
 yption-algorithm-ref
 | | | | +---w public-key? binary
 | | | | +---w private-key? binary
 | | | +--rw cert?
 | | | | end-entity-cert-cms
 | | | +---n certificate-expiration
 | | | +-- expiration-date
 | | | yang:date-and-time
 | | +--:(keystore) {keystore-supported}?
 | | +--rw reference?
 | | ks:asymmetric-key-certifi\
 cate-ref
 | +--rw client-auth
 | | +--rw pinned-ca-certs?
 | | | ta:pinned-certificates-ref
 | | | {ta:x509-certificates}?
 | | +--rw pinned-client-certs?
 | | | ta:pinned-certificates-ref
 | | | {ta:x509-certificates}?
 | | +--rw cert-maps

Watsen Expires April 25, 2019 [Page 31]

Internet-Draft NETCONF Client and Server Models October 2018

 | | +--rw cert-to-name* [id]
 | | +--rw id uint32
 | | +--rw fingerprint
 | | | x509c2n:tls-fingerprint
 | | +--rw map-type identityref
 | | +--rw name string
 | +--rw hello-params
 | {tls-server-hello-params-config}?
 | +--rw tls-versions
 | | +--rw tls-version* identityref
 | +--rw cipher-suites
 | +--rw cipher-suite* identityref
 +--rw connection-type
 | +--rw (connection-type)
 | +--:(persistent-connection)
 | | +--rw persistent!
 | | +--rw keep-alives
 | | +--rw max-wait? uint16
 | | +--rw max-attempts? uint8
 | +--:(periodic-connection)
 | +--rw periodic!
 | +--rw period? uint16
 | +--rw anchor-time? yang:date-and-time
 | +--rw idle-timeout? uint16
 +--rw reconnect-strategy
 +--rw start-with? enumeration
 +--rw max-attempts? uint8

4.2. Example Usage

 The following example illustrates configuring a NETCONF server to
 listen for NETCONF client connections using both the SSH and TLS
 transport protocols, as well as configuring call-home to two NETCONF
 clients, one using SSH and the other using TLS.

 This example is consistent with the examples presented in Section 3.2
 of [I-D.ietf-netconf-keystore].

 [Note: ’\’ line wrapping for formatting only]

 <netconf-server
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-server"
 xmlns:x509c2n="urn:ietf:params:xml:ns:yang:ietf-x509-cert-to-name">

 <!-- endpoints to listen for NETCONF connections on -->
 <listen>
 <endpoint> <!-- listening for SSH connections -->

Watsen Expires April 25, 2019 [Page 32]

Internet-Draft NETCONF Client and Server Models October 2018

 <name>netconf/ssh</name>
 <ssh>
 <address>192.0.2.7</address>
 <server-identity>
 <host-key>
 <name>deployment-specific-certificate</name>
 <public-key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-\
 crypto-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 </public-key>
 </host-key>
 </server-identity>
 <client-cert-auth>
 <pinned-ca-certs>explicitly-trusted-client-ca-certs</pinne\
 d-ca-certs>
 <pinned-client-certs>explicitly-trusted-client-certs</pinn\
 ed-client-certs>
 </client-cert-auth>
 </ssh>
 </endpoint>
 <endpoint> <!-- listening for TLS sessions -->
 <name>netconf/tls</name>
 <tls>
 <address>192.0.2.7</address>
 <server-identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-cryp\
 to-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <cert>base64encodedvalue==</cert>
 </server-identity>
 <client-auth>
 <pinned-ca-certs>explicitly-trusted-client-ca-certs</pinne\
 d-ca-certs>
 <pinned-client-certs>explicitly-trusted-client-certs</pinn\
 ed-client-certs>
 <cert-maps>
 <cert-to-name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map-type>x509c2n:san-any</map-type>
 </cert-to-name>
 <cert-to-name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map-type>x509c2n:specified</map-type>

Watsen Expires April 25, 2019 [Page 33]

Internet-Draft NETCONF Client and Server Models October 2018

 <name>scooby-doo</name>
 </cert-to-name>
 </cert-maps>
 </client-auth>
 </tls>
 </endpoint>
 </listen>

 <!-- calling home to SSH and TLS based NETCONF clients -->
 <call-home>
 <netconf-client> <!-- SSH-based client -->
 <name>config-mgr</name>
 <endpoints>
 <endpoint>
 <name>east-data-center</name>
 <ssh>
 <address>east.config-mgr.example.com</address>
 <server-identity>
 <host-key>
 <name>deployment-specific-certificate</name>
 <public-key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:i\
 etf-crypto-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 </public-key>
 </host-key>
 </server-identity>
 <client-cert-auth>
 <pinned-ca-certs>explicitly-trusted-client-ca-certs</p\
 inned-ca-certs>
 <pinned-client-certs>explicitly-trusted-client-certs</\
 pinned-client-certs>
 </client-cert-auth>
 </ssh>
 </endpoint>
 <endpoint>
 <name>west-data-center</name>
 <ssh>
 <address>west.config-mgr.example.com</address>
 <server-identity>
 <host-key>
 <name>deployment-specific-certificate</name>
 <public-key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:i\
 etf-crypto-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>

Watsen Expires April 25, 2019 [Page 34]

Internet-Draft NETCONF Client and Server Models October 2018

 </public-key>
 </host-key>
 </server-identity>
 <client-cert-auth>
 <pinned-ca-certs>explicitly-trusted-client-ca-certs</p\
 inned-ca-certs>
 <pinned-client-certs>explicitly-trusted-client-certs</\
 pinned-client-certs>
 </client-cert-auth>
 </ssh>
 </endpoint>
 </endpoints>
 <connection-type>
 <periodic>
 <idle-timeout>300</idle-timeout>
 <period>60</period>
 </periodic>
 </connection-type>
 <reconnect-strategy>
 <start-with>last-connected</start-with>
 <max-attempts>3</max-attempts>
 </reconnect-strategy>
 </netconf-client>
 <netconf-client> <!-- TLS-based client -->
 <name>data-collector</name>
 <endpoints>
 <endpoint>
 <name>east-data-center</name>
 <tls>
 <address>east.analytics.example.com</address>
 <server-identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-\
 crypto-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <cert>base64encodedvalue==</cert>
 </server-identity>
 <client-auth>
 <pinned-ca-certs>explicitly-trusted-client-ca-certs</p\
 inned-ca-certs>
 <pinned-client-certs>explicitly-trusted-client-certs</\
 pinned-client-certs>
 <cert-maps>
 <cert-to-name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map-type>x509c2n:san-any</map-type>
 </cert-to-name>

Watsen Expires April 25, 2019 [Page 35]

Internet-Draft NETCONF Client and Server Models October 2018

 <cert-to-name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map-type>x509c2n:specified</map-type>
 <name>scooby-doo</name>
 </cert-to-name>
 </cert-maps>
 </client-auth>
 </tls>
 </endpoint>
 <endpoint>
 <name>west-data-center</name>
 <tls>
 <address>west.analytics.example.com</address>
 <server-identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-\
 crypto-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <cert>base64encodedvalue==</cert>
 </server-identity>
 <client-auth>
 <pinned-ca-certs>explicitly-trusted-client-ca-certs</p\
 inned-ca-certs>
 <pinned-client-certs>explicitly-trusted-client-certs</\
 pinned-client-certs>
 <cert-maps>
 <cert-to-name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map-type>x509c2n:san-any</map-type>
 </cert-to-name>
 <cert-to-name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map-type>x509c2n:specified</map-type>
 <name>scooby-doo</name>
 </cert-to-name>
 </cert-maps>
 </client-auth>
 </tls>
 </endpoint>
 </endpoints>
 <connection-type>
 <persistent>
 <keep-alives>
 <max-wait>30</max-wait>
 <max-attempts>3</max-attempts>

Watsen Expires April 25, 2019 [Page 36]

Internet-Draft NETCONF Client and Server Models October 2018

 </keep-alives>
 </persistent>
 </connection-type>
 <reconnect-strategy>
 <start-with>first-listed</start-with>
 <max-attempts>3</max-attempts>
 </reconnect-strategy>
 </netconf-client>
 </call-home>
 </netconf-server>

4.3. YANG Module

 This YANG module has normative references to [RFC6242], [RFC6991],
 [RFC7407], [RFC7589], [RFC8071],
 [I-D.ietf-netconf-ssh-client-server], and
 [I-D.ietf-netconf-tls-client-server].

 This YANG module imports YANG types from [RFC6991], and YANG
 groupings from [RFC7407], [I-D.ietf-netconf-ssh-client-server] and
 [I-D.ietf-netconf-ssh-client-server].

 <CODE BEGINS> file "ietf-netconf-server@2018-10-22.yang"
 module ietf-netconf-server {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-server";
 prefix "ncs";

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-x509-cert-to-name {
 prefix x509c2n;
 reference
 "RFC 7407: A YANG Data Model for SNMP Configuration";
 }

 import ietf-ssh-server {

Watsen Expires April 25, 2019 [Page 37]

Internet-Draft NETCONF Client and Server Models October 2018

 prefix ss;
 revision-date 2018-10-22; // stable grouping definitions
 reference
 "RFC YYYY: YANG Groupings for SSH Clients and SSH Servers";
 }

 import ietf-tls-server {
 prefix ts;
 revision-date 2018-10-22; // stable grouping definitions
 reference
 "RFC ZZZZ: YANG Groupings for TLS Clients and TLS Servers";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>

 Author: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>";

 description
 "This module contains a collection of YANG definitions for
 configuring NETCONF servers.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2018-10-22" {

Watsen Expires April 25, 2019 [Page 38]

Internet-Draft NETCONF Client and Server Models October 2018

 description
 "Initial version";
 reference
 "RFC XXXX: NETCONF Client and Server Models";
 }

 // Features

 feature listen {
 description
 "The ’listen’ feature indicates that the NETCONF server
 supports opening a port to accept NETCONF client connections
 using at least one transport (e.g., SSH, TLS, etc.).";
 }

 feature ssh-listen {
 description
 "The ’ssh-listen’ feature indicates that the NETCONF server
 supports opening a port to accept NETCONF over SSH
 client connections.";
 reference
 "RFC 6242:
 Using the NETCONF Protocol over Secure Shell (SSH)";
 }

 feature tls-listen {
 description
 "The ’tls-listen’ feature indicates that the NETCONF server
 supports opening a port to accept NETCONF over TLS
 client connections.";
 reference
 "RFC 7589: Using the NETCONF Protocol over Transport
 Layer Security (TLS) with Mutual X.509
 Authentication";
 }

 feature call-home {
 description
 "The ’call-home’ feature indicates that the NETCONF server
 supports initiating NETCONF call home connections to
 NETCONF clients using at least one transport (e.g., SSH,
 TLS, etc.).";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
 }

 feature ssh-call-home {

Watsen Expires April 25, 2019 [Page 39]

Internet-Draft NETCONF Client and Server Models October 2018

 description
 "The ’ssh-call-home’ feature indicates that the NETCONF
 server supports initiating a NETCONF over SSH call
 home connection to NETCONF clients.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
 }

 feature tls-call-home {
 description
 "The ’tls-call-home’ feature indicates that the NETCONF
 server supports initiating a NETCONF over TLS call
 home connection to NETCONF clients.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
 }

 // protocol accessible nodes

 container netconf-server {
 uses netconf-server-grouping;
 description
 "Top-level container for NETCONF server configuration.";
 }

 // reusable groupings

 grouping netconf-server-grouping {
 description
 "Top-level grouping for NETCONF server configuration.";
 container listen {
 if-feature listen;
 presence "Enables server to listen for TCP connections";
 description "Configures listen behavior";
 leaf idle-timeout {
 type uint16;
 units "seconds";
 default 3600; // one hour
 description
 "Specifies the maximum number of seconds that a NETCONF
 session may remain idle. A NETCONF session will be
 dropped if it is idle for an interval longer than this
 number of seconds. If set to zero, then the server
 will never drop a session because it is idle. Sessions
 that have a notification subscription active are never
 dropped.";
 }

Watsen Expires April 25, 2019 [Page 40]

Internet-Draft NETCONF Client and Server Models October 2018

 list endpoint {
 key name;
 min-elements 1;
 description
 "List of endpoints to listen for NETCONF connections.";
 leaf name {
 type string;
 description
 "An arbitrary name for the NETCONF listen endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports.";
 case ssh {
 if-feature ssh-listen;
 container ssh {
 description
 "SSH-specific listening configuration for inbound
 connections.";
 leaf address {
 type inet:ip-address;
 mandatory true;
 description
 "The IP address to listen on for incoming
 connections. The NETCONF server will listen
 on all configured interfaces if no value is
 specified. INADDR_ANY (0.0.0.0) or INADDR6_ANY
 (0:0:0:0:0:0:0:0 a.k.a. ::) MUST be used when
 the server is to listen on all IPv4 or IPv6
 addresses, respectively.";
 }
 leaf port {
 type inet:port-number;
 default 830;
 description
 "The local port number to listen on. If no value
 is specified, the IANA-assigned port value for
 ’netconf-ssh’ (830) is used.";
 }
 uses ss:ssh-server-grouping;
 }
 }
 case tls {
 if-feature tls-listen;
 container tls {
 description
 "TLS-specific listening configuration for inbound

Watsen Expires April 25, 2019 [Page 41]

Internet-Draft NETCONF Client and Server Models October 2018

 connections.";
 leaf address {
 type inet:ip-address;
 mandatory true;
 description
 "The IP address to listen on for incoming
 connections. The NETCONF server will listen
 on all configured interfaces if no value is
 specified. INADDR_ANY (0.0.0.0) or INADDR6_ANY
 (0:0:0:0:0:0:0:0 a.k.a. ::) MUST be used when
 the server is to listen on all IPv4 or IPv6
 addresses, respectively.";
 }
 leaf port {
 type inet:port-number;
 default 6513;
 description
 "The local port number to listen on. If no value
 is specified, the IANA-assigned port value for
 ’netconf-tls’ (6513) is used.";
 }
 uses ts:tls-server-grouping {
 refine "client-auth" {
 must ’pinned-ca-certs or pinned-client-certs’;
 description
 "NETCONF/TLS servers MUST validate client
 certiticates.";
 }
 augment "client-auth" {
 description
 "Augments in the cert-to-name structure.";
 container cert-maps {
 uses x509c2n:cert-to-name;
 description
 "The cert-maps container is used by a TLS-
 based NETCONF server to map the NETCONF
 client’s presented X.509 certificate to a
 NETCONF username. If no matching and valid
 cert-to-name list entry can be found, then
 the NETCONF server MUST close the connection,
 and MUST NOT accept NETCONF messages over
 it.";
 reference
 "RFC WWWW: NETCONF over TLS, Section 7";
 }
 }
 }
 }

Watsen Expires April 25, 2019 [Page 42]

Internet-Draft NETCONF Client and Server Models October 2018

 }
 }
 }
 }

 container call-home {
 if-feature call-home;
 presence "Enables server to initiate TCP connections";
 description "Configures call-home behavior";
 list netconf-client {
 key name;
 min-elements 1;
 description
 "List of NETCONF clients the NETCONF server is to
 initiate call-home connections to in parallel.";
 leaf name {
 type string;
 description
 "An arbitrary name for the remote NETCONF client.";
 }
 container endpoints {
 description
 "Container for the list of endpoints.";
 list endpoint {
 key name;
 min-elements 1;
 ordered-by user;
 description
 "A non-empty user-ordered list of endpoints for this
 NETCONF server to try to connect to in sequence.
 Defining more than one enables high-availability.";
 leaf name {
 type string;
 description
 "An arbitrary name for this endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports.";
 case ssh {
 if-feature ssh-call-home;
 container ssh {
 description
 "Specifies SSH-specific call-home transport
 configuration.";
 leaf address {
 type inet:host;

Watsen Expires April 25, 2019 [Page 43]

Internet-Draft NETCONF Client and Server Models October 2018

 mandatory true;
 description
 "The IP address or hostname of the endpoint.
 If a domain name is configured, then the
 DNS resolution should happen on each usage
 attempt. If the the DNS resolution results
 in multiple IP addresses, the IP addresses
 will be tried according to local preference
 order until a connection has been established
 or until all IP addresses have failed.";
 }
 leaf port {
 type inet:port-number;
 default 4334;
 description
 "The IP port for this endpoint. The NETCONF
 server will use the IANA-assigned well-known
 port for ’netconf-ch-ssh’ (4334) if no value
 is specified.";
 }
 uses ss:ssh-server-grouping;
 }
 }
 case tls {
 if-feature tls-call-home;
 container tls {
 description
 "Specifies TLS-specific call-home transport
 configuration.";
 leaf address {
 type inet:host;
 mandatory true;
 description
 "The IP address or hostname of the endpoint.
 If a domain name is configured, then the
 DNS resolution should happen on each usage
 attempt. If the the DNS resolution results
 in multiple IP addresses, the IP addresses
 will be tried according to local preference
 order until a connection has been established
 or until all IP addresses have failed.";
 }
 leaf port {
 type inet:port-number;
 default 4335;
 description
 "The IP port for this endpoint. The NETCONF
 server will use the IANA-assigned well-known

Watsen Expires April 25, 2019 [Page 44]

Internet-Draft NETCONF Client and Server Models October 2018

 port for ’netconf-ch-tls’ (4335) if no value
 is specified.";
 }
 uses ts:tls-server-grouping {
 refine "client-auth" {
 must ’pinned-ca-certs or pinned-client-certs’;
 description
 "NETCONF/TLS servers MUST validate client
 certiticates.";
 }
 augment "client-auth" {
 description
 "Augments in the cert-to-name structure.";
 container cert-maps {
 uses x509c2n:cert-to-name;
 description
 "The cert-maps container is used by a
 TLS-based NETCONF server to map the
 NETCONF client’s presented X.509
 certificate to a NETCONF username. If
 no matching and valid cert-to-name list
 entry can be found, then the NETCONF
 server MUST close the connection, and
 MUST NOT accept NETCONF messages over
 it.";
 reference
 "RFC WWWW: NETCONF over TLS, Section 7";
 }
 }
 }
 }
 } // end tls
 } // end choice
 } // end endpoint
 }
 container connection-type {
 description
 "Indicates the kind of connection to use.";
 choice connection-type {
 mandatory true;
 description
 "Selects between available connection types.";
 case persistent-connection {
 container persistent {
 presence
 "Indicates that a persistent connection is to be
 maintained.";
 description

Watsen Expires April 25, 2019 [Page 45]

Internet-Draft NETCONF Client and Server Models October 2018

 "Maintain a persistent connection to the NETCONF
 client. If the connection goes down, immediately
 start trying to reconnect to it, using the
 reconnection strategy.

 This connection type minimizes any NETCONF client
 to NETCONF server data-transfer delay, albeit at
 the expense of holding resources longer.";
 container keep-alives {
 description
 "Configures the keep-alive policy, to
 proactively test the aliveness of the SSH/TLS
 client. An unresponsive SSH/TLS client will
 be dropped after approximately max-attempts *
 max-wait seconds.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF
 Call Home, Section 4.1, item S7";
 leaf max-wait {
 type uint16 {
 range "1..max";
 }
 units seconds;
 default 30;
 description
 "Sets the amount of time in seconds after
 which if no data has been received from
 the SSH/TLS client, a SSH/TLS-level message
 will be sent to test the aliveness of the
 SSH/TLS client.";
 }
 leaf max-attempts {
 type uint8;
 default 3;
 description
 "Sets the maximum number of sequential keep-
 alive messages that can fail to obtain a
 response from the SSH/TLS client before
 assuming the SSH/TLS client is no longer
 alive.";
 }
 }
 }
 }

 case periodic-connection {
 container periodic {
 presence

Watsen Expires April 25, 2019 [Page 46]

Internet-Draft NETCONF Client and Server Models October 2018

 "Indicates that a periodic connection is to be
 maintained.";
 description
 "Periodically connect to the NETCONF client. The
 NETCONF client should close the underlying TLS
 connection upon completing planned activities.

 This connection type increases resource
 utilization, albeit with increased delay in
 NETCONF client to NETCONF client interactions.";
 leaf period {
 type uint16;
 units "minutes";
 default 60;
 description
 "Duration of time between periodic connections.";
 }
 leaf anchor-time {
 type yang:date-and-time {
 // constrained to minute-level granularity
 pattern ’\d{4}-\d{2}-\d{2}T\d{2}:\d{2}’
 + ’(Z|[\+\-]\d{2}:\d{2})’;
 }
 description
 "Designates a timestamp before or after which a
 series of periodic connections are determined.
 The periodic connections occur at a whole
 multiple interval from the anchor time. For
 example, for an anchor time is 15 minutes past
 midnight and a period interval of 24 hours, then
 a periodic connection will occur 15 minutes past
 midnight everyday.";
 }
 leaf idle-timeout {
 type uint16;
 units "seconds";
 default 120; // two minutes
 description
 "Specifies the maximum number of seconds that
 a NETCONF session may remain idle. A NETCONF
 session will be dropped if it is idle for an
 interval longer than this number of seconds.
 If set to zero, then the server will never
 drop a session because it is idle.";
 }
 }
 }
 }

Watsen Expires April 25, 2019 [Page 47]

Internet-Draft NETCONF Client and Server Models October 2018

 }
 container reconnect-strategy {
 description
 "The reconnection strategy directs how a NETCONF server
 reconnects to a NETCONF client, after discovering its
 connection to the client has dropped, even if due to a
 reboot. The NETCONF server starts with the specified
 endpoint and tries to connect to it max-attempts times
 before trying the next endpoint in the list (round
 robin).";
 leaf start-with {
 type enumeration {
 enum first-listed {
 description
 "Indicates that reconnections should start with
 the first endpoint listed.";
 }
 enum last-connected {
 description
 "Indicates that reconnections should start with
 the endpoint last connected to. If no previous
 connection has ever been established, then the
 first endpoint configured is used. NETCONF
 servers SHOULD be able to remember the last
 endpoint connected to across reboots.";
 }
 enum random-selection {
 description
 "Indicates that reconnections should start with
 a random endpoint.";
 }
 }
 default first-listed;
 description
 "Specifies which of the NETCONF client’s endpoints
 the NETCONF server should start with when trying
 to connect to the NETCONF client.";
 }
 leaf max-attempts {
 type uint8 {
 range "1..max";
 }
 default 3;
 description
 "Specifies the number times the NETCONF server tries
 to connect to a specific endpoint before moving on
 to the next endpoint in the list (round robin).";
 }

Watsen Expires April 25, 2019 [Page 48]

Internet-Draft NETCONF Client and Server Models October 2018

 }
 }
 }
 }
 }

 <CODE ENDS>

5. Design Considerations

 Editorial: this section is a hold over from before, previously called
 "Objectives". It was only written two support the "server" (not the
 "client"). The question is if it’s better to add the missing
 "client" parts, or remove this section altogether.

 The primary purpose of the YANG modules defined herein is to enable
 the configuration of the NETCONF client and servers. This scope
 includes the following objectives:

5.1. Support all NETCONF transports

 The YANG module should support all current NETCONF transports, namely
 NETCONF over SSH [RFC6242], NETCONF over TLS [RFC7589], and to be
 extensible to support future transports as necessary.

 Because implementations may not support all transports, the modules
 should use YANG "feature" statements so that implementations can
 accurately advertise which transports are supported.

5.2. Enable each transport to select which keys to use

 Servers may have a multiplicity of host-keys or server-certificates
 from which subsets may be selected for specific uses. For instance,
 a NETCONF server may want to use one set of SSH host-keys when
 listening on port 830, and a different set of SSH host-keys when
 calling home. The data models provided herein should enable
 configuration of which keys to use on a per-use basis.

5.3. Support authenticating NETCONF clients certificates

 When a certificate is used to authenticate a NETCONF client, there is
 a need to configure the server to know how to authenticate the
 certificates. The server should be able to authenticate the client’s
 certificate either by using path-validation to a configured trust
 anchor or by matching the client-certificate to one previously
 configured.

Watsen Expires April 25, 2019 [Page 49]

Internet-Draft NETCONF Client and Server Models October 2018

5.4. Support mapping authenticated NETCONF client certificates to
 usernames

 When a client certificate is used for TLS client authentication, the
 NETCONF server must be able to derive a username from the
 authenticated certificate. Thus the modules defined herein should
 enable this mapping to be configured.

5.5. Support both listening for connections and call home

 The NETCONF protocols were originally defined as having the server
 opening a port to listen for client connections. More recently the
 NETCONF working group defined support for call-home ([RFC8071]),
 enabling the server to initiate the connection to the client. Thus
 the modules defined herein should enable configuration for both
 listening for connections and calling home. Because implementations
 may not support both listening for connections and calling home, YANG
 "feature" statements should be used so that implementation can
 accurately advertise the connection types it supports.

5.6. For Call Home connections

 The following objectives only pertain to call home connections.

5.6.1. Support more than one NETCONF client

 A NETCONF server may be managed by more than one NETCONF client. For
 instance, a deployment may have one client for provisioning and
 another for fault monitoring. Therefore, when it is desired for a
 server to initiate call home connections, it should be able to do so
 to more than one client.

5.6.2. Support NETCONF clients having more than one endpoint

 A NETCONF client managing a NETCONF server may implement a high-
 availability strategy employing a multiplicity of active and/or
 passive endpoint. Therefore, when it is desired for a server to
 initiate call home connections, it should be able to connect to any
 of the client’s endpoints.

5.6.3. Support a reconnection strategy

 Assuming a NETCONF client has more than one endpoint, then it becomes
 necessary to configure how a NETCONF server should reconnect to the
 client should it lose its connection to one the client’s endpoints.
 For instance, the NETCONF server may start with first endpoint
 defined in a user-ordered list of endpoints or with the last
 endpoints it was connected to.

Watsen Expires April 25, 2019 [Page 50]

Internet-Draft NETCONF Client and Server Models October 2018

5.6.4. Support both persistent and periodic connections

 NETCONF clients may vary greatly on how frequently they need to
 interact with a NETCONF server, how responsive interactions need to
 be, and how many simultaneous connections they can support. Some
 clients may need a persistent connection to servers to optimize real-
 time interactions, while others prefer periodic interactions in order
 to minimize resource requirements. Therefore, when it is necessary
 for server to initiate connections, it should be configurable if the
 connection is persistent or periodic.

5.6.5. Reconnection strategy for periodic connections

 The reconnection strategy should apply to both persistent and
 periodic connections. How it applies to periodic connections becomes
 clear when considering that a periodic "connection" is a logical
 connection to a single server. That is, the periods of
 unconnectedness are intentional as opposed to due to external
 reasons. A periodic "connection" should always reconnect to the same
 server until it is no longer able to, at which time the reconnection
 strategy guides how to connect to another server.

5.6.6. Keep-alives for persistent connections

 If a persistent connection is desired, it is the responsibility of
 the connection initiator to actively test the "aliveness" of the
 connection. The connection initiator must immediately work to
 reestablish a persistent connection as soon as the connection is
 lost. How often the connection should be tested is driven by NETCONF
 client requirements, and therefore keep-alive settings should be
 configurable on a per-client basis.

5.6.7. Customizations for periodic connections

 If a periodic connection is desired, it is necessary for the NETCONF
 server to know how often it should connect. This frequency
 determines the maximum amount of time a NETCONF client may have to
 wait to send data to a server. A server may connect to a client
 before this interval expires if desired (e.g., to send data to a
 client).

6. Security Considerations

 The YANG module defined in this document uses groupings defined in
 [I-D.ietf-netconf-ssh-client-server] and
 [I-D.ietf-netconf-tls-client-server]. Please see the Security
 Considerations section in those documents for concerns related those
 groupings.

Watsen Expires April 25, 2019 [Page 51]

Internet-Draft NETCONF Client and Server Models October 2018

 The YANG module defined in this document is designed to be accessed
 via YANG based management protocols, such as NETCONF [RFC6241] and
 RESTCONF [RFC8040]. Both of these protocols have mandatory-to-
 implement secure transport layers (e.g., SSH, TLS) with mutual
 authentication.

 The NETCONF access control model (NACM) [RFC8341] provides the means
 to restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /: The entire data trees defined by the modules defined in this
 draft are sensitive to write operations. For instance, the
 addition or removal of references to keys, certificates,
 trusted anchors, etc., can dramatically alter the implemented
 security policy. However, no NACM annotations are applied as
 the data SHOULD be editable by users other than a designated
 ’recovery session’.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 NONE

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 NONE

7. IANA Considerations

7.1. The IETF XML Registry

 This document registers two URIs in the "ns" subregistry of the IETF
 XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registrations are requested:

Watsen Expires April 25, 2019 [Page 52]

Internet-Draft NETCONF Client and Server Models October 2018

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-client
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-server
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

7.2. The YANG Module Names Registry

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registrations are requested:

 name: ietf-netconf-client
 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-client
 prefix: ncc
 reference: RFC XXXX

 name: ietf-netconf-server
 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-server
 prefix: ncs
 reference: RFC XXXX

8. References

8.1. Normative References

 [I-D.ietf-netconf-keystore]
 Watsen, K., "YANG Data Model for a Centralized Keystore
 Mechanism", draft-ietf-netconf-keystore-06 (work in
 progress), September 2018.

 [I-D.ietf-netconf-ssh-client-server]
 Watsen, K. and G. Wu, "YANG Groupings for SSH Clients and
 SSH Servers", draft-ietf-netconf-ssh-client-server-07
 (work in progress), September 2018.

 [I-D.ietf-netconf-tls-client-server]
 Watsen, K. and G. Wu, "YANG Groupings for TLS Clients and
 TLS Servers", draft-ietf-netconf-tls-client-server-07
 (work in progress), September 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Watsen Expires April 25, 2019 [Page 53]

Internet-Draft NETCONF Client and Server Models October 2018

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7407] Bjorklund, M. and J. Schoenwaelder, "A YANG Data Model for
 SNMP Configuration", RFC 7407, DOI 10.17487/RFC7407,
 December 2014, <https://www.rfc-editor.org/info/rfc7407>.

 [RFC7589] Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <https://www.rfc-editor.org/info/rfc7589>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

Watsen Expires April 25, 2019 [Page 54]

Internet-Draft NETCONF Client and Server Models October 2018

 [RFC8071] Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 RFC 8071, DOI 10.17487/RFC8071, February 2017,
 <https://www.rfc-editor.org/info/rfc8071>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

Watsen Expires April 25, 2019 [Page 55]

Internet-Draft NETCONF Client and Server Models October 2018

Appendix A. Change Log

A.1. 00 to 01

 o Renamed "keychain" to "keystore".

A.2. 01 to 02

 o Added to ietf-netconf-client ability to connected to a cluster of
 endpoints, including a reconnection-strategy.

 o Added to ietf-netconf-client the ability to configure connection-
 type and also keep-alive strategy.

 o Updated both modules to accomodate new groupings in the ssh/tls
 drafts.

A.3. 02 to 03

 o Refined use of tls-client-grouping to add a must statement
 indicating that the TLS client must specify a client-certificate.

 o Changed ’netconf-client’ to be a grouping (not a container).

A.4. 03 to 04

 o Added RFC 8174 to Requirements Language Section.

 o Replaced refine statement in ietf-netconf-client to add a
 mandatory true.

 o Added refine statement in ietf-netconf-server to add a must
 statement.

 o Now there are containers and groupings, for both the client and
 server models.

A.5. 04 to 05

 o Now tree diagrams reference ietf-netmod-yang-tree-diagrams

 o Updated examples to inline key and certificates (no longer a
 leafref to keystore)

Watsen Expires April 25, 2019 [Page 56]

Internet-Draft NETCONF Client and Server Models October 2018

A.6. 05 to 06

 o Fixed change log missing section issue.

 o Updated examples to match latest updates to the crypto-types,
 trust-anchors, and keystore drafts.

 o Reduced line length of the YANG modules to fit within 69 columns.

A.7. 06 to 07

 o Removed "idle-timeout" from "persistent" connection config.

 o Added "random-selection" for reconnection-strategy’s "starts-with"
 enum.

 o Replaced "connection-type" choice default (persistent) with
 "mandatory true".

 o Reduced the periodic-connection’s "idle-timeout" from 5 to 2
 minutes.

 o Replaced reconnect-timeout with period/anchor-time combo.

A.8. 07 to 08

 o Modified examples to be compatible with new crypto-types algs

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, Balazs Kovacs, David
 Lamparter, Alan Luchuk, Ladislav Lhotka, Radek Krejci, Tom Petch,
 Juergen Schoenwaelder, Phil Shafer, Sean Turner, and Bert Wijnen.

Author’s Address

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

Watsen Expires April 25, 2019 [Page 57]

NETCONF E. Voit
Internet-Draft Cisco Systems
Intended status: Standards Track A. Clemm
Expires: April 26, 2019 Huawei
 A. Gonzalez Prieto
 Microsoft
 E. Nilsen-Nygaard
 A. Tripathy
 Cisco Systems
 October 23, 2018

 Dynamic subscription to YANG Events and Datastores over NETCONF
 draft-ietf-netconf-netconf-event-notifications-14

Abstract

 This document provides a NETCONF binding to the dynamic subscription
 capability of both subscribed notifications and YANG push.

 RFC Editor note: please replace the four references to pre-RFC
 normative drafts with the actual assigned RFC numbers.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Voit, et al. Expires April 26, 2019 [Page 1]

Internet-Draft NETCONF-notif October 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Compatibility with RFC-5277’s create-subscription 3
 4. Mandatory XML, event stream and datastore support 3
 5. NETCONF connectivity and the Dynamic Subscriptions 4
 6. Notification Messages . 4
 7. Dynamic Subscriptions and RPC Error Responses 4
 8. Security Considerations 5
 9. Acknowledgments . 6
 10. Notes to the RFC Editor 6
 11. References . 6
 11.1. Normative References 6
 11.2. Informative References 7
 Appendix A. Examples . 7
 A.1. Event Stream Discovery 7
 A.2. Dynamic Subscriptions 8
 A.3. Subscription State Notifications 12
 A.4. Filter Examples . 14
 Appendix B. Changes between revisions 15
 B.1. v13 to v14 . 15
 B.2. v11 to v13 . 16
 B.3. v10 to v11 . 16
 B.4. v09 to v10 . 16
 B.5. v08 to v09 . 16
 B.6. v07 to v08 . 16
 B.7. v06 to v07 . 16
 B.8. v05 to v06 . 16
 B.9. v03 to v04 . 16
 B.10. v01 to v03 . 17
 B.11. v00 to v01 . 17
 Authors’ Addresses . 17

1. Introduction

 This document provides a binding for events streamed over the NETCONF
 protocol [RFC6241] for dynamic subscriptions as defined in
 [I-D.draft-ietf-netconf-subscribed-notifications]. In addition, as
 [I-D.ietf-netconf-yang-push] is itself built upon
 [I-D.draft-ietf-netconf-subscribed-notifications], this document

Voit, et al. Expires April 26, 2019 [Page 2]

Internet-Draft NETCONF-notif October 2018

 enables a NETCONF client to request via a dynamic subscription and
 receive updates from a YANG datastore located on a NETCONF server.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in
 [I-D.draft-ietf-netconf-subscribed-notifications]: dynamic
 subscription, event stream, notification message, publisher,
 receiver, subscriber, subscription. No additional terms are defined.

3. Compatibility with RFC-5277’s create-subscription

 A publisher is allowed to concurrently support dynamic subscription
 RPCs of [I-D.draft-ietf-netconf-subscribed-notifications] at the same
 time as [RFC5277]’s "create-subscription" RPC. However a single
 NETCONF transport session cannot support both this specification and
 a subscription established by [RFC5277]’s "create-subscription" RPC.
 To protect against any attempts to use a single NETCONF transport
 session in this way:

 o A solution must reply with the [RFC6241] error "operation-not-
 supported" if a "create-subscription" RPC is received on a NETCONF
 session where an [I-D.draft-ietf-netconf-subscribed-notifications]
 established subscription exists.
 o A solution must reply with the [RFC6241] error "operation-not-
 supported" if an "establish-subscription" request has been
 received on a NETCONF session where the "create-subscription" RPC
 has successfully [RFC5277] created a subscription.

 If a publisher supports this specification but not subscriptions via
 [RFC5277], the publisher MUST NOT advertise
 "urn:ietf:params:netconf:capability:notification:1.0".

4. Mandatory XML, event stream and datastore support

 The "encode-xml" feature of
 [I-D.draft-ietf-netconf-subscribed-notifications] MUST be supported.
 This indicates that XML is a valid encoding for RPCs, state change
 notifications, and subscribed content.

Voit, et al. Expires April 26, 2019 [Page 3]

Internet-Draft NETCONF-notif October 2018

 A NETCONF publisher supporting event stream subscription via
 [I-D.draft-ietf-netconf-subscribed-notifications] MUST support the
 "NETCONF" event stream identified in that document.

5. NETCONF connectivity and the Dynamic Subscriptions

 For a dynamic subscription, if the NETCONF session involved with the
 "establish-subscription" terminates the subscription MUST be
 terminated.

 For a dynamic subscription, any "modify-subscription", "delete-
 subscription", or "resynch-subscription" RPCs MUST be sent using the
 same NETCONF session upon which the referenced subscription was
 established.

6. Notification Messages

 Notification messages transported over the NETCONF protocol MUST be
 encoded in a <notification> message as defined within [RFC5277],
 Section 4. And per [RFC5277]’s "eventTime" object definition, the
 "eventTime" MUST be populated with the event occurrence time.

 For dynamic subscriptions, all notification messages MUST use the
 NETCONF transport session used by the "establish-subscription" RPC.

7. Dynamic Subscriptions and RPC Error Responses

 Management of dynamic subscriptions occurs via RPCs as defined in
 [I-D.ietf-netconf-yang-push] and
 [I-D.draft-ietf-netconf-subscribed-notifications]. When an RPC error
 occurs, the NETCONF RPC reply MUST include an "rpc-error" element per
 [RFC6241] with the error information populated as follows:

 o an "error-type" node of "application".
 o an "error-tag" node of "operation-failed".
 o an "error-severity" of "error" (this MAY but does not have to be
 included).
 o an "error-app-tag" node with the value being a string that
 corresponds to an identity associated with the error, as defined
 in [I-D.draft-ietf-netconf-subscribed-notifications] section 2.4.6
 for general subscriptions, and [I-D.ietf-netconf-yang-push]
 Appendix A.1, for datastore subscriptions. The specific identity
 to use depends on the RPC for which the error occurred. Each
 error identity will be inserted as the "error-app-tag" following
 the form <modulename>:<identityname>. An example of such as valid
 encoding would be "ietf-subscribed-notifications:no-such-
 subscription". Viable errors for different RPCs are as follows:

Voit, et al. Expires April 26, 2019 [Page 4]

Internet-Draft NETCONF-notif October 2018

 RPC use base identity
 ---------------------- ----------------------------
 establish-subscription establish-subscription-error
 modify-subscription modify-subscription-error
 delete-subscription delete-subscription-error
 kill-subscription kill-subscription-error
 resynch-subscription resynch-subscription-error

 o In case of error responses to an "establish-subscription" or
 "modify-subscription" request there is the option of including an
 "error-info" node. This node may contain XML-encoded data with
 hints for parameter settings that might lead to successful RPC
 requests in the future. Following are the yang-data structures
 from [I-D.draft-ietf-netconf-subscribed-notifications] and
 [I-D.ietf-netconf-yang-push] which may be returned:

 establish-subscription returns hints in yang-data structure
 ---------------------- ------------------------------------
 target: event stream establish-subscription-stream-error-info
 target: datastore establish-subscription-datastore-error-info

 modify-subscription returns hints in yang-data structure
 ---------------------- ------------------------------------
 target: event stream modify-subscription-stream-error-info
 target: datastore modify-subscription-datastore-error-info

 The yang-data included within "error-info" SHOULD NOT include the
 optional leaf "error-reason", as such a leaf would be redundant
 with information that is already placed within the
 "error-app-tag".

 In case of an rpc error resulting from a "delete-subscription",
 "kill-subscription", or "resynch-subscription" request, no "error-
 info" needs to be included, as the "subscription-id" is the only RPC
 input parameter and no hints regarding this RPC input parameters need
 to be provided.

8. Security Considerations

 If a malicious or buggy NETCONF subscriber sends a number of
 establish-subscription requests, then these subscriptions accumulate
 and may use up system resources. In such a situation, subscriptions
 MAY be terminated by terminating the underlying NETCONF session. The
 publisher MAY also suspend or terminate a subset of the active
 subscriptions on that NETCONF session.

Voit, et al. Expires April 26, 2019 [Page 5]

Internet-Draft NETCONF-notif October 2018

9. Acknowledgments

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from: Andy Bierman, Yan Gang, Sharon
 Chisholm, Hector Trevino, Peipei Guo, Susan Hares, Tim Jenkins,
 Balazs Lengyel, Martin Bjorklund, Mahesh Jethanandani, Kent Watsen,
 and Guangying Zheng.

10. Notes to the RFC Editor

 This section can be removed by the RFC editor after the requests have
 been performed.

 RFC 6241 need to be updated. RFC-6241 refers to RFC-5277 which says
 that a notification message can only be sent after a successful
 "create-subscription". This text must be modified to also allow
 notification messages be sent after a successful "establish-
 subscription".

11. References

11.1. Normative References

 [I-D.draft-ietf-netconf-subscribed-notifications]
 Voit, E., Clemm, A., Gonzalez Prieto, A., Tripathy, A.,
 and E. Nilsen-Nygaard, "Customized Subscriptions to a
 Publisher’s Event Streams", September 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-subscribed-notifications/>.

 [I-D.ietf-netconf-yang-push]
 Clemm, Alexander., Voit, Eric., Gonzalez Prieto, Alberto.,
 Tripathy, A., Nilsen-Nygaard, E., Bierman, A., and B.
 Lengyel, "YANG Datastore Subscription", September 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-yang-push/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <https://www.rfc-editor.org/info/rfc5277>.

Voit, et al. Expires April 26, 2019 [Page 6]

Internet-Draft NETCONF-notif October 2018

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [RFC8347] Liu, X., Ed., Kyparlis, A., Parikh, R., Lindem, A., and M.
 Zhang, "A YANG Data Model for the Virtual Router
 Redundancy Protocol (VRRP)", RFC 8347,
 DOI 10.17487/RFC8347, March 2018,
 <https://www.rfc-editor.org/info/rfc8347>.

 [XPATH] Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

Appendix A. Examples

 This section is non-normative.

A.1. Event Stream Discovery

 As defined in [I-D.draft-ietf-netconf-subscribed-notifications] an
 event stream exposes a continuous set of events available for
 subscription. A NETCONF client can retrieve the list of available
 event streams from a NETCONF publisher using the "get" operation
 against the top-level container "/streams" defined in
 [I-D.draft-ietf-netconf-subscribed-notifications] Section 3.1.

 The following example illustrates the retrieval of the list of
 available event streams:

<rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <streams
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications"/>
 </filter>
 </get>
</rpc>

 Figure 1: Get streams request

Voit, et al. Expires April 26, 2019 [Page 7]

Internet-Draft NETCONF-notif October 2018

 After such a request, the NETCONF publisher returns a list of event
 streams available, as well as additional information which might
 exist in the container.

A.2. Dynamic Subscriptions

A.2.1. Establishing Dynamic Subscriptions

 The following figure shows two successful "establish-subscription"
 RPC requests as per
 [I-D.draft-ietf-netconf-subscribed-notifications]. The first request
 is given a subscription "id" of 22, the second, an "id" of 23.

 +------------+ +-----------+
 | Subscriber | | Publisher |
 +------------+ +-----------+
 | |
 | Capability Exchange |
 |<---------------------------->|
 | |
 | |
 | establish-subscription |
 |----------------------------->| (a)
 | RPC Reply: OK, id = 22 |
 |<-----------------------------| (b)
 | |
 | notification message (for 22)|
 |<-----------------------------|
 | |
 | |
 | establish-subscription |
 |----------------------------->|
 | notification message (for 22)|
 |<-----------------------------|
 | RPC Reply: OK, id = 23 |
 |<-----------------------------|
 | |
 | |
 | notification message (for 22)|
 |<-----------------------------|
 | notification message (for 23)|
 |<-----------------------------|
 | |

 Figure 2: Multiple subscriptions over a NETCONF session

 To provide examples of the information being transported, example
 messages for interactions (a) and (b) in Figure 2 are detailed below:

Voit, et al. Expires April 26, 2019 [Page 8]

Internet-Draft NETCONF-notif October 2018

<rpc message-id="102" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications">
 <stream>NETCONF</stream>
 <stream-xpath-filter xmlns:ds="http://example.com/events">
 /ds:foo/
 </stream-xpath-filter>
 <dscp>10</dscp>
 </establish-subscription>
</rpc>

 Figure 3: establish-subscription request (a)

 As NETCONF publisher was able to fully satisfy the request (a), the
 publisher sends the subscription "id" of the accepted subscription
 within message (b):

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <id
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications">
 22
 </id>
 </rpc-reply>

 Figure 4: establish-subscription success (b)

 If the NETCONF publisher had not been able to fully satisfy the
 request, or subscriber has no authorization to establish the
 subscription, the publisher would have sent an RPC error response.
 For instance, if the "dscp" value of 10 asserted by the subscriber in
 Figure 3 proved unacceptable, the publisher may have returned:

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-app-tag>
 ietf-subscribed-notifications:dscp-unavailable
 </error-app-tag>
 </rpc-error>
 </rpc-reply>

 Figure 5: an unsuccessful establish subscription

Voit, et al. Expires April 26, 2019 [Page 9]

Internet-Draft NETCONF-notif October 2018

 The subscriber can use this information in future attempts to
 establish a subscription.

A.2.2. Modifying Dynamic Subscriptions

 An existing subscription may be modified. The following exchange
 shows a negotiation of such a modification via several exchanges
 between a subscriber and a publisher. This negotiation consists of a
 failed RPC modification request/response, followed by a successful
 one.

 +------------+ +-----------+
 | Subscriber | | Publisher |
 +------------+ +-----------+
 | |
 | notification message (for 23)|
 |<-----------------------------|
 | |
 | modify-subscription (id = 23)|
 |----------------------------->| (c)
 | RPC error (with hint) |
 |<-----------------------------| (d)
 | |
 | modify-subscription (id = 23)|
 |----------------------------->|
 | RPC Reply: OK |
 |<-----------------------------|
 | |
 | notification message (for 23)|
 |<-----------------------------|
 | |

 Figure 6: Interaction model for successful subscription modification

 If the subscription being modified in Figure 6 is a datastore
 subscription as per [I-D.ietf-netconf-yang-push], the modification
 request made in (c) may look like that shown in Figure 7. As can be
 seen, the modifications being attempted are the application of a new
 XPath filter as well as the setting of a new periodic time interval.

Voit, et al. Expires April 26, 2019 [Page 10]

Internet-Draft NETCONF-notif October 2018

<rpc message-id="303"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <id>23</id>
 <yp:datastore-xpath-filter xmlns:ds="http://example.com/datastore">
 /ds:foo/ds:bar
 </yp:datastore-xpath-filter>
 <yp:periodic>
 <yp:period>500</yp:period>
 </yp:periodic>
 </modify-subscription>
</rpc>

 Figure 7: Subscription modification request (c)

 If the NETCONF publisher can satisfy both changes, the publisher
 sends a positive result for the RPC. If the NETCONF publisher cannot
 satisfy either of the proposed changes, the publisher sends an RPC
 error response (d). The following is an example RPC error response
 for (d) which includes a hint. This hint is an alternative time
 period value which might have resulted in a successful modification:

 <rpc-reply message-id="303"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-app-tag>
 ietf-yang-push:period-unsupported
 </error-app-tag>
 <error-info>
 <modify-subscription-datastore-error-info
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <period-hint>
 3000
 </period-hint>
 </modify-subscription-datastore-error-info>
 </error-info>
 </rpc-error>
 </rpc-reply>

 Figure 8: Modify subscription failure with hint (d)

Voit, et al. Expires April 26, 2019 [Page 11]

Internet-Draft NETCONF-notif October 2018

A.2.3. Deleting Dynamic Subscriptions

 The following demonstrates deleting a subscription. This
 subscription may have been to either a stream or a datastore.

 <rpc message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <delete-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications">
 <id>22</id>
 </delete-subscription>
 </rpc>

 Figure 9: Delete subscription

 If the NETCONF publisher can satisfy the request, the publisher
 replies with success to the RPC request.

 If the NETCONF publisher cannot satisfy the request, the publisher
 sends an error-rpc element indicating the modification didn’t work.
 Figure 10 shows a valid response for existing valid subscription
 "id", but that subscription "id" was created on a different NETCONF
 transport session:

 <rpc-reply message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-app-tag>
 ietf-subscribed-notifications:no-such-subscription
 </error-app-tag>
 </rpc-error>
 </rpc-reply>

 Figure 10: Unsuccessful delete subscription

A.3. Subscription State Notifications

 A publisher will send subscription state notifications for dynamic
 subscriptions according to the definitions within
 [I-D.draft-ietf-netconf-subscribed-notifications].

Voit, et al. Expires April 26, 2019 [Page 12]

Internet-Draft NETCONF-notif October 2018

A.3.1. subscription-modified

 As per Section 2.7.2 of
 [I-D.draft-ietf-netconf-subscribed-notifications], a "subscription-
 modified" might be sent over NETCONF if the definition of a
 configured filter changes. A subscription state notification encoded
 in XML would look like:

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <subscription-modified
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications">
 <id>39</id>
 <stream-xpath-filter xmlns:ex="http://example.com/events">
 /ex:foo
 </stream-xpath-filter>
 <stream>NETCONF</stream>
 </subscription-modified>
</notification>

 Figure 11: subscription-modified subscription state notification

A.3.2. subscription-resumed, and replay-complete

 A "subscription-resumed" would look like:

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <subscription-resumed
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications">
 <id>39</id>
 </subscription-resumed>
 </notification>

 Figure 12: subscription-resumed notification in XML

 The "replay-complete" is virtually identical, with "subscription-
 resumed" simply being replaced by "replay-complete".

A.3.3. subscription-terminated and subscription-suspended

 A "subscription-terminated" would look like:

Voit, et al. Expires April 26, 2019 [Page 13]

Internet-Draft NETCONF-notif October 2018

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <subscription-terminated
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications">
 <id>39</id>
 <reason>
 suspension-timeout
 </reason>
 </subscription-terminated>
 </notification>

 Figure 13: subscription-terminated subscription state notification

 The "subscription-suspended" is virtually identical, with
 "subscription-terminated" simply being replaced by "subscription-
 suspended".

A.4. Filter Examples

 This section provides examples which illustrate both XPath and
 subtree methods of filtering event record contents. The examples are
 based on the YANG notification "vrrp-protocol-error-event" as defined
 per the ietf-vrrp.yang model within [RFC8347]. Event records based
 on this specification which are generated by the publisher might
 appear as:

 <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2018-09-14T08:22:33.44Z</eventTime>
 <vrrp-protocol-error-event
 xmlns="urn:ietf:params:xml:ns:yang:ietf-vrrp">
 <protocol-error-reason>checksum-error</protocol-error-reason>
 </vrrp-protocol-error-event>
 </notification>

 Figure 14: RFC 8347 (VRRP) - Example Notification

 Suppose a subscriber wanted to establish a subscription which only
 passes instances of event records where there is a "checksum-error"
 as part of a VRRP protocol event. Also assume the publisher places
 such event records into the NETCONF stream. To get a continuous
 series of matching event records, the subscriber might request the
 application of an XPath filter against the NETCONF stream. An
 "establish-subscription" RPC to meet this objective might be:

Voit, et al. Expires April 26, 2019 [Page 14]

Internet-Draft NETCONF-notif October 2018

 <rpc message-id="601" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications">
 <stream>NETCONF</stream>
 <stream-xpath-filter xmlns="urn:ietf:params:xml:ns:yang:ietf-vrrp">
 /vrrp-protocol-error-event[
 vrrp:protocol-error-reason="vrrp:checksum-error"]
 </stream-xpath-filter>
 </establish-subscription>
 </rpc>

 Figure 15: Establishing a subscription error reason via XPath

 For more examples of XPath filters, see [XPATH].

 Suppose the "establish-subscription" in Figure 15 was accepted. And
 suppose later a subscriber decided they wanted to broaden this
 subscription cover to all VRRP protocol events (i.e., not just those
 with a "checksum error"). The subscriber might attempt to modify the
 subscription in a way which replaces the XPath filter with a subtree
 filter which sends all VRRP protocol events to a subscriber. Such a
 "modify-subscription" RPC might look like:

 <rpc message-id="602" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications">
 <id>99</id>
 <stream-subtree-filter>
 <vrrp-protocol-error-event
 xmlns="urn:ietf:params:xml:ns:yang:ietf-vrrp"/>
 </stream-subtree-filter>
 </modify-subscription>
 </rpc>

 Figure 16

 For more examples of subtree filters, see [RFC6241], section 6.4.

Appendix B. Changes between revisions

 (To be removed by RFC editor prior to publication)

B.1. v13 to v14

 o Title change.

Voit, et al. Expires April 26, 2019 [Page 15]

Internet-Draft NETCONF-notif October 2018

B.2. v11 to v13

 o Subscription identifier renamed to id.
 o Appendix A.4 for filter examples
 o for v13, Tweak of example to /foo/bar

B.3. v10 to v11

 o Configured removed.

B.4. v09 to v10

 o Tweaks to examples and text.
 o Downshifted state names.
 o Removed address from examples.

B.5. v08 to v09

 o Tweaks based on Kent’s comments.
 o Updated examples in Appendix A. And updates to some object names
 based on changes in the subscribed-notifications draft.
 o Added a YANG model for the NETCONF identity.

B.6. v07 to v08

 o Tweaks and clarification on :interleave.

B.7. v06 to v07

 o XML encoding and operational datastore mandatory.
 o Error mechanisms and examples updated.

B.8. v05 to v06

 o Moved examples to appendices
 o All examples rewritten based on namespace learnings
 o Normative text consolidated in front
 o Removed all mention of JSON
 o Call home process detailed
 o Note: this is a major revision attempting to cover those comments
 received from two week review.

B.9. v03 to v04

 o Added additional detail to "configured subscriptions"
 o Added interleave capability
 o Adjusted terminology to that in draft-ietf-netconf-subscribed-
 notifications

Voit, et al. Expires April 26, 2019 [Page 16]

Internet-Draft NETCONF-notif October 2018

 o Corrected namespaces in examples

B.10. v01 to v03

 o Text simplifications throughout
 o v02 had no meaningful changes

B.11. v00 to v01

 o Added Call Home in solution for configured subscriptions.
 o Clarified support for multiple subscription on a single session.
 No need to support multiple create-subscription.
 o Added mapping between terminology in yang-push and [RFC6241] (the
 one followed in this document).
 o Editorial improvements.

Authors’ Addresses

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Alexander Clemm
 Huawei

 Email: ludwig@clemm.org

 Alberto Gonzalez Prieto
 Microsoft

 Email: alberto.gonzalez@microsoft.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Ambika Prasad Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

Voit, et al. Expires April 26, 2019 [Page 17]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track October 22, 2018
Expires: April 25, 2019

 RESTCONF Client and Server Models
 draft-ietf-netconf-restconf-client-server-08

Abstract

 This document defines two YANG modules, one module to configure a
 RESTCONF client and the other module to configure a RESTCONF server.
 Both modules support the TLS transport protocol with both standard
 RESTCONF and RESTCONF Call Home connections.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o I-D.ietf-netconf-keystore

 o I-D.ietf-netconf-tls-client-server

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

 o "ZZZZ" --> the assigned RFC value for I-D.ietf-netconf-tls-client-
 server

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix A. Change Log

Watsen Expires April 25, 2019 [Page 1]

Internet-Draft RESTCONF Client and Server Models October 2018

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 2. The RESTCONF Client Model 3
 2.1. Tree Diagram . 4
 2.2. Example Usage . 7
 2.3. YANG Module . 9
 3. The RESTCONF Server Model 18
 3.1. Tree Diagram . 18
 3.2. Example Usage . 21
 3.3. YANG Module . 24
 4. Security Considerations 34
 5. IANA Considerations . 35
 5.1. The IETF XML Registry 35
 5.2. The YANG Module Names Registry 35

Watsen Expires April 25, 2019 [Page 2]

Internet-Draft RESTCONF Client and Server Models October 2018

 6. References . 36
 6.1. Normative References 36
 6.2. Informative References 37
 Appendix A. Change Log . 38
 A.1. 00 to 01 . 38
 A.2. 01 to 02 . 38
 A.3. 02 to 03 . 38
 A.4. 03 to 04 . 38
 A.5. 04 to 05 . 38
 A.6. 05 to 06 . 39
 A.7. 06 to 07 . 39
 A.8. 07 to 08 . 39
 Acknowledgements . 39
 Author’s Address . 39

1. Introduction

 This document defines two YANG [RFC7950] modules, one module to
 configure a RESTCONF client and the other module to configure a
 RESTCONF server [RFC8040]. Both modules support the TLS [RFC8446]
 transport protocol with both standard RESTCONF and RESTCONF Call Home
 connections [RFC8071].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. The RESTCONF Client Model

 The RESTCONF client model presented in this section supports both
 clients initiating connections to servers, as well as clients
 listening for connections from servers calling home.

 This model, like that presented in
 [I-D.ietf-netconf-netconf-client-server], is designed to support any
 number of possible transports. RESTCONF only supports the TLS
 transport currently, thus this model only supports the TLS transport.

 All private keys and trusted certificates are held in the keystore
 model defined in [I-D.ietf-netconf-keystore].

 YANG feature statements are used to enable implementations to
 advertise which parts of the model the RESTCONF client supports.

Watsen Expires April 25, 2019 [Page 3]

Internet-Draft RESTCONF Client and Server Models October 2018

2.1. Tree Diagram

 The following tree diagram [RFC8340] provides an overview of the data
 model for the "ietf-restconf-client" module. Just the container is
 displayed below, but there is also a reusable grouping called
 "restconf-client-grouping" that the container is using.

 [Note: ’\’ line wrapping for formatting only]

 module: ietf-restconf-client
 +--rw restconf-client
 +--rw initiate! {initiate}?
 | +--rw restconf-server* [name]
 | +--rw name string
 | +--rw endpoints
 | +--rw endpoint* [name]
 | +--rw name string
 | +--rw (transport)
 | | +--:(tls) {tls-initiate}?
 | | +--rw tls
 | | +--rw address inet:host
 | | +--rw port? inet:port-number
 | | +--rw client-identity
 | | | +--rw (auth-type)
 | | | +--:(certificate)
 | | | +--rw certificate
 | | | +--rw (local-or-keystore)
 | | | +--:(local)
 | | | | {local-keys-suppor\
 ted}?
 | | | | +--rw algorithm?
 | | | | | asymmetric-key-e\
 ncryption-algorithm-ref
 | | | | +--rw public-key?
 | | | | | binary
 | | | | +--rw private-key?
 | | | | | union
 | | | | +---x generate-hidden-key
 | | | | | +---w input
 | | | | | +---w algorithm
 | | | | | asymmetric\
 -key-encryption-algorithm-ref
 | | | | +---x install-hidden-key
 | | | | | +---w input
 | | | | | +---w algorithm
 | | | | | | asymmetric\
 -key-encryption-algorithm-ref

Watsen Expires April 25, 2019 [Page 4]

Internet-Draft RESTCONF Client and Server Models October 2018

 | | | | | +---w public-key?
 | | | | | | binary
 | | | | | +---w private-key?
 | | | | | binary
 | | | | +--rw cert?
 | | | | | end-entity-cert-\
 cms
 | | | | +---n certificate-expira\
 tion
 | | | | +-- expiration-date
 | | | | yang:date-and\
 -time
 | | | +--:(keystore)
 | | | {keystore-supporte\
 d}?
 | | | +--rw reference?
 | | | ks:asymmetric-ke\
 y-certificate-ref
 | | +--rw server-auth
 | | | +--rw pinned-ca-certs?
 | | | | ta:pinned-certificates-ref
 | | | | {ta:x509-certificates}?
 | | | +--rw pinned-server-certs?
 | | | ta:pinned-certificates-ref
 | | | {ta:x509-certificates}?
 | | +--rw hello-params
 | | {tls-client-hello-params-config}?
 | | +--rw tls-versions
 | | | +--rw tls-version* identityref
 | | +--rw cipher-suites
 | | +--rw cipher-suite* identityref
 | +--rw connection-type
 | | +--rw (connection-type)
 | | +--:(persistent-connection)
 | | | +--rw persistent!
 | | | +--rw keep-alives
 | | | +--rw max-wait? uint16
 | | | +--rw max-attempts? uint8
 | | +--:(periodic-connection)
 | | +--rw periodic!
 | | +--rw period? uint16
 | | +--rw anchor-time? yang:date-and-time
 | | +--rw idle-timeout? uint16
 | +--rw reconnect-strategy
 | +--rw start-with? enumeration
 | +--rw max-attempts? uint8
 +--rw listen! {listen}?
 +--rw idle-timeout? uint16

Watsen Expires April 25, 2019 [Page 5]

Internet-Draft RESTCONF Client and Server Models October 2018

 +--rw endpoint* [name]
 +--rw name string
 +--rw (transport)
 +--:(tls) {tls-listen}?
 +--rw tls
 +--rw address? inet:ip-address
 +--rw port? inet:port-number
 +--rw client-identity
 | +--rw (auth-type)
 | +--:(certificate)
 | +--rw certificate
 | +--rw (local-or-keystore)
 | +--:(local) {local-keys-supported\
 }?
 | | +--rw algorithm?
 | | | asymmetric-key-encrypt\
 ion-algorithm-ref
 | | +--rw public-key?
 | | | binary
 | | +--rw private-key?
 | | | union
 | | +---x generate-hidden-key
 | | | +---w input
 | | | +---w algorithm
 | | | asymmetric-key-e\
 ncryption-algorithm-ref
 | | +---x install-hidden-key
 | | | +---w input
 | | | +---w algorithm
 | | | | asymmetric-key-e\
 ncryption-algorithm-ref
 | | | +---w public-key? bin\
 ary
 | | | +---w private-key? bin\
 ary
 | | +--rw cert?
 | | | end-entity-cert-cms
 | | +---n certificate-expiration
 | | +-- expiration-date
 | | yang:date-and-time
 | +--:(keystore) {keystore-supporte\
 d}?
 | +--rw reference?
 | ks:asymmetric-key-cert\
 ificate-ref
 +--rw server-auth
 | +--rw pinned-ca-certs?
 | | ta:pinned-certificates-ref

Watsen Expires April 25, 2019 [Page 6]

Internet-Draft RESTCONF Client and Server Models October 2018

 | | {ta:x509-certificates}?
 | +--rw pinned-server-certs?
 | ta:pinned-certificates-ref
 | {ta:x509-certificates}?
 +--rw hello-params
 {tls-client-hello-params-config}?
 +--rw tls-versions
 | +--rw tls-version* identityref
 +--rw cipher-suites
 +--rw cipher-suite* identityref

2.2. Example Usage

 The following example illustrates configuring a RESTCONF client to
 initiate connections, as well as listening for call-home connections.

 This example is consistent with the examples presented in Section 3.2
 of [I-D.ietf-netconf-keystore].

 [Note: ’\’ line wrapping for formatting only]

 <restconf-client
 xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-client">

 <!-- RESTCONF servers to initiate connections to -->
 <initiate>
 <restconf-server>
 <name>corp-fw1</name>
 <endpoints>
 <endpoint>
 <name>corp-fw1.example.com</name>
 <tls>
 <address>corp-fw1.example.com</address>
 <client-identity>
 <certificate>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:iet\
 f-crypto-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </client-identity>
 <server-auth>
 <pinned-ca-certs>explicitly-trusted-server-ca-certs</p\
 inned-ca-certs>
 <pinned-server-certs>explicitly-trusted-server-certs</\
 pinned-server-certs>

Watsen Expires April 25, 2019 [Page 7]

Internet-Draft RESTCONF Client and Server Models October 2018

 </server-auth>
 </tls>
 <connection-type>
 <persistent/>
 </connection-type>
 </endpoint>
 <endpoint>
 <name>corp-fw2.example.com</name>
 <tls>
 <address>corp-fw2.example.com</address>
 <client-identity>
 <certificate>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:iet\
 f-crypto-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </client-identity>
 <server-auth>
 <pinned-ca-certs>explicitly-trusted-server-ca-certs</p\
 inned-ca-certs>
 <pinned-server-certs>explicitly-trusted-server-certs</\
 pinned-server-certs>
 </server-auth>
 </tls>
 <connection-type>
 <persistent/>
 </connection-type>
 </endpoint>
 </endpoints>
 </restconf-server>
 </initiate>

 <!-- endpoints to listen for RESTCONF Call Home connections on -->
 <listen>
 <endpoint>
 <name>Intranet-facing listener</name>
 <tls>
 <address>11.22.33.44</address>
 <client-identity>
 <certificate>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-cr\
 ypto-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <cert>base64encodedvalue==</cert>
 </certificate>

Watsen Expires April 25, 2019 [Page 8]

Internet-Draft RESTCONF Client and Server Models October 2018

 </client-identity>
 <server-auth>
 <pinned-ca-certs>explicitly-trusted-server-ca-certs</pinne\
 d-ca-certs>
 <pinned-server-certs>explicitly-trusted-server-certs</pinn\
 ed-server-certs>
 </server-auth>
 </tls>
 </endpoint>
 </listen>
 </restconf-client>

2.3. YANG Module

 This YANG module has normative references to [RFC6991], [RFC8040],
 and [RFC8071], and [I-D.ietf-netconf-tls-client-server].

 <CODE BEGINS> file "ietf-restconf-client@2018-10-22.yang"
 module ietf-restconf-client {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-restconf-client";
 prefix "rcc";

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-tls-client {
 prefix ts;
 revision-date 2018-10-22; // stable grouping definitions
 reference
 "RFC ZZZZ: YANG Groupings for TLS Clients and TLS Servers";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/restconf/>

Watsen Expires April 25, 2019 [Page 9]

Internet-Draft RESTCONF Client and Server Models October 2018

 WG List: <mailto:restconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description
 "This module contains a collection of YANG definitions for
 configuring RESTCONF clients.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2018-10-22" {
 description
 "Initial version";
 reference
 "RFC XXXX: RESTCONF Client and Server Models";
 }

 // Features

 feature initiate {
 description
 "The ’initiate’ feature indicates that the RESTCONF client
 supports initiating RESTCONF connections to RESTCONF servers
 using at least one transport (e.g., TLS, etc.).";
 }

 feature tls-initiate {
 if-feature initiate;
 description
 "The ’tls-initiate’ feature indicates that the RESTCONF client
 supports initiating TLS connections to RESTCONF servers. This
 feature exists as TLS might not be a mandatory to implement

Watsen Expires April 25, 2019 [Page 10]

Internet-Draft RESTCONF Client and Server Models October 2018

 transport in the future.";
 reference
 "RFC 8040: RESTCONF Protocol";
 }

 feature listen {
 description
 "The ’listen’ feature indicates that the RESTCONF client
 supports opening a port to accept RESTCONF server call
 home connections using at least one transport (e.g.,
 TLS, etc.).";
 }

 feature tls-listen {
 if-feature listen;
 description
 "The ’tls-listen’ feature indicates that the RESTCONF client
 supports opening a port to listen for incoming RESTCONF
 server call-home TLS connections. This feature exists as
 TLS might not be a mandatory to implement transport in the
 future.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
 }

 container restconf-client {
 uses restconf-client-grouping;
 description
 "Top-level container for RESTCONF client configuration.";
 }

 grouping restconf-client-grouping {
 description
 "Top-level grouping for RESTCONF client configuration.";

 container initiate {
 if-feature initiate;
 presence "Enables client to initiate TCP connections";
 description
 "Configures client initiating underlying TCP connections.";
 list restconf-server {
 key name;
 min-elements 1;
 description
 "List of RESTCONF servers the RESTCONF client is to
 initiate connections to in parallel.";
 leaf name {
 type string;

Watsen Expires April 25, 2019 [Page 11]

Internet-Draft RESTCONF Client and Server Models October 2018

 description
 "An arbitrary name for the RESTCONF server.";
 }
 container endpoints {
 description
 "Container for the list of endpoints.";
 list endpoint {
 key name;
 min-elements 1;
 ordered-by user;
 description
 "A non-empty user-ordered list of endpoints for this
 RESTCONF client to try to connect to in sequence.
 Defining more than one enables high-availability.";
 leaf name {
 type string;
 description
 "An arbitrary name for this endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports. This is a
 ’choice’ statement so as to support additional
 transport options to be augmented in.";
 case tls {
 if-feature tls-initiate;
 container tls {
 description
 "Specifies TLS-specific transport
 configuration.";
 leaf address {
 type inet:host;
 mandatory true;
 description
 "The IP address or hostname of the endpoint.
 If a domain name is configured, then the
 DNS resolution should happen on each usage
 attempt. If the the DNS resolution results
 in multiple IP addresses, the IP addresses
 will be tried according to local preference
 order until a connection has been established
 or until all IP addresses have failed.";
 }
 leaf port {
 type inet:port-number;
 default 443;
 description

Watsen Expires April 25, 2019 [Page 12]

Internet-Draft RESTCONF Client and Server Models October 2018

 "The IP port for this endpoint. The RESTCONF
 client will use the IANA-assigned well-known
 port for ’https’ (443) if no value is
 specified.";
 }
 uses ts:tls-client-grouping {
 refine "client-identity/auth-type" {
 mandatory true;
 description
 "RESTCONF clients MUST pass some
 authentication credentials.";
 }
 }
 }
 } // end tls
 } // end transport
 container connection-type {
 description
 "Indicates the kind of connection to use.";
 choice connection-type {
 mandatory true;
 description
 "Selects between available connection types.";
 case persistent-connection {
 container persistent {
 presence
 "Indicates that a persistent connection is
 to be maintained.";
 description
 "Maintain a persistent connection to the
 RESTCONF server. If the connection goes down,
 immediately start trying to reconnect to it,
 using the reconnection strategy. This
 connection type minimizes any RESTCONF server
 to RESTCONF client data-transfer delay, albeit
 at the expense of holding resources longer.";
 container keep-alives {
 description
 "Configures the keep-alive policy, to
 proactively test the aliveness of the TLS
 server. An unresponsive TLS server will
 be dropped after approximately max-attempts
 * max-wait seconds.";
 leaf max-wait {
 type uint16 {
 range "1..max";
 }
 units seconds;

Watsen Expires April 25, 2019 [Page 13]

Internet-Draft RESTCONF Client and Server Models October 2018

 default 30;
 description
 "Sets the amount of time in seconds after
 which if no data has been received from
 the TLS server, a TLS-level message will
 be sent to test the aliveness of the TLS
 server.";
 }
 leaf max-attempts {
 type uint8;
 default 3;
 description
 "Sets the maximum number of sequential
 keep-alive messages that can fail to
 obtain a response from the TLS server
 before assuming the TLS server is no
 longer alive.";
 }
 }
 }
 }
 case periodic-connection {
 container periodic {
 presence
 "Indicates that a periodic connection is to be
 maintained.";
 description
 "Periodically connect to the NETCONF server.
 The RESTCONF server should close the underlying
 TLS connection upon completing planned
 activities.

 This connection type increases resource
 utilization, albeit with increased delay in
 RESTCONF server to RESTCONF client
 interactions.";
 leaf period {
 type uint16;
 units "minutes";
 default 60;
 description
 "Duration of time between periodic
 connections.";
 }
 leaf anchor-time {
 type yang:date-and-time {
 // constrained to minute-level granularity
 pattern ’\d{4}-\d{2}-\d{2}T\d{2}:\d{2}’

Watsen Expires April 25, 2019 [Page 14]

Internet-Draft RESTCONF Client and Server Models October 2018

 + ’(Z|[\+\-]\d{2}:\d{2})’;
 }
 description
 "Designates a timestamp before or after which
 a series of periodic connections are
 determined. The periodic connections occur
 at a whole multiple interval from the anchor
 time. For example, for an anchor time is 15
 minutes past midnight and a period interval
 of 24 hours, then a periodic connection will
 occur 15 minutes past midnight everyday.";
 }
 leaf idle-timeout {
 type uint16;
 units "seconds";
 default 120; // two minutes
 description
 "Specifies the maximum number of seconds
 that the underlying TLS session may remain
 idle. A TLS session will be dropped if it
 is idle for an interval longer than this
 number of seconds If set to zero, then the
 RESTCONF client will never drop a session
 because it is idle.";
 }
 }
 } // end periodic-connection
 } // end connection-type
 } // end connection-type
 container reconnect-strategy {
 description
 "The reconnection strategy directs how a RESTCONF
 client reconnects to a RESTCONF server, after
 discovering its connection to the server has
 dropped, even if due to a reboot. The RESTCONF
 client starts with the specified endpoint and
 tries to connect to it max-attempts times before
 trying the next endpoint in the list (round
 robin).";
 leaf start-with {
 type enumeration {
 enum first-listed {
 description
 "Indicates that reconnections should start
 with the first endpoint listed.";
 }
 enum last-connected {
 description

Watsen Expires April 25, 2019 [Page 15]

Internet-Draft RESTCONF Client and Server Models October 2018

 "Indicates that reconnections should start
 with the endpoint last connected to. If
 no previous connection has ever been
 established, then the first endpoint
 configured is used. RESTCONF clients
 SHOULD be able to remember the last
 endpoint connected to across reboots.";
 }
 enum random-selection {
 description
 "Indicates that reconnections should start with
 a random endpoint.";
 }
 }
 default first-listed;
 description
 "Specifies which of the RESTCONF server’s
 endpoints the RESTCONF client should start
 with when trying to connect to the RESTCONF
 server.";
 }
 leaf max-attempts {
 type uint8 {
 range "1..max";
 }
 default 3;
 description
 "Specifies the number times the RESTCONF client
 tries to connect to a specific endpoint before
 moving on to the next endpoint in the list
 (round robin).";
 }
 } // end reconnect-strategy
 } // end endpoint
 } // end endpoints
 } // end restconf-server
 } // end initiate

 container listen {
 if-feature listen;
 presence "Enables client to accept call-home connections";
 description
 "Configures client accepting call-home TCP connections.";

 leaf idle-timeout {
 type uint16;
 units "seconds";
 default 3600; // one hour

Watsen Expires April 25, 2019 [Page 16]

Internet-Draft RESTCONF Client and Server Models October 2018

 description
 "Specifies the maximum number of seconds that an
 underlying TLS session may remain idle. A TLS session
 will be dropped if it is idle for an interval longer
 than this number of seconds. If set to zero, then
 the server will never drop a session because it is
 idle. Sessions that have a notification subscription
 active are never dropped.";
 }

 list endpoint {
 key name;
 min-elements 1;
 description
 "List of endpoints to listen for RESTCONF connections.";
 leaf name {
 type string;
 description
 "An arbitrary name for the RESTCONF listen endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports. This is a
 ’choice’ statement so as to support additional
 transport options to be augmented in.";
 case tls {
 if-feature tls-listen;
 container tls {
 description
 "TLS-specific listening configuration for inbound
 connections.";
 leaf address {
 type inet:ip-address;
 description
 "The IP address to listen on for incoming call-
 home connections. The RESTCONF client will
 listen on all configured interfaces if no
 value is specified. INADDR_ANY (0.0.0.0) or
 INADDR6_ANY (0:0:0:0:0:0:0:0 a.k.a. ::) MUST
 be used when the server is to listen on all
 IPv4 or IPv6 addresses, respectively.";
 }
 leaf port {
 type inet:port-number;
 default 4336;
 description
 "The port number to listen on for call-home

Watsen Expires April 25, 2019 [Page 17]

Internet-Draft RESTCONF Client and Server Models October 2018

 connections. The RESTCONF client will listen
 on the IANA-assigned well-known port for
 ’restconf-ch-tls’ (4336) if no value is
 specified.";
 }
 uses ts:tls-client-grouping {
 refine "client-identity/auth-type" {
 mandatory true;
 description
 "RESTCONF clients MUST pass some authentication
 credentials.";
 }
 }
 }
 }
 } // end transport
 } // end endpoint
 } // end listen
 } // end restconf-client
 }
 <CODE ENDS>

3. The RESTCONF Server Model

 The RESTCONF server model presented in this section supports servers
 both listening for connections as well as initiating call-home
 connections.

 All private keys and trusted certificates are held in the keystore
 model defined in [I-D.ietf-netconf-keystore].

 YANG feature statements are used to enable implementations to
 advertise which parts of the model the RESTCONF server supports.

3.1. Tree Diagram

 The following tree diagram [RFC8340] provides an overview of the data
 model for the "ietf-restconf-server" module. Just the container is
 displayed below, but there is also a reusable grouping called
 "restconf-server-grouping" that the container is using.

 [Note: ’\’ line wrapping for formatting only]

 module: ietf-restconf-server
 +--rw restconf-server
 +--rw listen! {listen}?
 | +--rw endpoint* [name]

Watsen Expires April 25, 2019 [Page 18]

Internet-Draft RESTCONF Client and Server Models October 2018

 | +--rw name string
 | +--rw (transport)
 | +--:(tls) {tls-listen}?
 | +--rw tls
 | +--rw address? inet:ip-address
 | +--rw port? inet:port-number
 | +--rw server-identity
 | | +--rw (local-or-keystore)
 | | +--:(local) {local-keys-supported}?
 | | | +--rw algorithm?
 | | | | asymmetric-key-encryption-algor\
 ithm-ref
 | | | +--rw public-key? binary
 | | | +--rw private-key? union
 | | | +---x generate-hidden-key
 | | | | +---w input
 | | | | +---w algorithm
 | | | | asymmetric-key-encryption\
 -algorithm-ref
 | | | +---x install-hidden-key
 | | | | +---w input
 | | | | +---w algorithm
 | | | | | asymmetric-key-encryption\
 -algorithm-ref
 | | | | +---w public-key? binary
 | | | | +---w private-key? binary
 | | | +--rw cert?
 | | | | end-entity-cert-cms
 | | | +---n certificate-expiration
 | | | +-- expiration-date
 | | | yang:date-and-time
 | | +--:(keystore) {keystore-supported}?
 | | +--rw reference?
 | | ks:asymmetric-key-certificate-r\
 ef
 | +--rw client-auth
 | | +--rw pinned-ca-certs?
 | | | ta:pinned-certificates-ref
 | | | {ta:x509-certificates}?
 | | +--rw pinned-client-certs?
 | | | ta:pinned-certificates-ref
 | | | {ta:x509-certificates}?
 | | +--rw cert-maps
 | | +--rw cert-to-name* [id]
 | | +--rw id uint32
 | | +--rw fingerprint
 | | | x509c2n:tls-fingerprint
 | | +--rw map-type identityref

Watsen Expires April 25, 2019 [Page 19]

Internet-Draft RESTCONF Client and Server Models October 2018

 | | +--rw name string
 | +--rw hello-params
 | {tls-server-hello-params-config}?
 | +--rw tls-versions
 | | +--rw tls-version* identityref
 | +--rw cipher-suites
 | +--rw cipher-suite* identityref
 +--rw call-home! {call-home}?
 +--rw restconf-client* [name]
 +--rw name string
 +--rw endpoints
 | +--rw endpoint* [name]
 | +--rw name string
 | +--rw (transport)
 | +--:(tls) {tls-call-home}?
 | +--rw tls
 | +--rw address inet:host
 | +--rw port? inet:port-number
 | +--rw server-identity
 | | +--rw (local-or-keystore)
 | | +--:(local) {local-keys-supported}?
 | | | +--rw algorithm?
 | | | | asymmetric-key-encryption\
 -algorithm-ref
 | | | +--rw public-key?
 | | | | binary
 | | | +--rw private-key?
 | | | | union
 | | | +---x generate-hidden-key
 | | | | +---w input
 | | | | +---w algorithm
 | | | | asymmetric-key-encr\
 yption-algorithm-ref
 | | | +---x install-hidden-key
 | | | | +---w input
 | | | | +---w algorithm
 | | | | | asymmetric-key-encr\
 yption-algorithm-ref
 | | | | +---w public-key? binary
 | | | | +---w private-key? binary
 | | | +--rw cert?
 | | | | end-entity-cert-cms
 | | | +---n certificate-expiration
 | | | +-- expiration-date
 | | | yang:date-and-time
 | | +--:(keystore) {keystore-supported}?
 | | +--rw reference?
 | | ks:asymmetric-key-certifi\

Watsen Expires April 25, 2019 [Page 20]

Internet-Draft RESTCONF Client and Server Models October 2018

 cate-ref
 | +--rw client-auth
 | | +--rw pinned-ca-certs?
 | | | ta:pinned-certificates-ref
 | | | {ta:x509-certificates}?
 | | +--rw pinned-client-certs?
 | | | ta:pinned-certificates-ref
 | | | {ta:x509-certificates}?
 | | +--rw cert-maps
 | | +--rw cert-to-name* [id]
 | | +--rw id uint32
 | | +--rw fingerprint
 | | | x509c2n:tls-fingerprint
 | | +--rw map-type identityref
 | | +--rw name string
 | +--rw hello-params
 | {tls-server-hello-params-config}?
 | +--rw tls-versions
 | | +--rw tls-version* identityref
 | +--rw cipher-suites
 | +--rw cipher-suite* identityref
 +--rw connection-type
 | +--rw (connection-type)
 | +--:(persistent-connection)
 | | +--rw persistent!
 | | +--rw keep-alives
 | | +--rw max-wait? uint16
 | | +--rw max-attempts? uint8
 | +--:(periodic-connection)
 | +--rw periodic!
 | +--rw period? uint16
 | +--rw anchor-time? yang:date-and-time
 | +--rw idle-timeout? uint16
 +--rw reconnect-strategy
 +--rw start-with? enumeration
 +--rw max-attempts? uint8

3.2. Example Usage

 The following example illustrates configuring a RESTCONF server to
 listen for RESTCONF client connections, as well as configuring call-
 home to one RESTCONF client.

 This example is consistent with the examples presented in Section 3.2
 of [I-D.ietf-netconf-keystore].

 [Note: ’\’ line wrapping for formatting only]

Watsen Expires April 25, 2019 [Page 21]

Internet-Draft RESTCONF Client and Server Models October 2018

 <restconf-server
 xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-server"
 xmlns:x509c2n="urn:ietf:params:xml:ns:yang:ietf-x509-cert-to-name">

 <!-- endpoints to listen for RESTCONF connections on -->
 <listen>
 <endpoint>
 <name>netconf/tls</name>
 <tls>
 <address>11.22.33.44</address>
 <server-identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-cryp\
 to-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <cert>base64encodedvalue==</cert>
 </server-identity>
 <client-auth>
 <pinned-ca-certs>explicitly-trusted-client-ca-certs</pinne\
 d-ca-certs>
 <pinned-client-certs>explicitly-trusted-client-certs</pinn\
 ed-client-certs>
 <cert-maps>
 <cert-to-name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map-type>x509c2n:san-any</map-type>
 </cert-to-name>
 <cert-to-name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map-type>x509c2n:specified</map-type>
 <name>scooby-doo</name>
 </cert-to-name>
 </cert-maps>
 </client-auth>
 </tls>
 </endpoint>
 </listen>

 <!-- call home to a RESTCONF client with two endpoints -->
 <call-home>
 <restconf-client>
 <name>config-manager</name>
 <endpoints>
 <endpoint>
 <name>east-data-center</name>
 <tls>

Watsen Expires April 25, 2019 [Page 22]

Internet-Draft RESTCONF Client and Server Models October 2018

 <address>22.33.44.55</address>
 <server-identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-\
 crypto-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <cert>base64encodedvalue==</cert>
 </server-identity>
 <client-auth>
 <pinned-ca-certs>explicitly-trusted-client-ca-certs</p\
 inned-ca-certs>
 <pinned-client-certs>explicitly-trusted-client-certs</\
 pinned-client-certs>
 <cert-maps>
 <cert-to-name>
 <id>1</id>
 <fingerprint>11:0A:05:11:00</fingerprint>
 <map-type>x509c2n:san-any</map-type>
 </cert-to-name>
 <cert-to-name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map-type>x509c2n:specified</map-type>
 <name>scooby-doo</name>
 </cert-to-name>
 </cert-maps>
 </client-auth>
 </tls>
 </endpoint>
 <endpoint>
 <name>west-data-center</name>
 <tls>
 <address>33.44.55.66</address>
 <server-identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-\
 crypto-types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <cert>base64encodedvalue==</cert>
 </server-identity>
 <client-auth>
 <pinned-ca-certs>explicitly-trusted-client-ca-certs</p\
 inned-ca-certs>
 <pinned-client-certs>explicitly-trusted-client-certs</\
 pinned-client-certs>
 <cert-maps>
 <cert-to-name>
 <id>1</id>

Watsen Expires April 25, 2019 [Page 23]

Internet-Draft RESTCONF Client and Server Models October 2018

 <fingerprint>11:0A:05:11:00</fingerprint>
 <map-type>x509c2n:san-any</map-type>
 </cert-to-name>
 <cert-to-name>
 <id>2</id>
 <fingerprint>B3:4F:A1:8C:54</fingerprint>
 <map-type>x509c2n:specified</map-type>
 <name>scooby-doo</name>
 </cert-to-name>
 </cert-maps>
 </client-auth>
 </tls>
 </endpoint>
 </endpoints>
 <connection-type>
 <periodic>
 <idle-timeout>300</idle-timeout>
 <period>60</period>
 </periodic>
 </connection-type>
 <reconnect-strategy>
 <start-with>last-connected</start-with>
 <max-attempts>3</max-attempts>
 </reconnect-strategy>
 </restconf-client>
 </call-home>
 </restconf-server>

3.3. YANG Module

 This YANG module has normative references to [RFC6991], [RFC7407],
 [RFC8040], [RFC8071], and [I-D.ietf-netconf-tls-client-server].

 <CODE BEGINS> file "ietf-restconf-server@2018-10-22.yang"
 module ietf-restconf-server {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-restconf-server";
 prefix "rcs";

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-inet-types {

Watsen Expires April 25, 2019 [Page 24]

Internet-Draft RESTCONF Client and Server Models October 2018

 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 import ietf-x509-cert-to-name {
 prefix x509c2n;
 reference
 "RFC 7407: A YANG Data Model for SNMP Configuration";
 }

 import ietf-tls-server {
 prefix ts;
 revision-date 2018-10-22; // stable grouping definitions
 reference
 "RFC ZZZZ: YANG Groupings for TLS Clients and TLS Servers";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>

 Author: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>";

 description
 "This module contains a collection of YANG definitions for
 configuring RESTCONF servers.

 Copyright (c) 2017 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

Watsen Expires April 25, 2019 [Page 25]

Internet-Draft RESTCONF Client and Server Models October 2018

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2018-10-22" {
 description
 "Initial version";
 reference
 "RFC XXXX: RESTCONF Client and Server Models";
 }

 // Features

 feature listen {
 description
 "The ’listen’ feature indicates that the RESTCONF server
 supports opening a port to accept RESTCONF client connections
 using at least one transport (e.g., TLS, etc.).";
 }

 feature tls-listen {
 if-feature listen;
 description
 "The ’tls-listen’ feature indicates that the RESTCONF server
 supports opening a port to listen for incoming RESTCONF
 client connections. This feature exists as TLS might not
 be a mandatory to implement transport in the future.";
 reference
 "RFC 8040: RESTCONF Protocol";
 }

 feature call-home {
 description
 "The ’call-home’ feature indicates that the RESTCONF
 server supports initiating RESTCONF call home connections
 to RESTCONF clients using at least one transport (e.g.,
 TLS, etc.).";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
 }

 feature tls-call-home {
 if-feature call-home;
 description
 "The ’tls-call-home’ feature indicates that the RESTCONF
 server supports initiating connections to RESTCONF clients.
 This feature exists as TLS might not be a mandatory to
 implement transport in the future.";

Watsen Expires April 25, 2019 [Page 26]

Internet-Draft RESTCONF Client and Server Models October 2018

 reference
 "RFC 8071: NETCONF Call Home and RESTCONF Call Home";
 }

 container restconf-server {
 uses restconf-server-grouping;
 description
 "Top-level container for RESTCONF server configuration.";
 }

 grouping restconf-server-grouping {
 description
 "Top-level grouping for RESTCONF server configuration.";

 container listen {
 if-feature listen;
 presence "Enables server to listen for TCP connections";
 description "Configures listen behavior";
 list endpoint {
 key name;
 min-elements 1;
 description
 "List of endpoints to listen for RESTCONF connections.";
 leaf name {
 type string;
 description
 "An arbitrary name for the RESTCONF listen endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports. This is a
 ’choice’ statement so as to support additional
 transport options to be augmented in.";
 case tls {
 if-feature tls-listen;
 container tls {
 description
 "TLS-specific listening configuration for inbound
 connections.";
 leaf address {
 type inet:ip-address;
 description
 "The IP address to listen on for incoming
 connections. The RESTCONF server will listen
 on all configured interfaces if no value is
 specified. INADDR_ANY (0.0.0.0) or INADDR6_ANY
 (0:0:0:0:0:0:0:0 a.k.a. ::) MUST be used when

Watsen Expires April 25, 2019 [Page 27]

Internet-Draft RESTCONF Client and Server Models October 2018

 the server is to listen on all IPv4 or IPv6
 addresses, respectively.";
 }
 leaf port {
 type inet:port-number;
 default 443;
 description
 "The local port number to listen on. If no value
 is specified, the IANA-assigned port value for
 ’https’ (443) is used.";
 }
 uses ts:tls-server-grouping {
 refine "client-auth" {
 must ’pinned-ca-certs or pinned-client-certs’;
 description
 "RESTCONF servers MUST be able to validate
 clients.";
 }
 augment "client-auth" {
 description
 "Augments in the cert-to-name structure,
 so the RESTCONF server can map TLS-layer
 client certificates to RESTCONF usernames.";
 container cert-maps {
 uses x509c2n:cert-to-name;
 description
 "The cert-maps container is used by a TLS-
 based RESTCONF server to map the RESTCONF
 client’s presented X.509 certificate to
 a RESTCONF username. If no matching and
 valid cert-to-name list entry can be found,
 then the RESTCONF server MUST close the
 connection, and MUST NOT accept RESTCONF
 messages over it.";
 reference
 "RFC 7407: A YANG Data Model for SNMP
 Configuration.";
 }
 }
 }
 } // end tls container
 } // end tls case
 } // end transport
 } // end endpoint
 } // end listen

 container call-home {
 if-feature call-home;

Watsen Expires April 25, 2019 [Page 28]

Internet-Draft RESTCONF Client and Server Models October 2018

 presence "Enables server to initiate TCP connections";
 description "Configures call-home behavior";
 list restconf-client {
 key name;
 min-elements 1;
 description
 "List of RESTCONF clients the RESTCONF server is to
 initiate call-home connections to in parallel.";
 leaf name {
 type string;
 description
 "An arbitrary name for the remote RESTCONF client.";
 }
 container endpoints {
 description
 "Container for the list of endpoints.";
 list endpoint {
 key name;
 min-elements 1;
 ordered-by user;
 description
 "User-ordered list of endpoints for this RESTCONF
 client. Defining more than one enables high-
 availability.";
 leaf name {
 type string;
 description
 "An arbitrary name for this endpoint.";
 }
 choice transport {
 mandatory true;
 description
 "Selects between available transports. This is a
 ’choice’ statement so as to support additional
 transport options to be augmented in.";
 case tls {
 if-feature tls-call-home;
 container tls {
 description
 "Specifies TLS-specific call-home transport
 configuration.";
 leaf address {
 type inet:host;
 mandatory true;
 description
 "The IP address or hostname of the endpoint.
 If a domain name is configured, then the
 DNS resolution should happen on each usage

Watsen Expires April 25, 2019 [Page 29]

Internet-Draft RESTCONF Client and Server Models October 2018

 attempt. If the DNS resolution results in
 multiple IP addresses, the IP addresses will
 be tried according to local preference order
 until a connection has been established or
 until all IP addresses have failed.";
 }
 leaf port {
 type inet:port-number;
 default 4336;
 description
 "The IP port for this endpoint. The RESTCONF
 server will use the IANA-assigned well-known
 port for ’restconf-ch-tls’ (4336) if no value
 is specified.";
 }
 uses ts:tls-server-grouping {
 refine "client-auth" {
 must ’pinned-ca-certs or pinned-client-certs’;
 description
 "RESTCONF servers MUST be able to validate
 clients.";
 }
 augment "client-auth" {
 description
 "Augments in the cert-to-name structure,
 so the RESTCONF server can map TLS-layer
 client certificates to RESTCONF usernames.";
 container cert-maps {
 uses x509c2n:cert-to-name;
 description
 "The cert-maps container is used by a
 TLS-based RESTCONF server to map the
 RESTCONF client’s presented X.509
 certificate to a RESTCONF username. If
 no matching and valid cert-to-name list
 entry can be found, then the RESTCONF
 server MUST close the connection, and
 MUST NOT accept RESTCONF messages over
 it.";
 reference
 "RFC 7407: A YANG Data Model for SNMP
 Configuration.";
 }
 }
 }
 }
 }
 } // end transport

Watsen Expires April 25, 2019 [Page 30]

Internet-Draft RESTCONF Client and Server Models October 2018

 } // end endpoint
 } // end endpoints
 container connection-type {
 description
 "Indicates the RESTCONF client’s preference for how the
 RESTCONF server’s connection is maintained.";
 choice connection-type {
 mandatory true;
 description
 "Selects between available connection types.";
 case persistent-connection {
 container persistent {
 presence
 "Indicates that a persistent connection is to be
 maintained.";
 description
 "Maintain a persistent connection to the RESTCONF
 client. If the connection goes down, immediately
 start trying to reconnect to it, using the
 reconnection strategy.

 This connection type minimizes any RESTCONF
 client to RESTCONF server data-transfer delay,
 albeit at the expense of holding resources
 longer.";
 container keep-alives {
 description
 "Configures the keep-alive policy, to
 proactively test the aliveness of the TLS
 client. An unresponsive TLS client will
 be dropped after approximately (max-attempts
 * max-wait) seconds.";
 reference
 "RFC 8071: NETCONF Call Home and RESTCONF
 Call Home, Section 4.1, item S7";
 leaf max-wait {
 type uint16 {
 range "1..max";
 }
 units seconds;
 default 30;
 description
 "Sets the amount of time in seconds after
 which if no data has been received from
 the TLS client, a TLS-level message will
 be sent to test the aliveness of the TLS
 client.";
 }

Watsen Expires April 25, 2019 [Page 31]

Internet-Draft RESTCONF Client and Server Models October 2018

 leaf max-attempts {
 type uint8;
 default 3;
 description
 "Sets the maximum number of sequential keep-
 alive messages that can fail to obtain a
 response from the TLS client before assuming
 the TLS client is no longer alive.";
 }
 }
 }
 }
 case periodic-connection {
 container periodic {
 presence
 "Indicates that a periodic connection is to be
 maintained.";
 description
 "Periodically connect to the RESTCONF client. The
 RESTCONF client should close the underlying TLS
 connection upon completing planned activities.

 This connection type increases resource
 utilization, albeit with increased delay in
 RESTCONF client to RESTCONF client interactions.";
 leaf period {
 type uint16;
 units "minutes";
 default 60;
 description
 "Duration of time between periodic connections.";
 }
 leaf anchor-time {
 type yang:date-and-time {
 // constrained to minute-level granularity
 pattern ’\d{4}-\d{2}-\d{2}T\d{2}:\d{2}’
 + ’(Z|[\+\-]\d{2}:\d{2})’;
 }
 description
 "Designates a timestamp before or after which a
 series of periodic connections are determined.
 The periodic connections occur at a whole
 multiple interval from the anchor time. For
 example, for an anchor time is 15 minutes past
 midnight and a period interval of 24 hours, then
 a periodic connection will occur 15 minutes past
 midnight everyday.";
 }

Watsen Expires April 25, 2019 [Page 32]

Internet-Draft RESTCONF Client and Server Models October 2018

 leaf idle-timeout {
 type uint16;
 units "seconds";
 default 120; // two minutes
 description
 "Specifies the maximum number of seconds that
 the underlying TLS session may remain idle.
 A TLS session will be dropped if it is idle
 for an interval longer than this number of
 seconds. If set to zero, then the server
 will never drop a session because it is idle.";
 }
 }
 }
 }
 }
 container reconnect-strategy {
 description
 "The reconnection strategy directs how a RESTCONF server
 reconnects to a RESTCONF client after discovering its
 connection to the client has dropped, even if due to a
 reboot. The RESTCONF server starts with the specified
 endpoint and tries to connect to it max-attempts times
 before trying the next endpoint in the list (round
 robin).";
 leaf start-with {
 type enumeration {
 enum first-listed {
 description
 "Indicates that reconnections should start with
 the first endpoint listed.";
 }
 enum last-connected {
 description
 "Indicates that reconnections should start with
 the endpoint last connected to. If no previous
 connection has ever been established, then the
 first endpoint configured is used. RESTCONF
 servers SHOULD be able to remember the last
 endpoint connected to across reboots.";
 }
 enum random-selection {
 description
 "Indicates that reconnections should start with
 a random endpoint.";
 }
 }
 default first-listed;

Watsen Expires April 25, 2019 [Page 33]

Internet-Draft RESTCONF Client and Server Models October 2018

 description
 "Specifies which of the RESTCONF client’s endpoints
 the RESTCONF server should start with when trying
 to connect to the RESTCONF client.";
 }
 leaf max-attempts {
 type uint8 {
 range "1..max";
 }
 default 3;
 description
 "Specifies the number times the RESTCONF server tries
 to connect to a specific endpoint before moving on to
 the next endpoint in the list (round robin).";
 }
 }
 }
 }
 }
 }
 <CODE ENDS>

4. Security Considerations

 The YANG module defined in this document uses a grouping defined in
 [I-D.ietf-netconf-tls-client-server]. Please see the Security
 Considerations section in that document for concerns related that
 grouping.

 The YANG module defined in this document is designed to be accessed
 via YANG based management protocols, such as NETCONF [RFC6241] and
 RESTCONF [RFC8040]. Both of these protocols have mandatory-to-
 implement secure transport layers (e.g., SSH, TLS) with mutual
 authentication.

 The NETCONF access control model (NACM) [RFC8341] provides the means
 to restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

Watsen Expires April 25, 2019 [Page 34]

Internet-Draft RESTCONF Client and Server Models October 2018

 /: The entire data trees defined by the modules defined in this
 draft are sensitive to write operations. For instance, the
 addition or removal of references to keys, certificates,
 trusted anchors, etc., can dramatically alter the implemented
 security policy. However, no NACM annotations are applied as
 the data SHOULD be editable by users other than a designated
 ’recovery session’.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 NONE

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 NONE

5. IANA Considerations

5.1. The IETF XML Registry

 This document registers two URIs in the "ns" subregistry of the IETF
 XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registrations are requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-restconf-client
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-restconf-server
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

5.2. The YANG Module Names Registry

 This document registers two YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registrations are requested:

Watsen Expires April 25, 2019 [Page 35]

Internet-Draft RESTCONF Client and Server Models October 2018

 name: ietf-restconf-client
 namespace: urn:ietf:params:xml:ns:yang:ietf-restconf-client
 prefix: ncc
 reference: RFC XXXX

 name: ietf-restconf-server
 namespace: urn:ietf:params:xml:ns:yang:ietf-restconf-server
 prefix: ncs
 reference: RFC XXXX

6. References

6.1. Normative References

 [I-D.ietf-netconf-keystore]
 Watsen, K., "YANG Data Model for a Centralized Keystore
 Mechanism", draft-ietf-netconf-keystore-06 (work in
 progress), September 2018.

 [I-D.ietf-netconf-tls-client-server]
 Watsen, K. and G. Wu, "YANG Groupings for TLS Clients and
 TLS Servers", draft-ietf-netconf-tls-client-server-07
 (work in progress), September 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7407] Bjorklund, M. and J. Schoenwaelder, "A YANG Data Model for
 SNMP Configuration", RFC 7407, DOI 10.17487/RFC7407,
 December 2014, <https://www.rfc-editor.org/info/rfc7407>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

Watsen Expires April 25, 2019 [Page 36]

Internet-Draft RESTCONF Client and Server Models October 2018

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8071] Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 RFC 8071, DOI 10.17487/RFC8071, February 2017,
 <https://www.rfc-editor.org/info/rfc8071>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2. Informative References

 [I-D.ietf-netconf-netconf-client-server]
 Watsen, K., "NETCONF Client and Server Models", draft-
 ietf-netconf-netconf-client-server-07 (work in progress),
 September 2018.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Watsen Expires April 25, 2019 [Page 37]

Internet-Draft RESTCONF Client and Server Models October 2018

Appendix A. Change Log

A.1. 00 to 01

 o Renamed "keychain" to "keystore".

A.2. 01 to 02

 o Filled in previously missing ’ietf-restconf-client’ module.

 o Updated the ietf-restconf-server module to accomodate new grouping
 ’ietf-tls-server-grouping’.

A.3. 02 to 03

 o Refined use of tls-client-grouping to add a must statement
 indicating that the TLS client must specify a client-certificate.

 o Changed restconf-client??? to be a grouping (not a container).

A.4. 03 to 04

 o Added RFC 8174 to Requirements Language Section.

 o Replaced refine statement in ietf-restconf-client to add a
 mandatory true.

 o Added refine statement in ietf-restconf-server to add a must
 statement.

 o Now there are containers and groupings, for both the client and
 server models.

 o Now tree diagrams reference ietf-netmod-yang-tree-diagrams

 o Updated examples to inline key and certificates (no longer a
 leafref to keystore)

A.5. 04 to 05

 o Now tree diagrams reference ietf-netmod-yang-tree-diagrams

 o Updated examples to inline key and certificates (no longer a
 leafref to keystore)

Watsen Expires April 25, 2019 [Page 38]

Internet-Draft RESTCONF Client and Server Models October 2018

A.6. 05 to 06

 o Fixed change log missing section issue.

 o Updated examples to match latest updates to the crypto-types,
 trust-anchors, and keystore drafts.

 o Reduced line length of the YANG modules to fit within 69 columns.

A.7. 06 to 07

 o removed "idle-timeout" from "persistent" connection config.

 o Added "random-selection" for reconnection-strategy’s "starts-with"
 enum.

 o Replaced "connection-type" choice default (persistent) with
 "mandatory true".

 o Reduced the periodic-connection’s "idle-timeout" from 5 to 2
 minutes.

 o Replaced reconnect-timeout with period/anchor-time combo.

A.8. 07 to 08

 o Modified examples to be compatible with new crypto-types algs

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, Balazs Kovacs, David
 Lamparter, Alan Luchuk, Ladislav Lhotka, Radek Krejci, Tom Petch,
 Juergen Schoenwaelder, Phil Shafer, Sean Turner, and Bert Wijnen.

Author’s Address

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

Watsen Expires April 25, 2019 [Page 39]

NETCONF E. Voit
Internet-Draft R. Rahman
Intended status: Standards Track E. Nilsen-Nygaard
Expires: April 22, 2019 Cisco Systems
 A. Clemm
 Huawei
 A. Bierman
 YumaWorks
 October 19, 2018

 Dynamic subscription to YANG Events and Datastores over RESTCONF
 draft-ietf-netconf-restconf-notif-09

Abstract

 This document provides a RESTCONF binding to the dynamic subscription
 capability of both subscribed notifications and YANG-Push.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Voit, et al. Expires April 22, 2019 [Page 1]

Internet-Draft RESTCONF-Notif October 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Dynamic Subscriptions . 3
 3.1. Transport Connectivity 4
 3.2. Discovery . 4
 3.3. RESTCONF RPCs and HTTP Status Codes 4
 3.4. Call Flow for Server-Sent Events (SSE) 6
 4. QoS Treatment . 8
 5. Notification Messages . 8
 6. YANG Tree . 8
 7. YANG module . 8
 8. IANA Considerations . 10
 9. Security Considerations 11
 10. Acknowledgments . 11
 11. References . 11
 11.1. Normative References 11
 11.2. Informative References 13
 Appendix A. Examples . 14
 A.1. Dynamic Subscriptions 14
 A.1.1. Establishing Dynamic Subscriptions 14
 A.1.2. Modifying Dynamic Subscriptions 17
 A.1.3. Deleting Dynamic Subscriptions 18
 A.2. Subscription State Notifications 19
 A.2.1. subscription-modified 19
 A.2.2. subscription-completed, subscription-resumed, and
 replay-complete 20
 A.2.3. subscription-terminated and subscription-suspended . 20
 A.3. Filter Example . 21
 Appendix B. Changes between revisions 22
 Authors’ Addresses . 24

1. Introduction

 Mechanisms to support event subscription and push are defined in
 [I-D.draft-ietf-netconf-subscribed-notifications]. Enhancements to
 [I-D.draft-ietf-netconf-subscribed-notifications] which enable YANG
 datastore subscription and push are defined in
 [I-D.ietf-netconf-yang-push]. This document provides a transport
 specification for dynamic subscriptions over RESTCONF [RFC8040].
 Driving these requirements is [RFC7923].

Voit, et al. Expires April 22, 2019 [Page 2]

Internet-Draft RESTCONF-Notif October 2018

 The streaming of notifications encapsulating the resulting
 information push is done via the mechanism described in section 6.3
 of [RFC8040].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The following terms use the definitions from
 [I-D.draft-ietf-netconf-subscribed-notifications]: dynamic
 subscription, event stream, notification message, publisher,
 receiver, subscriber, and subscription.

 Other terms reused include datastore, which is defined in [RFC8342],
 and HTTP2 stream which maps to the definition of "stream" within
 [RFC7540], Section 2.

 [note to the RFC Editor - please replace XXXX within this document
 with the number of this document]

3. Dynamic Subscriptions

 This section provides specifics on how to establish and maintain
 dynamic subscriptions over RESTCONF [RFC8040]. Subscribing to event
 streams is accomplished in this way via RPCs defined within
 [I-D.draft-ietf-netconf-subscribed-notifications] Section 2.4, the
 RPCs are done via RESTCONF POSTs. YANG datastore subscription is
 accomplished via augmentations to
 [I-D.draft-ietf-netconf-subscribed-notifications] as described within
 [I-D.ietf-netconf-yang-push] Section 4.4.

 As described in [RFC8040] Section 6.3, a GET needs to be made against
 a specific URI on the publisher. Subscribers cannot pre-determine
 the URI against which a subscription might exist on a publisher, as
 the URI will only exist after the "establish-subscription" RPC has
 been accepted. Therefore, the POST for the "establish-subscription"
 RPC replaces the GET request for the "location" leaf which is used in
 [RFC8040] to obtain the URI. The subscription URI will be determined
 and sent as part of the response to the "establish-subscription" RPC,
 and a subsequent GET to this URI will be done in order to start the
 flow of notification messages back to the subscriber. A subscription
 does not move to the active state as per Section 2.4.1. of
 [I-D.draft-ietf-netconf-subscribed-notifications] until the GET is
 received.

Voit, et al. Expires April 22, 2019 [Page 3]

Internet-Draft RESTCONF-Notif October 2018

3.1. Transport Connectivity

 For a dynamic subscription, where a RESTCONF session doesn’t already
 exist, a new RESTCONF session is initiated from the subscriber.

 As stated in Section 2.1 of [RFC8040], a subscriber MUST establish
 the HTTP session over TLS [RFC5246] in order to secure the content in
 transit.

 Without the involvement of additional protocols, HTTP sessions by
 themselves do not allow for a quick recognition of when the
 communication path has been lost with the publisher. Where quick
 recognition of the loss of a publisher is required, a subscriber
 SHOULD use a TLS heartbeat [RFC6520], just from receiver to
 publisher, to track HTTP session continuity.

 Loss of the heartbeat MUST result in any subscription related TCP
 sessions between those endpoints being torn down. A subscriber can
 then attempt to re-establish the dynamic subscription by using the
 procedure described in Section 3.

3.2. Discovery

 Subscribers can learn what event streams a RESTCONF server supports
 by querying the "streams" container of ietf-subscribed-
 notification.yang in
 [I-D.draft-ietf-netconf-subscribed-notifications]. Support for the
 "streams" container of ietf-restconf-monitoring.yang in [RFC8040] is
 not required.

 Subscribers can learn what datastores a RESTCONF server supports by
 following [I-D.draft-ietf-netconf-nmda-restconf].

3.3. RESTCONF RPCs and HTTP Status Codes

 Specific HTTP responses codes as defined in [RFC7231] section 6 will
 indicate the result of RESTCONF RPC requests with publisher. An HTTP
 status code of 200 is the proper response to any successful RPC
 defined within [I-D.draft-ietf-netconf-subscribed-notifications] or
 [I-D.ietf-netconf-yang-push].

 If a publisher fails to serve the RPC request for one of the reasons
 indicated in [I-D.draft-ietf-netconf-subscribed-notifications]
 Section 2.4.6 or [I-D.ietf-netconf-yang-push] Appendix A, this will
 be indicated by "406" status code transported in the HTTP response.

Voit, et al. Expires April 22, 2019 [Page 4]

Internet-Draft RESTCONF-Notif October 2018

 When a "406" status code is returned, the RPC reply MUST include an
 "rpc-error" element per [RFC8040] Section 7.1 with the following
 parameter values:

 o an "error-type" node of "application".

 o an "error-tag" node of "operation-failed".

 o an "error-app-tag" node with the value being a string that
 corresponds to an identity associated with the error, as defined
 in [I-D.draft-ietf-netconf-subscribed-notifications] section 2.4.6
 for general subscriptions, and [I-D.ietf-netconf-yang-push]
 Appendix A.1, for datastore subscriptions. The tag to use depends
 on the RPC for which the error occurred. Viable errors for
 different RPCs are as follows:

 RPC select an identity with a base
 ---------------------- ------------------------------
 establish-subscription establish-subscription-error
 modify-subscription modify-subscription-error
 delete-subscription delete-subscription-error
 kill-subscription kill-subscription-error
 resynch-subscription resynch-subscription-error

 Each error identity will be inserted as the "error-app-tag" using
 JSON encoding following the form <modulename>:<identityname>. An
 example of such as valid encoding would be "ietf-subscribed-
 notifications:no-such-subscription".

 In case of error responses to an "establish-subscription" or "modify-
 subscription" request there is the option of including an "error-
 info" node. This node may contain hints for parameter settings that
 might lead to successful RPC requests in the future. Following are
 the yang-data structures which may be returned:

Voit, et al. Expires April 22, 2019 [Page 5]

Internet-Draft RESTCONF-Notif October 2018

 establish-subscription returns hints in yang-data structure
 ---------------------- ------------------------------------
 target: event stream establish-subscription-stream-error-info
 target: datastore establish-subscription-datastore-error-info

 modify-subscription returns hints in yang-data structure
 ---------------------- ------------------------------------
 target: event stream modify-subscription-stream-error-info
 target: datastore modify-subscription-datastore-error-info

 The yang-data included within "error-info" SHOULD NOT include the
 optional leaf "error-reason", as such a leaf would be redundant
 with information that is already placed within the
 "error-app-tag".

 In case of an rpc error as a result of a "delete-subscription", a
 "kill-subscription", or a "resynch-subscription" request, no
 "error-info" needs to be included, as the "subscription-id" is
 the only RPC input parameter and no hints regarding this RPC input
 parameters need to be provided.

 Note that "error-path" [RFC8040] does not need to be included with
 the "rpc-error" element, as subscription errors are generally
 associated with the choice of RPC input parameters.

3.4. Call Flow for Server-Sent Events (SSE)

 The call flow is defined in Figure 1. The logical connections
 denoted by (a) and (b) can be a TCP connection or an HTTP2 stream
 (multiple HTTP2 streams can be carried in one TCP connection).
 Requests to [I-D.draft-ietf-netconf-subscribed-notifications] or
 [I-D.ietf-netconf-yang-push] augmented RPCs are sent on a connection
 indicated by (a). A successful "establish-subscription" will result
 in an RPC response returned with both a subscription identifier which
 uniquely identifies a subscription, as well as a URI which uniquely
 identifies the location of subscription on the publisher (b). This
 URI is defined via the "uri" leaf the Data Model in Section 7.

 An HTTP GET is then sent on a separate logical connection (b) to the
 URI on the publisher. This initiates the publisher to initiate the
 flow of notification messages which are sent in SSE [W3C-20150203] as
 a response to the GET.

Voit, et al. Expires April 22, 2019 [Page 6]

Internet-Draft RESTCONF-Notif October 2018

 +--------------+ +--------------+
Subscriber		Publisher
Logical		Logical
Connection		Connection
(a) (b)		(a) (b)
 +--------------+ +--------------+
 | RESTCONF POST (RPC:establish-subscription) |
 |--->|
 | HTTP 200 OK (ID,URI)|
 |<---|
 | |HTTP GET (URI) | |
 | |--->|
 | | HTTP 200 OK|
 | |<---|
 | | SSE (notif-message)|
 | |<---|
 | RESTCONF POST (RPC:modify-subscription) | |
 |--->| |
 | | HTTP 200 OK| |
 |<---| |
 | | SSE (subscription-modified)|
 | |<--(c)|
 | | SSE (notif-message)|
 | |<---|
 | RESTCONF POST (RPC:delete-subscription) | |
 |--->| |
 | | HTTP 200 OK| |
 |<---| |
 | | |
 | |

 Figure 1: Dynamic with server-sent events

 Additional requirements for dynamic subscriptions over SSE include:

 o All subscription state notifications from a publisher MUST be
 returned in a separate SSE message used by the subscription to
 which the state change refers.

 o Subscription RPCs MUST NOT use the connection currently providing
 notification messages for that subscription.

 o In addition to an RPC response for a "modify-subscription" RPC
 traveling over (a), a "subscription-modified" state change
 notification must be sent within (b). This allows the receiver to
 know exactly when the new terms of the subscription have been
 applied to the notification messages. See arrow (c).

Voit, et al. Expires April 22, 2019 [Page 7]

Internet-Draft RESTCONF-Notif October 2018

 A publisher MUST terminate a subscription in the following cases:

 o Receipt of a "delete-subscription" or a "kill-subscription" RPC
 for that subscription.

 o Loss of TLS heartbeat

 A publisher MAY terminate a subscription at any time as stated in
 [I-D.draft-ietf-netconf-subscribed-notifications] Section 1.3

4. QoS Treatment

 To meet subscription quality of service promises, the publisher MUST
 take any existing subscription "dscp" and apply it to the DSCP
 marking in the IP header.

 In addition, where HTTP2 transport is available to a notification
 message queued for transport to a receiver, the publisher MUST:

 o take any existing subscription "priority", as specified by the
 "dscp" leaf node in
 [I-D.draft-ietf-netconf-subscribed-notifications], and copy it
 into the HTTP2 stream priority, [RFC7540] section 5.3, and

 o take any existing subscription "dependency", as specified by the
 "dependency" leaf node in
 [I-D.draft-ietf-netconf-subscribed-notifications], and use the
 HTTP2 stream for the parent subscription as the HTTP2 stream
 dependency, [RFC7540] section 5.3.1, of the dependent
 subscription.

5. Notification Messages

 Notification messages transported over RESTCONF will be encoded
 according to [RFC8040], section 6.4.

6. YANG Tree

 The YANG model defined in Section 7 has one leaf augmented into four
 places of [I-D.draft-ietf-netconf-subscribed-notifications], plus two
 identities. As the resulting full tree is large, it will only be
 inserted at later stages of this document.

7. YANG module

 This module references
 [I-D.draft-ietf-netconf-subscribed-notifications].

Voit, et al. Expires April 22, 2019 [Page 8]

Internet-Draft RESTCONF-Notif October 2018

<CODE BEGINS> file "ietf-restconf-subscribed-notifications@2018-10-19.yang"
module ietf-restconf-subscribed-notifications {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-restconf-subscribed-notifications";

 prefix rsn;

 import ietf-subscribed-notifications {
 prefix sn;
 }
 import ietf-inet-types {
 prefix inet;
 }

 organization "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Editor: Eric Voit
 <mailto:evoit@cisco.com>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Editor: Reshad Rahman
 <mailto:rrahman@cisco.com>";

 description
 "Defines RESTCONF as a supported transport for subscribed
 event notifications.

 Copyright (c) 2018 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section
 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC
 itself for full legal notices.";

 revision 2018-10-19 {
 description
 "Initial version";

Voit, et al. Expires April 22, 2019 [Page 9]

Internet-Draft RESTCONF-Notif October 2018

 reference
 "RFC XXXX: RESTCONF Transport for Event Notifications";
 }

 grouping uri {
 description
 "Provides a reusable description of a URI.";
 leaf uri {
 type inet:uri;
 config false;
 description
 "Location of a subscription specific URI on the publisher.";
 }
 }

 augment "/sn:establish-subscription/sn:output" {
 description
 "This augmentation allows RESTCONF specific parameters for a
 response to a publisher’s subscription request.";
 uses uri;
 }

 augment "/sn:subscriptions/sn:subscription" {
 description
 "This augmentation allows RESTCONF specific parameters to be
 exposed for a subscription.";
 uses uri;
 }

 augment "/sn:subscription-modified" {
 description
 "This augmentation allows RESTCONF specific parameters to be included
 part of the notification that a subscription has been modified.";
 uses uri;
 }
}
<CODE ENDS>

8. IANA Considerations

 This document registers the following namespace URI in the "IETF XML
 Registry" [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-restconf-subscribed-
 notifications
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

Voit, et al. Expires April 22, 2019 [Page 10]

Internet-Draft RESTCONF-Notif October 2018

 This document registers the following YANG module in the "YANG Module
 Names" registry [RFC6020]:

 Name: ietf-restconf-subscribed-notifications
 Namespace: urn:ietf:params:xml:ns:yang:ietf-restconf-subscribed-
 notifications
 Prefix: rsn
 Reference: RFC XXXX: RESTCONF Transport for Event Notifications

9. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management transports
 such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF
 layer is the secure transport layer, and the mandatory-to-implement
 secure transport is Secure Shell (SSH) [RFC6242]. The lowest
 RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS [RFC5246].

 The one new data node introduced in this YANG module may be
 considered sensitive or vulnerable in some network environments. It
 is thus important to control read access (e.g., via get, get-config,
 or notification) to this data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 Container: "/subscriptions"

 o "uri": leaf will show where subscribed resources might be located
 on a publisher. Access control must be set so that only someone
 with proper access permissions, and perhaps even HTTP session has
 the ability to access this resource.

10. Acknowledgments

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from: Ambika Prasad Tripathy, Alberto
 Gonzalez Prieto, Susan Hares, Tim Jenkins, Balazs Lengyel, Kent
 Watsen, Michael Scharf, Guangying Zheng, Martin Bjorklund and Qin Wu.

11. References

11.1. Normative References

 [I-D.draft-ietf-netconf-subscribed-notifications]
 Voit, E., Clemm, A., Gonzalez Prieto, A., Tripathy, A.,
 and E. Nilsen-Nygaard, "Custom Subscription to Event
 Streams", draft-ietf-netconf-subscribed-notifications-13
 (work in progress), April 2018.

Voit, et al. Expires April 22, 2019 [Page 11]

Internet-Draft RESTCONF-Notif October 2018

 [I-D.ietf-netconf-yang-push]
 Clemm, A., Voit, E., Gonzalez Prieto, A., Prasad Tripathy,
 A., Nilsen-Nygaard, E., Bierman, A., and B. Lengyel,
 "Subscribing to YANG datastore push updates", March 2017,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-yang-push/>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520,
 DOI 10.17487/RFC6520, February 2012,
 <https://www.rfc-editor.org/info/rfc6520>.

Voit, et al. Expires April 22, 2019 [Page 12]

Internet-Draft RESTCONF-Notif October 2018

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [W3C-20150203]
 "Server-Sent Events, World Wide Web Consortium CR CR-
 eventsource-20121211", February 2015,
 <https://www.w3.org/TR/2015/REC-eventsource-20150203/>.

11.2. Informative References

 [I-D.draft-ietf-netconf-netconf-event-notifications]
 Clemm, Alexander., Voit, Eric., Gonzalez Prieto, Alberto.,
 Nilsen-Nygaard, E., and A. Tripathy, "NETCONF support for
 event notifications", May 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-netconf-event-notifications/>.

 [I-D.draft-ietf-netconf-nmda-restconf]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "RESTCONF Extensions to Support the Network
 Management Datastore Architecture", April 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-nmda-restconf/>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

Voit, et al. Expires April 22, 2019 [Page 13]

Internet-Draft RESTCONF-Notif October 2018

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

 [RFC8347] Liu, X., Ed., Kyparlis, A., Parikh, R., Lindem, A., and M.
 Zhang, "A YANG Data Model for the Virtual Router
 Redundancy Protocol (VRRP)", RFC 8347,
 DOI 10.17487/RFC8347, March 2018,
 <https://www.rfc-editor.org/info/rfc8347>.

 [XPATH] Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

Appendix A. Examples

 This section is non-normative. To allow easy comparison, this
 section mirrors the functional examples shown with NETCONF over XML
 within [I-D.draft-ietf-netconf-netconf-event-notifications]. In
 addition, HTTP2 vs HTTP1.1 headers are not shown as the contents of
 the JSON encoded objects are identical within.

A.1. Dynamic Subscriptions

A.1.1. Establishing Dynamic Subscriptions

 The following figure shows two successful "establish-subscription"
 RPC requests as per
 [I-D.draft-ietf-netconf-subscribed-notifications]. The first request
 is given a subscription identifier of 22, the second, an identifier
 of 23.

Voit, et al. Expires April 22, 2019 [Page 14]

Internet-Draft RESTCONF-Notif October 2018

 +------------+ +-----------+
 | Subscriber | | Publisher |
 +------------+ +-----------+
 | |
 |establish-subscription |
 |------------------------------>| (a)
 | HTTP 200 OK, id#22, URI#1 |
 |<------------------------------| (b)
 |GET (URI#1) |
 |------------------------------>| (c)
 | HTTP 200 OK,notif-mesg (id#22)|
 |<------------------------------|
 | |
 | |
 |establish-subscription |
 |------------------------------>|
 | HTTP 200 OK, id#23, URI#2|
 |<------------------------------|
 |GET (URI#2) |
 |------------------------------>|
 | |
 | |
 | notif-mesg (id#22)|
 |<------------------------------|
 | HTTP 200 OK,notif-mesg (id#23)|
 |<------------------------------|
 | |

 Figure 2: Multiple subscriptions over RESTCONF/HTTP

 To provide examples of the information being transported, example
 messages for interactions in Figure 2 are detailed below:

POST /restconf/operations/ietf-subscribed-notifications:establish-subscription

{
 "ietf-subscribed-notifications:input": {
 "stream": "NETCONF",
 "stream-xpath-filter": "/example-module:foo/",
 "dscp": "10"
 }
}

 Figure 3: establish-subscription request (a)

 As publisher was able to fully satisfy the request, the publisher
 sends the subscription identifier of the accepted subscription, and
 the URI:

Voit, et al. Expires April 22, 2019 [Page 15]

Internet-Draft RESTCONF-Notif October 2018

 HTTP status code - 200

 {
 "id": "22",
 "uri": "https://example.com/restconf/subscriptions/22"
 }

 Figure 4: establish-subscription success (b)

 Upon receipt of the successful response, the subscriber does a GET
 the provided URI to start the flow of notification messages. When
 the publisher receives this, the subscription is moved to the active
 state (c).

 GET /restconf/subscriptions/22

 Figure 5: establish-subscription subsequent POST

 While not shown in Figure 2, if the publisher had not been able to
 fully satisfy the request, or subscriber has no authorization to
 establish the subscription, the publisher would have sent an RPC
 error response. For instance, if the "dscp" value of 10 asserted by
 the subscriber in Figure 3 proved unacceptable, the publisher may
 have returned:

 HTTP status code - 406

 { "ietf-restconf:errors" : {
 "error" : [
 {
 "error-type": "application",
 "error-tag": "operation-failed",
 "error-severity": "error",
 "error-app-tag":
 "ietf-subscribed-notifications:dscp-unavailable"
 }
]
 }
 }

 Figure 6: an unsuccessful establish subscription

 The subscriber can use this information in future attempts to
 establish a subscription.

Voit, et al. Expires April 22, 2019 [Page 16]

Internet-Draft RESTCONF-Notif October 2018

A.1.2. Modifying Dynamic Subscriptions

 An existing subscription may be modified. The following exchange
 shows a negotiation of such a modification via several exchanges
 between a subscriber and a publisher. This negotiation consists of a
 failed RPC modification request/response, followed by a successful
 one.

 +------------+ +-----------+
 | Subscriber | | Publisher |
 +------------+ +-----------+
 | |
 | notification message (id#23)|
 |<-----------------------------|
 | |
 |modify-subscription (id#23) |
 |----------------------------->| (d)
 | HTTP 406 error (with hint)|
 |<-----------------------------| (e)
 | |
 |modify-subscription (id#23) |
 |----------------------------->|
 | HTTP 200 OK |
 |<-----------------------------|
 | |
 | notif-mesg (id#23)|
 |<-----------------------------|
 | |

 Figure 7: Interaction model for successful subscription modification

 If the subscription being modified in Figure 7 is a datastore
 subscription as per [I-D.ietf-netconf-yang-push], the modification
 request made in (d) may look like that shown in Figure 8. As can be
 seen, the modifications being attempted are the application of a new
 xpath filter as well as the setting of a new periodic time interval.

Voit, et al. Expires April 22, 2019 [Page 17]

Internet-Draft RESTCONF-Notif October 2018

POST /restconf/operations/ietf-subscribed-notifications:modify-subscription

{
 "ietf-subscribed-notifications:input": {
 "id": "23",
 "ietf-yang-push:datastore-xpath-filter": "/example-module:foo/example-module
:bar",
 "ietf-yang-push:periodic": {
 "ietf-yang-push:period": "500"
 }
 }
}

 Figure 8: Subscription modification request (c)

 If the publisher can satisfy both changes, the publisher sends a
 positive result for the RPC. If the publisher cannot satisfy either
 of the proposed changes, the publisher sends an RPC error response
 (e). The following is an example RPC error response for (e) which
 includes a hint. This hint is an alternative time period value which
 might have resulted in a successful modification:

 HTTP status code - 406

 { "ietf-restconf:errors" : {
 "error" : [
 "error-type": "application",
 "error-tag": "operation-failed",
 "error-severity": "error",
 "error-app-tag": "ietf-yang-push:period-unsupported",
 "error-info": {
 "ietf-yang-push":
 "modify-subscription-datastore-error-info": {
 "period-hint": "3000"
 }
 }
]
 }
 }

 Figure 9: Modify subscription failure with Hint (e)

A.1.3. Deleting Dynamic Subscriptions

 The following demonstrates deleting a subscription. This
 subscription may have been to either a stream or a datastore.

Voit, et al. Expires April 22, 2019 [Page 18]

Internet-Draft RESTCONF-Notif October 2018

POST /restconf/operations/ietf-subscribed-notifications:delete-subscription

{
 "delete-subscription": {
 "id": "22"
 }
}

 Figure 10: Delete subscription

 If the publisher can satisfy the request, the publisher replies with
 success to the RPC request.

 If the publisher cannot satisfy the request, the publisher sends an
 error-rpc element indicating the modification didn’t work. Figure 11
 shows a valid response for existing valid subscription identifier,
 but that subscription identifier was created on a different transport
 session:

 HTTP status code - 406

 {
 "ietf-restconf:errors" : {
 "error" : [
 "error-type": "application",
 "error-tag": "operation-failed",
 "error-severity": "error",
 "error-app-tag":
 "ietf-subscribed-notifications:no-such-subscription"
]
 }
 }

 Figure 11: Unsuccessful delete subscription

A.2. Subscription State Notifications

 A publisher will send subscription state notifications according to
 the definitions within
 [I-D.draft-ietf-netconf-subscribed-notifications]).

A.2.1. subscription-modified

 A "subscription-modified" encoded in JSON would look like:

Voit, et al. Expires April 22, 2019 [Page 19]

Internet-Draft RESTCONF-Notif October 2018

 {
 "ietf-restconf:notification" : {
 "eventTime": "2007-09-01T10:00:00Z",
 "ietf-subscribed-notifications:subscription-modified": {
 "id": "39",
 "uri": "https://example.com/restconf/subscriptions/22"
 "stream-xpath-filter": "/example-module:foo",
 "stream": {
 "ietf-netconf-subscribed-notifications" : "NETCONF"
 }
 }
 }
 }

 Figure 12: subscription-modified subscription state notification

A.2.2. subscription-completed, subscription-resumed, and replay-
 complete

 A "subscription-completed" would look like:

 {
 "ietf-restconf:notification" : {
 "eventTime": "2007-09-01T10:00:00Z",
 "ietf-subscribed-notifications:subscription-completed": {
 "id": "39",
 }
 }
 }

 Figure 13: subscription-completed notification in JSON

 The "subscription-resumed" and "replay-complete" are virtually
 identical, with "subscription-completed" simply being replaced by
 "subscription-resumed" and "replay-complete".

A.2.3. subscription-terminated and subscription-suspended

 A "subscription-terminated" would look like:

Voit, et al. Expires April 22, 2019 [Page 20]

Internet-Draft RESTCONF-Notif October 2018

 {
 "ietf-restconf:notification" : {
 "eventTime": "2007-09-01T10:00:00Z",
 "ietf-subscribed-notifications:subscription-terminated": {
 "id": "39",
 "error-id": "suspension-timeout"
 }
 }
 }

 Figure 14: subscription-terminated subscription state notification

 The "subscription-suspended" is virtually identical, with
 "subscription-terminated" simply being replaced by "subscription-
 suspended".

A.3. Filter Example

 This section provides an example which illustrate the method of
 filtering event record contents. The example is based on the YANG
 notification "vrrp-protocol-error-event" as defined per the ietf-
 vrrp.yang module within [RFC8347]. Event records based on this
 specification which are generated by the publisher might appear as:

 data: {
 data: "ietf-restconf:notification" : {
 data: "eventTime" : "2018-09-14T08:22:33.44Z",
 data: "ietf-vrrp:vrrp-protocol-error-event" : {
 data: "protocol-error-reason" : "checksum-error"
 data: }
 data: }
 data: }

 Figure 15: RFC 8347 (VRRP) - Example Notification

 Suppose a subscriber wanted to establish a subscription which only
 passes instances of event records where there is a "checksum-error"
 as part of a VRRP protocol event. Also assume the publisher places
 such event records into the NETCONF stream. To get a continuous
 series of matching event records, the subscriber might request the
 application of an XPath filter against the NETCONF stream. An
 "establish-subscription" RPC to meet this objective might be:

Voit, et al. Expires April 22, 2019 [Page 21]

Internet-Draft RESTCONF-Notif October 2018

POST /restconf/operations/ietf-subscribed-notifications:establish-subscription
{
 "ietf-subscribed-notifications:input": {
 "stream": "NETCONF",
 "stream-xpath-filter": "/ietf-vrrp:vrrp-protocol-error-event[protocol-erro
r-reason=’checksum-error’]/",
 }
}

 Figure 16: Establishing a subscription error reason via XPath

 For more examples of XPath filters, see [XPATH].

 Suppose the "establish-subscription" in Figure 16 was accepted. And
 suppose later a subscriber decided they wanted to broaden this
 subscription cover to all VRRP protocol events (i.e., not just those
 with a "checksum error"). The subscriber might attempt to modify the
 subscription in a way which replaces the XPath filter with a subtree
 filter which sends all VRRP protocol events to a subscriber. Such a
 "modify-subscription" RPC might look like:

POST /restconf/operations/ietf-subscribed-notifications:modify-subscription
{
 "ietf-subscribed-notifications:input": {
 "stream": "NETCONF",
 "stream-subtree-filter": {
 "/ietf-vrrp:vrrp-protocol-error-event" : {}
 }
 }
}

 Figure 17

 For more examples of subtree filters, see [RFC6241], section 6.4.

Appendix B. Changes between revisions

 (To be removed by RFC editor prior to publication)

 v08 - v09

 o Addressed comments received during WGLC.

 v07 - v08

 o Aligned with RESTCONF mechanism.

 o YANG model: removed augment of subscription-started, added
 restconf transport.

Voit, et al. Expires April 22, 2019 [Page 22]

Internet-Draft RESTCONF-Notif October 2018

 o Tweaked Appendix A.1 to match draft-ietf-netconf-netconf-event-
 notifications-13.

 o Added Appendix A.3 for filter example.

 v06 - v07

 o Removed configured subscriptions.

 o Subscription identifier renamed to id.

 v05 - v06

 o JSON examples updated by Reshad.

 v04 - v05

 o Error mechanisms updated to match embedded RESTCONF mechanisms

 o Restructured format and sections of document.

 o Added a YANG data model for HTTP specific parameters.

 o Mirrored the examples from the NETCONF transport draft to allow
 easy comparison.

 v03 - v04

 o Draft not fully synched to new version of subscribed-notifications
 yet.

 o References updated

 v02 - v03

 o Event notification reframed to notification message.

 o Tweaks to wording/capitalization/format.

 v01 - v02

 o Removed sections now redundant with
 [I-D.draft-ietf-netconf-subscribed-notifications] and
 [I-D.ietf-netconf-yang-push] such as: mechanisms for subscription
 maintenance, terminology definitions, stream discovery.

 o 3rd party subscriptions are out-of-scope.

Voit, et al. Expires April 22, 2019 [Page 23]

Internet-Draft RESTCONF-Notif October 2018

 o SSE only used with RESTCONF and HTTP1.1 dynamic subscriptions

 o Timeframes for event tagging are self-defined.

 o Clean-up of wording, references to terminology, section numbers.

 v00 - v01

 o Removed the ability for more than one subscription to go to a
 single HTTP2 stream.

 o Updated call flows. Extensively.

 o SSE only used with RESTCONF and HTTP1.1 dynamic subscriptions

 o HTTP is not used to determine that a receiver has gone silent and
 is not Receiving Event Notifications

 o Many clean-ups of wording and terminology

Authors’ Addresses

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Reshad Rahman
 Cisco Systems

 Email: rrahman@cisco.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Alexander Clemm
 Huawei

 Email: ludwig@clemm.org

Voit, et al. Expires April 22, 2019 [Page 24]

Internet-Draft RESTCONF-Notif October 2018

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

Voit, et al. Expires April 22, 2019 [Page 25]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track G. Wu
Expires: April 25, 2019 Cisco Systems
 L. Xia
 Huawei
 October 22, 2018

 YANG Groupings for SSH Clients and SSH Servers
 draft-ietf-netconf-ssh-client-server-08

Abstract

 This document defines three YANG modules: the first defines groupings
 for a generic SSH client, the second defines groupings for a generic
 SSH server, and the third defines common identities and groupings
 used by both the client and the server. It is intended that these
 groupings will be used by applications using the SSH protocol.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o I-D.ietf-netconf-trust-anchors

 o I-D.ietf-netconf-keystore

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

 o "YYYY" --> the assigned RFC value for I-D.ietf-netconf-trust-
 anchors

 o "ZZZZ" --> the assigned RFC value for I-D.ietf-netconf-keystore

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

Watsen, et al. Expires April 25, 2019 [Page 1]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix A. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. The SSH Client Model . 4
 3.1. Tree Diagram . 4
 3.2. Example Usage . 5
 3.3. YANG Module . 8
 4. The SSH Server Model . 12
 4.1. Tree Diagram . 12

Watsen, et al. Expires April 25, 2019 [Page 2]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 4.2. Example Usage . 12
 4.3. YANG Module . 16
 5. The SSH Common Model . 20
 5.1. Tree Diagram . 22
 5.2. Example Usage . 23
 5.3. YANG Module . 23
 6. Security Considerations 33
 7. IANA Considerations . 34
 7.1. The IETF XML Registry 34
 7.2. The YANG Module Names Registry 34
 8. References . 35
 8.1. Normative References 35
 8.2. Informative References 36
 Appendix A. Change Log . 38
 A.1. 00 to 01 . 38
 A.2. 01 to 02 . 38
 A.3. 02 to 03 . 38
 A.4. 03 to 04 . 38
 A.5. 04 to 05 . 39
 A.6. 05 to 06 . 39
 A.7. 06 to 07 . 39
 A.8. 07 to 08 . 39
 Acknowledgements . 39
 Authors’ Addresses . 40

1. Introduction

 This document defines three YANG 1.1 [RFC7950] modules: the first
 defines a grouping for a generic SSH client, the second defines a
 grouping for a generic SSH server, and the third defines identities
 and groupings common to both the client and the server. It is
 intended that these groupings will be used by applications using the
 SSH protocol [RFC4252], [RFC4253], and [RFC4254]. For instance,
 these groupings could be used to help define the data model for an
 OpenSSH [OPENSSH] server or a NETCONF over SSH [RFC6242] based
 server.

 The client and server YANG modules in this document each define one
 grouping, which is focused on just SSH-specific configuration, and
 specifically avoids any transport-level configuration, such as what
 ports to listen on or connect to. This affords applications the
 opportunity to define their own strategy for how the underlying TCP
 connection is established. For instance, applications supporting
 NETCONF Call Home [RFC8071] could use the "ssh-server-grouping"
 grouping for the SSH parts it provides, while adding data nodes for
 the TCP-level call-home configuration.

Watsen, et al. Expires April 25, 2019 [Page 3]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 The modules defined in this document uses groupings defined in
 [I-D.ietf-netconf-keystore] enabling keys to be either locally
 defined or a reference to globally configured values.

 The modules defined in this document optionally support [RFC6187]
 enabling X.509v3 certificate based host keys and public keys.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. The SSH Client Model

3.1. Tree Diagram

 This section provides a tree diagram [RFC8340] for the "ietf-ssh-
 client" module that does not have groupings expanded.

Watsen, et al. Expires April 25, 2019 [Page 4]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 module: ietf-ssh-client

 grouping transport-params-grouping
 +-- transport-params {ssh-client-transport-params-config}?
 +---u transport-params-grouping
 grouping client-identity-grouping
 +-- client-identity
 +-- username? string
 +-- (auth-type)
 +--:(password)
 | +-- password? string
 +--:(public-key)
 | +-- public-key
 | +---u client-identity-grouping
 +--:(certificate)
 +-- certificate {sshcmn:ssh-x509-certs}?
 +---u client-identity-grouping
 grouping ssh-client-grouping
 +---u client-identity-grouping
 +---u server-auth-grouping
 +---u transport-params-grouping
 grouping server-auth-grouping
 +-- server-auth
 +-- pinned-ssh-host-keys? ta:pinned-host-keys-ref
 | {ta:ssh-host-keys}?
 +-- pinned-ca-certs? ta:pinned-certificates-ref
 | {sshcmn:ssh-x509-certs,ta:x509-certificates}?
 +-- pinned-server-certs? ta:pinned-certificates-ref
 {sshcmn:ssh-x509-certs,ta:x509-certificates}?

3.2. Example Usage

 This section presents two examples showing the ssh-client-grouping
 populated with some data. These examples are effectively the same
 except the first configures the client identity using a local key
 while the second uses a key configured in a keystore. Both examples
 are consistent with the examples presented in Section 3 of
 [I-D.ietf-netconf-trust-anchors] and Section 3.2 of
 [I-D.ietf-netconf-keystore].

 The following example configures the client identity using a local
 key:

Watsen, et al. Expires April 25, 2019 [Page 5]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 [Note: ’\’ line wrapping for formatting only]

 <ssh-client
 xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-client"
 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">

 <!-- how this client will authenticate itself to the server -->
 <client-identity>
 <username>foobar</username>
 <public-key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-t\
 ypes">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 </public-key>
 </client-identity>

 <!-- which host-keys will this client trust -->
 <server-auth>
 <pinned-ssh-host-keys>explicitly-trusted-ssh-host-keys</pinned-s\
 sh-host-keys>
 </server-auth>

 <transport-params>
 <host-key>
 <host-key-alg>algs:ssh-rsa</host-key-alg>
 </host-key>
 <key-exchange>
 <key-exchange-alg>
 algs:diffie-hellman-group-exchange-sha256
 </key-exchange-alg>
 </key-exchange>
 <encryption>
 <encryption-alg>algs:aes256-ctr</encryption-alg>
 <encryption-alg>algs:aes192-ctr</encryption-alg>
 <encryption-alg>algs:aes128-ctr</encryption-alg>
 <encryption-alg>algs:aes256-cbc</encryption-alg>
 <encryption-alg>algs:aes192-cbc</encryption-alg>
 <encryption-alg>algs:aes128-cbc</encryption-alg>
 </encryption>
 <mac>
 <mac-alg>algs:hmac-sha2-256</mac-alg>
 <mac-alg>algs:hmac-sha2-512</mac-alg>
 </mac>
 </transport-params>

 </ssh-client>

Watsen, et al. Expires April 25, 2019 [Page 6]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 The following example configures the client identity using a key from
 the keystore:

 [Note: ’\’ line wrapping for formatting only]

 <ssh-client
 xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-client"
 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">

 <!-- how this client will authenticate itself to the server -->
 <client-identity>
 <username>foobar</username>
 <public-key>
 <reference>ex-rsa-key</reference>
 </public-key>
 </client-identity>

 <!-- which host-keys will this client trust -->
 <server-auth>
 <pinned-ssh-host-keys>explicitly-trusted-ssh-host-keys</pinned-s\
 sh-host-keys>
 </server-auth>

 <transport-params>
 <host-key>
 <host-key-alg>algs:ssh-rsa</host-key-alg>
 </host-key>
 <key-exchange>
 <key-exchange-alg>
 algs:diffie-hellman-group-exchange-sha256
 </key-exchange-alg>
 </key-exchange>
 <encryption>
 <encryption-alg>algs:aes256-ctr</encryption-alg>
 <encryption-alg>algs:aes192-ctr</encryption-alg>
 <encryption-alg>algs:aes128-ctr</encryption-alg>
 <encryption-alg>algs:aes256-cbc</encryption-alg>
 <encryption-alg>algs:aes192-cbc</encryption-alg>
 <encryption-alg>algs:aes128-cbc</encryption-alg>
 </encryption>
 <mac>
 <mac-alg>algs:hmac-sha2-256</mac-alg>
 <mac-alg>algs:hmac-sha2-512</mac-alg>
 </mac>
 </transport-params>

 </ssh-client>

Watsen, et al. Expires April 25, 2019 [Page 7]

Internet-Draft Groupings for SSH Clients and Servers October 2018

3.3. YANG Module

 This YANG module has normative references to
 [I-D.ietf-netconf-trust-anchors], and [I-D.ietf-netconf-keystore].

 <CODE BEGINS> file "ietf-ssh-client@2018-10-22.yang"
 module ietf-ssh-client {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-ssh-client";
 prefix "sshc";

 import ietf-ssh-common {
 prefix sshcmn;
 revision-date 2018-10-22; // stable grouping definitions
 reference
 "RFC XXXX: YANG Groupings for SSH Clients and SSH Servers";
 }

 import ietf-trust-anchors {
 prefix ta;
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }

 import ietf-keystore {
 prefix ks;
 reference
 "RFC ZZZZ:
 YANG Data Model for a Centralized Keystore Mechanism";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description
 "This module defines a reusable grouping for a SSH client that

Watsen, et al. Expires April 25, 2019 [Page 8]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 can be used as a basis for specific SSH client instances.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2018-10-22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for SSH Clients and SSH Servers";
 }

 // features

 feature ssh-client-transport-params-config {
 description
 "SSH transport layer parameters are configurable on an SSH
 client.";
 }

 // groupings

 grouping ssh-client-grouping {
 description
 "A reusable grouping for configuring a SSH client without
 any consideration for how an underlying TCP session is
 established.";
 uses client-identity-grouping;
 uses server-auth-grouping;
 uses transport-params-grouping;
 }

 grouping client-identity-grouping {
 description
 "A reusable grouping for configuring a SSH client identity.";
 container client-identity {
 description
 "The credentials used by the client to authenticate to

Watsen, et al. Expires April 25, 2019 [Page 9]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 the SSH server.";
 leaf username {
 type string;
 description
 "The username of this user. This will be the username
 used, for instance, to log into an SSH server.";
 }
 choice auth-type {
 mandatory true;
 description
 "The authentication type.";
 leaf password {
 type string;
 description
 "A password to be used for client authentication.";
 }
 container public-key {
 uses ks:local-or-keystore-asymmetric-key-grouping;
 description
 "A locally-defined or referenced asymmetric key pair
 to be used for client authentication.";
 reference
 "RFC ZZZZ:
 YANG Data Model for a Centralized Keystore Mechanism";
 }
 container certificate {
 if-feature sshcmn:ssh-x509-certs;
 uses ks:local-or-keystore-end-entity-cert-with-key-grouping;
 description
 "A locally-defined or referenced certificate
 to be used for client authentication.";
 reference
 "RFC ZZZZ
 YANG Data Model for a Centralized Keystore Mechanism";
 }
 } // end auth-type
 } // end client-identity
 } // end client-identity-grouping

 grouping server-auth-grouping {
 description
 "A reusable grouping for configuring SSH server
 authentication.";
 container server-auth {
 must ’pinned-ssh-host-keys or pinned-ca-certs or ’
 + ’pinned-server-certs’;
 description
 "Trusted server identities.";

Watsen, et al. Expires April 25, 2019 [Page 10]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 leaf pinned-ssh-host-keys {
 if-feature "ta:ssh-host-keys";
 type ta:pinned-host-keys-ref;
 description
 "A reference to a list of SSH host keys used by the
 SSH client to authenticate SSH server host keys.
 A server host key is authenticated if it is an exact
 match to a configured SSH host key.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }
 leaf pinned-ca-certs {
 if-feature sshcmn:ssh-x509-certs;
 if-feature "ta:x509-certificates";
 type ta:pinned-certificates-ref;
 description
 "A reference to a list of certificate authority (CA)
 certificates used by the SSH client to authenticate
 SSH server certificates. A server certificate is
 authenticated if it has a valid chain of trust to
 a configured CA certificate.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }

 leaf pinned-server-certs {
 if-feature sshcmn:ssh-x509-certs;
 if-feature "ta:x509-certificates";
 type ta:pinned-certificates-ref;
 description
 "A reference to a list of server certificates used by
 the SSH client to authenticate SSH server certificates.
 A server certificate is authenticated if it is an
 exact match to a configured server certificate.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }
 } // end server-auth
 } // end server-auth-grouping

 grouping transport-params-grouping {
 description
 "A reusable grouping for configuring a SSH transport
 parameters.";
 container transport-params {
 if-feature ssh-client-transport-params-config;
 description
 "Configurable parameters of the SSH transport layer.";

Watsen, et al. Expires April 25, 2019 [Page 11]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 uses sshcmn:transport-params-grouping;
 }
 } // end transport-params-grouping

 }
 <CODE ENDS>

4. The SSH Server Model

4.1. Tree Diagram

 This section provides a tree diagram [RFC8340] for the "ietf-ssh-
 server" module that does not have groupings expanded.

 module: ietf-ssh-server

 grouping transport-params-grouping
 +-- transport-params {ssh-server-transport-params-config}?
 +---u transport-params-grouping
 grouping client-auth-grouping
 +-- client-cert-auth {sshcmn:ssh-x509-certs}?
 +-- pinned-ca-certs? ta:pinned-certificates-ref
 | {ta:x509-certificates}?
 +-- pinned-client-certs? ta:pinned-certificates-ref
 {ta:x509-certificates}?
 grouping server-identity-grouping
 +-- server-identity
 +-- host-key* [name]
 +-- name? string
 +-- (host-key-type)
 +--:(public-key)
 | +-- public-key
 | +---u server-identity-grouping
 +--:(certificate)
 +-- certificate {sshcmn:ssh-x509-certs}?
 +---u server-identity-grouping
 grouping ssh-server-grouping
 +---u server-identity-grouping
 +---u client-auth-grouping
 +---u transport-params-grouping

4.2. Example Usage

 This section presents two examples showing the ssh-server-grouping
 populated with some data. These examples are effectively the same
 except the first configures the server identity using a local key
 while the second uses a key configured in a keystore. Both examples
 are consistent with the examples presented in Section 3 of

Watsen, et al. Expires April 25, 2019 [Page 12]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 [I-D.ietf-netconf-trust-anchors] and Section 3.2 of
 [I-D.ietf-netconf-keystore].

 The following example configures the server identity using a local
 key:

 [Note: ’\’ line wrapping for formatting only]

 <ssh-server xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-server"
 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">

 <!-- which host-keys will this SSH server present -->
 <server-identity>
 <host-key>
 <name>deployment-specific-certificate</name>
 <public-key>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto\
 -types">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 </public-key>
 </host-key>
 </server-identity>

 <!-- which client-certs will this SSH server trust -->
 <client-cert-auth>
 <pinned-ca-certs>explicitly-trusted-client-ca-certs</pinned-ca-c\
 erts>
 <pinned-client-certs>explicitly-trusted-client-certs</pinned-cli\
 ent-certs>
 </client-cert-auth>

 <transport-params>
 <host-key>
 <host-key-alg>algs:ssh-rsa</host-key-alg>
 </host-key>
 <key-exchange>
 <key-exchange-alg>
 algs:diffie-hellman-group-exchange-sha256
 </key-exchange-alg>
 </key-exchange>
 <encryption>
 <encryption-alg>algs:aes256-ctr</encryption-alg>
 <encryption-alg>algs:aes192-ctr</encryption-alg>
 <encryption-alg>algs:aes128-ctr</encryption-alg>
 <encryption-alg>algs:aes256-cbc</encryption-alg>
 <encryption-alg>algs:aes192-cbc</encryption-alg>

Watsen, et al. Expires April 25, 2019 [Page 13]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 <encryption-alg>algs:aes128-cbc</encryption-alg>
 </encryption>
 <mac>
 <mac-alg>algs:hmac-sha2-256</mac-alg>
 <mac-alg>algs:hmac-sha2-512</mac-alg>
 </mac>
 </transport-params>

 </ssh-server>

 The following example configures the server identity using a key from
 the keystore:

Watsen, et al. Expires April 25, 2019 [Page 14]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 [Note: ’\’ line wrapping for formatting only]

 <ssh-server xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-server"
 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">

 <!-- which host-keys will this SSH server present -->
 <server-identity>
 <host-key>
 <name>deployment-specific-certificate</name>
 <public-key>
 <reference>ex-rsa-key</reference>
 </public-key>
 </host-key>
 </server-identity>

 <!-- which client-certs will this SSH server trust -->
 <client-cert-auth>
 <pinned-ca-certs>explicitly-trusted-client-ca-certs</pinned-ca-c\
 erts>
 <pinned-client-certs>explicitly-trusted-client-certs</pinned-cli\
 ent-certs>
 </client-cert-auth>

 <transport-params>
 <host-key>
 <host-key-alg>algs:ssh-rsa</host-key-alg>
 </host-key>
 <key-exchange>
 <key-exchange-alg>
 algs:diffie-hellman-group-exchange-sha256
 </key-exchange-alg>
 </key-exchange>
 <encryption>
 <encryption-alg>algs:aes256-ctr</encryption-alg>
 <encryption-alg>algs:aes192-ctr</encryption-alg>
 <encryption-alg>algs:aes128-ctr</encryption-alg>
 <encryption-alg>algs:aes256-cbc</encryption-alg>
 <encryption-alg>algs:aes192-cbc</encryption-alg>
 <encryption-alg>algs:aes128-cbc</encryption-alg>
 </encryption>
 <mac>
 <mac-alg>algs:hmac-sha2-256</mac-alg>
 <mac-alg>algs:hmac-sha2-512</mac-alg>
 </mac>
 </transport-params>

 </ssh-server>

Watsen, et al. Expires April 25, 2019 [Page 15]

Internet-Draft Groupings for SSH Clients and Servers October 2018

4.3. YANG Module

 This YANG module has normative references to
 [I-D.ietf-netconf-trust-anchors] and [I-D.ietf-netconf-keystore] and
 informative references to [RFC4253] and [RFC7317].

 <CODE BEGINS> file "ietf-ssh-server@2018-10-22.yang"
 module ietf-ssh-server {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-ssh-server";
 prefix "sshs";

 import ietf-ssh-common {
 prefix sshcmn;
 revision-date 2018-10-22; // stable grouping definitions
 reference
 "RFC XXXX: YANG Groupings for SSH Clients and SSH Servers";
 }

 import ietf-trust-anchors {
 prefix ta;
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }

 import ietf-keystore {
 prefix ks;
 reference
 "RFC ZZZZ:
 YANG Data Model for a Centralized Keystore Mechanism";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description

Watsen, et al. Expires April 25, 2019 [Page 16]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 "This module defines a reusable grouping for a SSH server that
 can be used as a basis for specific SSH server instances.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2018-10-22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for SSH Clients and SSH Servers";
 }

 // features

 feature ssh-server-transport-params-config {
 description
 "SSH transport layer parameters are configurable on an SSH
 server.";
 }

 // groupings

 grouping ssh-server-grouping {
 description
 "A reusable grouping for configuring a SSH server without
 any consideration for how underlying TCP sessions are
 established.";
 uses server-identity-grouping;
 uses client-auth-grouping;
 uses transport-params-grouping;
 }

 grouping server-identity-grouping {
 description
 "A reusable grouping for configuring an SSH server identity.";
 container server-identity {
 description

Watsen, et al. Expires April 25, 2019 [Page 17]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 "The list of host-keys the SSH server will present when
 establishing a SSH connection.";
 list host-key {
 key name;
 min-elements 1;
 ordered-by user;
 description
 "An ordered list of host keys the SSH server will use to
 construct its ordered list of algorithms, when sending
 its SSH_MSG_KEXINIT message, as defined in Section 7.1
 of RFC 4253.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer
 Protocol";
 leaf name {
 type string;
 description
 "An arbitrary name for this host-key";
 }
 choice host-key-type {
 mandatory true;
 description
 "The type of host key being specified";
 container public-key {
 uses ks:local-or-keystore-asymmetric-key-grouping;
 description
 "A locally-defined or referenced asymmetric key pair
 to be used for the SSH server’s host key.";
 reference
 "RFC ZZZZ: YANG Data Model for a Centralized
 Keystore Mechanism";
 }
 container certificate {
 if-feature sshcmn:ssh-x509-certs;
 uses
 ks:local-or-keystore-end-entity-cert-with-key-grouping;
 description
 "A locally-defined or referenced end-entity
 certificate to be used for the SSH server’s
 host key.";
 reference
 "RFC ZZZZ: YANG Data Model for a Centralized
 Keystore Mechanism";
 }
 }
 }
 } // end server-identity
 } // end server-identity-grouping

Watsen, et al. Expires April 25, 2019 [Page 18]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 grouping client-auth-grouping {
 description
 "A reusable grouping for configuring a SSH client
 authentication.";
 container client-cert-auth {
 if-feature sshcmn:ssh-x509-certs;
 description
 "A reference to a list of pinned certificate authority (CA)
 certificates and a reference to a list of pinned client
 certificates.

 Note: password and public-key based client authentication
 are not configured in this YANG module as they are
 expected to be configured by the ietf-system module
 defined in RFC 7317.";
 reference
 "RFC 7317: A YANG Data Model for System Management";
 leaf pinned-ca-certs {
 if-feature "ta:x509-certificates";
 type ta:pinned-certificates-ref;
 description
 "A reference to a list of certificate authority (CA)
 certificates used by the SSH server to authenticate
 SSH client certificates. A client certificate is
 authenticated if it has a valid chain of trust to
 a configured pinned CA certificate.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }
 leaf pinned-client-certs {
 if-feature "ta:x509-certificates";
 type ta:pinned-certificates-ref;
 description
 "A reference to a list of client certificates used by
 the SSH server to authenticate SSH client certificates.
 A clients certificate is authenticated if it is an
 exact match to a configured pinned client certificate.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }
 }
 } // end client-auth-grouping

 grouping transport-params-grouping {
 description
 "A reusable grouping for configuring a SSH transport
 parameters.";
 container transport-params {

Watsen, et al. Expires April 25, 2019 [Page 19]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 if-feature ssh-server-transport-params-config;
 description
 "Configurable parameters of the SSH transport layer.";
 uses sshcmn:transport-params-grouping;
 }
 } // end transport-params-grouping

 }
 <CODE ENDS>

5. The SSH Common Model

 The SSH common model presented in this section contains identities
 and groupings common to both SSH clients and SSH servers. The
 transport-params-grouping can be used to configure the list of SSH
 transport algorithms permitted by the SSH client or SSH server. The
 lists of algorithms are ordered such that, if multiple algorithms are
 permitted by the client, the algorithm that appears first in its list
 that is also permitted by the server is used for the SSH transport
 layer connection. The ability to restrict the the algorithms allowed
 is provided in this grouping for SSH clients and SSH servers that are
 capable of doing so and may serve to make SSH clients and SSH servers
 compliant with security policies.

 [I-D.ietf-netconf-crypto-types] defines six categories of
 cryptographic algorithms (hash-algorithm, symmetric-key-encryption-
 algorithm, mac-algorithm, asymmetric-key-encryption-algorithm,
 signature-algorithm, key-negotiation-algorithm) and lists several
 widely accepted algorithms for each of them. The SSH client and
 server models use one or more of these algorithms. The SSH common
 model includes four parameters for configuring its permitted SSH
 algorithms, which are: host-key-alg, key-exchange-alg, encryption-alg
 and mac-alg. The following tables are provided, in part, to define
 the subset of algorithms defined in the crypto-types model used by
 SSH and, in part, to ensure compatibility of configured SSH
 cryptographic parameters for configuring its permitted SSH algorithms
 ("sshcmn" representing SSH common model, and "ct" representing
 crypto-types model which the SSH client/server model is based on):

Watsen, et al. Expires April 25, 2019 [Page 20]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 +-------------------------------+-------------------------------+
 | sshcmn:host-key-alg | ct:signature-algorithm |
 +-------------------------------+-------------------------------+
 | dsa-sha1 | dsa-sha1 |
 | rsa-pkcs1-sha1 | rsa-pkcs1-sha1 |
 | rsa-pkcs1-sha256 | rsa-pkcs1-sha256 |
 | rsa-pkcs1-sha512 | rsa-pkcs1-sha512 |
 | ecdsa-secp256r1-sha256 | ecdsa-secp256r1-sha256 |
 | ecdsa-secp384r1-sha384 | ecdsa-secp384r1-sha384 |
 | ecdsa-secp521r1-sha512 | ecdsa-secp521r1-sha512 |
 | x509v3-rsa-pkcs1-sha1 | x509v3-rsa-pkcs1-sha1 |
 | x509v3-rsa2048-pkcs1-sha256 | x509v3-rsa2048-pkcs1-sha1 |
 | x509v3-ecdsa-secp256r1-sha256 | x509v3-ecdsa-secp256r1-sha256 |
 | x509v3-ecdsa-secp384r1-sha384 | x509v3-ecdsa-secp384r1-sha384 |
 | x509v3-ecdsa-secp521r1-sha512 | x509v3-ecdsa-secp521r1-sha512 |
 +-------------------------------+-------------------------------+

 Table 1 The SSH Host-key-alg Compatibility Matrix

 +-------------------------------+-------------------------------+
 | sshcmn:key-exchange-alg | ct:key-negotiation-algorithm |
 +-------------------------------+-------------------------------+
 | diffie-hellman-group14-sha1 | diffie-hellman-group14-sha1 |
 | diffie-hellman-group14-sha256 | diffie-hellman-group14-sha256 |
 | diffie-hellman-group15-sha512 | diffie-hellman-group15-sha512 |
 | diffie-hellman-group16-sha512 | diffie-hellman-group16-sha512 |
 | diffie-hellman-group17-sha512 | diffie-hellman-group17-sha512 |
 | diffie-hellman-group18-sha512 | diffie-hellman-group18-sha512 |
 | ecdh-sha2-secp256r1 | ecdh-sha2-secp256r1 |
 | ecdh-sha2-secp384r1 | ecdh-sha2-secp384r1 |
 +-------------------------------+-------------------------------+

 Table 2 The SSH Key-exchange-alg Compatibility Matrix

 +-----------------------+---------------------------------------+
 | sshcmn:encryption-alg | ct:symmetric-key-encryption-algorithm |
 +-----------------------+---------------------------------------+
 | aes-128-cbc | aes-128-cbc |
 | aes-192-cbc | aes-192-cbc |
 | aes-256-cbc | aes-256-cbc |
 | aes-128-ctr | aes-128-ctr |
 | aes-192-ctr | aes-192-ctr |
 | aes-256-ctr | aes-256-ctr |
 +-----------------------+---------------------------------------+

 Table 3 The SSH Encryption-alg Compatibility Matrix

Watsen, et al. Expires April 25, 2019 [Page 21]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 +----------------+-------------------+
 | sshcmn:mac-alg | ct:mac-algorithm |
 +----------------+-------------------+
 | hmac-sha1 | hmac-sha1 |
 | hmac-sha1-96 | hmac-sha1-96 |
 | hmac-sha2-256 | hmac-sha2-256 |
 | hmac-sha2-512 | hmac-sha2-512 |
 +----------------+-------------------+

 Table 4 The SSH Mac-alg Compatibility Matrix

 As is seen in the tables above, the names of the "sshcmn" algorithms
 are all identical to the names of algorithms defined in
 [I-D.ietf-netconf-crypto-types]. While appearing to be redundant, it
 is important to realize that not all the algorithms defined in
 [I-D.ietf-netconf-crypto-types] are supported by SSH. That is, the
 algorithms supported by SSH are a subset of the algorithms defined in
 [I-D.ietf-netconf-crypto-types]. The algorithms used by SSH are
 redefined in this document in order to constrain the algorithms that
 may be selected to just the ones used by SSH.

 Features are defined for algorithms that are OPTIONAL or are not
 widely supported by popular implementations. Note that the list of
 algorithms is not exhaustive. As well, some algorithms that are
 REQUIRED by [RFC4253] are missing, notably "ssh-dss" and "diffie-
 hellman-group1-sha1" due to their weak security and there being
 alternatives that are widely supported.

5.1. Tree Diagram

 The following tree diagram [RFC8340] provides an overview of the data
 model for the "ietf-ssh-common" module.

 module: ietf-ssh-common

 grouping transport-params-grouping
 +-- host-key
 | +-- host-key-alg* identityref
 +-- key-exchange
 | +-- key-exchange-alg* identityref
 +-- encryption
 | +-- encryption-alg* identityref
 +-- mac
 +-- mac-alg* identityref

Watsen, et al. Expires April 25, 2019 [Page 22]

Internet-Draft Groupings for SSH Clients and Servers October 2018

5.2. Example Usage

 This following example illustrates how the transport-params-grouping
 appears when populated with some data.

 <transport-params
 xmlns="urn:ietf:params:xml:ns:yang:ietf-ssh-common"
 xmlns:algs="urn:ietf:params:xml:ns:yang:ietf-ssh-common">
 <host-key>
 <host-key-alg>algs:x509v3-rsa2048-sha256</host-key-alg>
 <host-key-alg>algs:ssh-rsa</host-key-alg>
 </host-key>
 <key-exchange>
 <key-exchange-alg>
 algs:diffie-hellman-group-exchange-sha256
 </key-exchange-alg>
 </key-exchange>
 <encryption>
 <encryption-alg>algs:aes256-ctr</encryption-alg>
 <encryption-alg>algs:aes192-ctr</encryption-alg>
 <encryption-alg>algs:aes128-ctr</encryption-alg>
 <encryption-alg>algs:aes256-cbc</encryption-alg>
 <encryption-alg>algs:aes192-cbc</encryption-alg>
 <encryption-alg>algs:aes128-cbc</encryption-alg>
 </encryption>
 <mac>
 <mac-alg>algs:hmac-sha2-256</mac-alg>
 <mac-alg>algs:hmac-sha2-512</mac-alg>
 </mac>
 </transport-params>

5.3. YANG Module

 This YANG module has normative references to [RFC4253], [RFC4344],
 [RFC4419], [RFC5656], [RFC6187], and [RFC6668].

 <CODE BEGINS> file "ietf-ssh-common@2018-10-22.yang"
 module ietf-ssh-common {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-ssh-common";
 prefix "sshcmn";

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>

Watsen, et al. Expires April 25, 2019 [Page 23]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description
 "This module defines a common features, identities, and
 groupings for Secure Shell (SSH).

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2018-10-22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for SSH Clients and SSH Servers";
 }

 // features

 feature ssh-ecc {
 description
 "Elliptic Curve Cryptography is supported for SSH.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer";
 }

 feature ssh-x509-certs {
 description
 "X.509v3 certificates are supported for SSH per RFC 6187.";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";

Watsen, et al. Expires April 25, 2019 [Page 24]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 }

 feature ssh-dh-group-exchange {
 description
 "Diffie-Hellman Group Exchange is supported for SSH.";
 reference
 "RFC 4419: Diffie-Hellman Group Exchange for the
 Secure Shell (SSH) Transport Layer Protocol";
 }

 feature ssh-ctr {
 description
 "SDCTR encryption mode is supported for SSH.";
 reference
 "RFC 4344: The Secure Shell (SSH) Transport Layer
 Encryption Modes";
 }

 feature ssh-sha2 {
 description
 "The SHA2 family of cryptographic hash functions is
 supported for SSH.";
 reference
 "FIPS PUB 180-4: Secure Hash Standard (SHS)";
 }

 // identities

 identity public-key-alg-base {
 description
 "Base identity used to identify public key algorithms.";
 }

 identity ssh-dss {
 base public-key-alg-base;
 description
 "Digital Signature Algorithm using SHA-1 as the
 hashing algorithm.";
 reference
 "RFC 4253:
 The Secure Shell (SSH) Transport Layer Protocol";
 }

 identity ssh-rsa {
 base public-key-alg-base;
 description
 "RSASSA-PKCS1-v1_5 signature scheme using SHA-1 as the
 hashing algorithm.";

Watsen, et al. Expires April 25, 2019 [Page 25]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 reference
 "RFC 4253:
 The Secure Shell (SSH) Transport Layer Protocol";
 }

 identity ecdsa-sha2-nistp256 {
 base public-key-alg-base;
 if-feature "ssh-ecc and ssh-sha2";
 description
 "Elliptic Curve Digital Signature Algorithm (ECDSA) using the
 nistp256 curve and the SHA2 family of hashing algorithms.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer";
 }

 identity ecdsa-sha2-nistp384 {
 base public-key-alg-base;
 if-feature "ssh-ecc and ssh-sha2";
 description
 "Elliptic Curve Digital Signature Algorithm (ECDSA) using the
 nistp384 curve and the SHA2 family of hashing algorithms.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer";
 }

 identity ecdsa-sha2-nistp521 {
 base public-key-alg-base;
 if-feature "ssh-ecc and ssh-sha2";
 description
 "Elliptic Curve Digital Signature Algorithm (ECDSA) using the
 nistp521 curve and the SHA2 family of hashing algorithms.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer";
 }

 identity x509v3-ssh-rsa {
 base public-key-alg-base;
 if-feature ssh-x509-certs;
 description
 "RSASSA-PKCS1-v1_5 signature scheme using a public key stored
 in an X.509v3 certificate and using SHA-1 as the hashing
 algorithm.";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";

Watsen, et al. Expires April 25, 2019 [Page 26]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 }

 identity x509v3-rsa2048-sha256 {
 base public-key-alg-base;
 if-feature "ssh-x509-certs and ssh-sha2";
 description
 "RSASSA-PKCS1-v1_5 signature scheme using a public key stored
 in an X.509v3 certificate and using SHA-256 as the hashing
 algorithm. RSA keys conveyed using this format MUST have a
 modulus of at least 2048 bits.";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";
 }

 identity x509v3-ecdsa-sha2-nistp256 {
 base public-key-alg-base;
 if-feature "ssh-ecc and ssh-x509-certs and ssh-sha2";
 description
 "Elliptic Curve Digital Signature Algorithm (ECDSA)
 using the nistp256 curve with a public key stored in
 an X.509v3 certificate and using the SHA2 family of
 hashing algorithms.";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";
 }

 identity x509v3-ecdsa-sha2-nistp384 {
 base public-key-alg-base;
 if-feature "ssh-ecc and ssh-x509-certs and ssh-sha2";
 description
 "Elliptic Curve Digital Signature Algorithm (ECDSA)
 using the nistp384 curve with a public key stored in
 an X.509v3 certificate and using the SHA2 family of
 hashing algorithms.";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";
 }

 identity x509v3-ecdsa-sha2-nistp521 {
 base public-key-alg-base;
 if-feature "ssh-ecc and ssh-x509-certs and ssh-sha2";
 description
 "Elliptic Curve Digital Signature Algorithm (ECDSA)
 using the nistp521 curve with a public key stored in
 an X.509v3 certificate and using the SHA2 family of

Watsen, et al. Expires April 25, 2019 [Page 27]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 hashing algorithms.";
 reference
 "RFC 6187: X.509v3 Certificates for Secure Shell
 Authentication";
 }

 identity key-exchange-alg-base {
 description
 "Base identity used to identify key exchange algorithms.";
 }

 identity diffie-hellman-group14-sha1 {
 base key-exchange-alg-base;
 description
 "Diffie-Hellman key exchange with SHA-1 as HASH and
 Oakley Group 14 (2048-bit MODP Group).";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
 }

 identity diffie-hellman-group-exchange-sha1 {
 base key-exchange-alg-base;
 if-feature ssh-dh-group-exchange;
 description
 "Diffie-Hellman Group and Key Exchange with SHA-1 as HASH.";
 reference
 "RFC 4419: Diffie-Hellman Group Exchange for the
 Secure Shell (SSH) Transport Layer Protocol";
 }

 identity diffie-hellman-group-exchange-sha256 {
 base key-exchange-alg-base;
 if-feature "ssh-dh-group-exchange and ssh-sha2";
 description
 "Diffie-Hellman Group and Key Exchange with SHA-256 as HASH.";
 reference
 "RFC 4419: Diffie-Hellman Group Exchange for the
 Secure Shell (SSH) Transport Layer Protocol";
 }

 identity ecdh-sha2-nistp256 {
 base key-exchange-alg-base;
 if-feature "ssh-ecc and ssh-sha2";
 description
 "Elliptic Curve Diffie-Hellman (ECDH) key exchange using the
 nistp256 curve and the SHA2 family of hashing algorithms.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the

Watsen, et al. Expires April 25, 2019 [Page 28]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 Secure Shell Transport Layer";
 }

 identity ecdh-sha2-nistp384 {
 base key-exchange-alg-base;
 if-feature "ssh-ecc and ssh-sha2";
 description
 "Elliptic Curve Diffie-Hellman (ECDH) key exchange using the
 nistp384 curve and the SHA2 family of hashing algorithms.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer";
 }

 identity ecdh-sha2-nistp521 {
 base key-exchange-alg-base;
 if-feature "ssh-ecc and ssh-sha2";
 description
 "Elliptic Curve Diffie-Hellman (ECDH) key exchange using the
 nistp521 curve and the SHA2 family of hashing algorithms.";
 reference
 "RFC 5656: Elliptic Curve Algorithm Integration in the
 Secure Shell Transport Layer";
 }

 identity encryption-alg-base {
 description
 "Base identity used to identify encryption algorithms.";
 }

 identity triple-des-cbc {
 base encryption-alg-base;
 description
 "Three-key 3DES in CBC mode.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
 }

 identity aes128-cbc {
 base encryption-alg-base;
 description
 "AES in CBC mode, with a 128-bit key.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
 }

 identity aes192-cbc {
 base encryption-alg-base;

Watsen, et al. Expires April 25, 2019 [Page 29]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 description
 "AES in CBC mode, with a 192-bit key.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
 }

 identity aes256-cbc {
 base encryption-alg-base;
 description
 "AES in CBC mode, with a 256-bit key.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
 }

 identity aes128-ctr {
 base encryption-alg-base;
 if-feature ssh-ctr;
 description
 "AES in SDCTR mode, with 128-bit key.";
 reference
 "RFC 4344: The Secure Shell (SSH) Transport Layer Encryption
 Modes";
 }

 identity aes192-ctr {
 base encryption-alg-base;
 if-feature ssh-ctr;
 description
 "AES in SDCTR mode, with 192-bit key.";
 reference
 "RFC 4344: The Secure Shell (SSH) Transport Layer Encryption
 Modes";
 }

 identity aes256-ctr {
 base encryption-alg-base;
 if-feature ssh-ctr;
 description
 "AES in SDCTR mode, with 256-bit key.";
 reference
 "RFC 4344: The Secure Shell (SSH) Transport Layer Encryption
 Modes";
 }

 identity mac-alg-base {
 description
 "Base identity used to identify message authentication
 code (MAC) algorithms.";

Watsen, et al. Expires April 25, 2019 [Page 30]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 }

 identity hmac-sha1 {
 base mac-alg-base;
 description
 "HMAC-SHA1";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
 }

 identity hmac-sha2-256 {
 base mac-alg-base;
 if-feature "ssh-sha2";
 description
 "HMAC-SHA2-256";
 reference
 "RFC 6668: SHA-2 Data Integrity Verification for the
 Secure Shell (SSH) Transport Layer Protocol";
 }

 identity hmac-sha2-512 {
 base mac-alg-base;
 if-feature "ssh-sha2";
 description
 "HMAC-SHA2-512";
 reference
 "RFC 6668: SHA-2 Data Integrity Verification for the
 Secure Shell (SSH) Transport Layer Protocol";
 }

 // groupings

 grouping transport-params-grouping {
 description
 "A reusable grouping for SSH transport parameters.";
 reference
 "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol";
 container host-key {
 description
 "Parameters regarding host key.";
 leaf-list host-key-alg {
 type identityref {
 base public-key-alg-base;
 }
 ordered-by user;
 description
 "Acceptable host key algorithms in order of descending
 preference. The configured host key algorithms should

Watsen, et al. Expires April 25, 2019 [Page 31]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 be compatible with the algorithm used by the configured
 private key. Please see Section 5 of RFC XXXX for
 valid combinations.

 If this leaf-list is not configured (has zero elements)
 the acceptable host key algorithms are implementation-
 defined.";
 reference
 "RFC XXXX: YANG Groupings for SSH Clients and SSH Servers";
 }
 }
 container key-exchange {
 description
 "Parameters regarding key exchange.";
 leaf-list key-exchange-alg {
 type identityref {
 base key-exchange-alg-base;
 }
 ordered-by user;
 description
 "Acceptable key exchange algorithms in order of descending
 preference.

 If this leaf-list is not configured (has zero elements)
 the acceptable key exchange algorithms are implementation
 defined.";
 }
 }
 container encryption {
 description
 "Parameters regarding encryption.";
 leaf-list encryption-alg {
 type identityref {
 base encryption-alg-base;
 }
 ordered-by user;
 description
 "Acceptable encryption algorithms in order of descending
 preference.

 If this leaf-list is not configured (has zero elements)
 the acceptable encryption algorithms are implementation
 defined.";
 }
 }
 container mac {
 description
 "Parameters regarding message authentication code (MAC).";

Watsen, et al. Expires April 25, 2019 [Page 32]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 leaf-list mac-alg {
 type identityref {
 base mac-alg-base;
 }
 ordered-by user;
 description
 "Acceptable MAC algorithms in order of descending
 preference.

 If this leaf-list is not configured (has zero elements)
 the acceptable MAC algorithms are implementation-
 defined.";
 }
 }

 } // transport-params-grouping

 }
 <CODE ENDS>

6. Security Considerations

 The YANG modules defined in this document are designed to be accessed
 via YANG based management protocols, such as NETCONF [RFC6241] and
 RESTCONF [RFC8040]. Both of these protocols have mandatory-to-
 implement secure transport layers (e.g., SSH, TLS) with mutual
 authentication.

 The NETCONF access control model (NACM) [RFC8341] provides the means
 to restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

 Since the modules defined in this document define only groupings,
 these considerations are primarily for the designers of other modules
 that use these groupings.

 There are a number of data nodes defined in the YANG modules that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /: The entire data tree defined by all the modules defined in this
 draft are sensitive to write operations. For instance, the
 addition or removal of references to keys, certificates,
 trusted anchors, etc., can dramatically alter the implemented

Watsen, et al. Expires April 25, 2019 [Page 33]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 security policy. However, no NACM annotations are applied as
 the data SHOULD be editable by users other than a designated
 ’recovery session’.

 Some of the readable data nodes in the YANG modules may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 /client-auth/password: This node in the ’ietf-ssh-client’ module
 is additionally sensitive to read operations such that, in
 normal use cases, it should never be returned to a client. The
 only time this node should be returned is to support backup/
 restore type workflows. However, no NACM annotations are
 applied as the data SHOULD be writable by users other than a
 designated ’recovery session’.

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 NONE

7. IANA Considerations

7.1. The IETF XML Registry

 This document registers three URIs in the "ns" subregistry of the
 IETF XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registrations are requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-ssh-client
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.
 URI: urn:ietf:params:xml:ns:yang:ietf-ssh-server
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.
 URI: urn:ietf:params:xml:ns:yang:ietf-ssh-common
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

7.2. The YANG Module Names Registry

 This document registers three YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registrations are requested:

Watsen, et al. Expires April 25, 2019 [Page 34]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 name: ietf-ssh-client
 namespace: urn:ietf:params:xml:ns:yang:ietf-ssh-client
 prefix: sshc
 reference: RFC XXXX
 name: ietf-ssh-server
 namespace: urn:ietf:params:xml:ns:yang:ietf-ssh-server
 prefix: sshs
 reference: RFC XXXX
 name: ietf-ssh-common
 namespace: urn:ietf:params:xml:ns:yang:ietf-ssh-common
 prefix: sshcmn
 reference: RFC XXXX

8. References

8.1. Normative References

 [I-D.ietf-netconf-crypto-types]
 Watsen, K., "Common YANG Data Types for Cryptography",
 draft-ietf-netconf-crypto-types-01 (work in progress),
 September 2018.

 [I-D.ietf-netconf-keystore]
 Watsen, K., "YANG Data Model for a Centralized Keystore
 Mechanism", draft-ietf-netconf-keystore-06 (work in
 progress), September 2018.

 [I-D.ietf-netconf-trust-anchors]
 Watsen, K., "YANG Data Model for Global Trust Anchors",
 draft-ietf-netconf-trust-anchors-01 (work in progress),
 September 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4344] Bellare, M., Kohno, T., and C. Namprempre, "The Secure
 Shell (SSH) Transport Layer Encryption Modes", RFC 4344,
 DOI 10.17487/RFC4344, January 2006,
 <https://www.rfc-editor.org/info/rfc4344>.

 [RFC4419] Friedl, M., Provos, N., and W. Simpson, "Diffie-Hellman
 Group Exchange for the Secure Shell (SSH) Transport Layer
 Protocol", RFC 4419, DOI 10.17487/RFC4419, March 2006,
 <https://www.rfc-editor.org/info/rfc4419>.

Watsen, et al. Expires April 25, 2019 [Page 35]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 [RFC5656] Stebila, D. and J. Green, "Elliptic Curve Algorithm
 Integration in the Secure Shell Transport Layer",
 RFC 5656, DOI 10.17487/RFC5656, December 2009,
 <https://www.rfc-editor.org/info/rfc5656>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6187] Igoe, K. and D. Stebila, "X.509v3 Certificates for Secure
 Shell Authentication", RFC 6187, DOI 10.17487/RFC6187,
 March 2011, <https://www.rfc-editor.org/info/rfc6187>.

 [RFC6668] Bider, D. and M. Baushke, "SHA-2 Data Integrity
 Verification for the Secure Shell (SSH) Transport Layer
 Protocol", RFC 6668, DOI 10.17487/RFC6668, July 2012,
 <https://www.rfc-editor.org/info/rfc6668>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

8.2. Informative References

 [OPENSSH] "OpenSSH", 2016, <http://www.openssh.com>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC4252] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,
 January 2006, <https://www.rfc-editor.org/info/rfc4252>.

 [RFC4253] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253,
 January 2006, <https://www.rfc-editor.org/info/rfc4253>.

Watsen, et al. Expires April 25, 2019 [Page 36]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 [RFC4254] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Connection Protocol", RFC 4254, DOI 10.17487/RFC4254,
 January 2006, <https://www.rfc-editor.org/info/rfc4254>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317, August
 2014, <https://www.rfc-editor.org/info/rfc7317>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8071] Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 RFC 8071, DOI 10.17487/RFC8071, February 2017,
 <https://www.rfc-editor.org/info/rfc8071>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Watsen, et al. Expires April 25, 2019 [Page 37]

Internet-Draft Groupings for SSH Clients and Servers October 2018

Appendix A. Change Log

A.1. 00 to 01

 o Noted that ’0.0.0.0’ and ’::’ might have special meanings.

 o Renamed "keychain" to "keystore".

A.2. 01 to 02

 o Removed the groupings ’listening-ssh-client-grouping’ and
 ’listening-ssh-server-grouping’. Now modules only contain the
 transport-independent groupings.

 o Simplified the "client-auth" part in the ietf-ssh-client module.
 It now inlines what it used to point to keystore for.

 o Added cipher suites for various algorithms into new ’ietf-ssh-
 common’ module.

A.3. 02 to 03

 o Removed ’RESTRICTED’ enum from ’password’ leaf type.

 o Added a ’must’ statement to container ’server-auth’ asserting that
 at least one of the various auth mechanisms must be specified.

 o Fixed description statement for leaf ’trusted-ca-certs’.

A.4. 03 to 04

 o Change title to "YANG Groupings for SSH Clients and SSH Servers"

 o Added reference to RFC 6668

 o Added RFC 8174 to Requirements Language Section.

 o Enhanced description statement for ietf-ssh-server’s "trusted-ca-
 certs" leaf.

 o Added mandatory true to ietf-ssh-client’s "client-auth" ’choice’
 statement.

 o Changed the YANG prefix for module ietf-ssh-common from ’sshcom’
 to ’sshcmn’.

 o Removed the compression algorithms as they are not commonly
 configurable in vendors’ implementations.

Watsen, et al. Expires April 25, 2019 [Page 38]

Internet-Draft Groupings for SSH Clients and Servers October 2018

 o Updating descriptions in transport-params-grouping and the
 servers’s usage of it.

 o Now tree diagrams reference ietf-netmod-yang-tree-diagrams

 o Updated YANG to use typedefs around leafrefs to common keystore
 paths

 o Now inlines key and certificates (no longer a leafref to keystore)

A.5. 04 to 05

 o Merged changes from co-author.

A.6. 05 to 06

 o Updated to use trust anchors from trust-anchors draft (was
 keystore draft)

 o Now uses new keystore grouping enabling asymmetric key to be
 either locally defined or a reference to the keystore.

A.7. 06 to 07

 o factored the ssh-[client|server]-groupings into more reusable
 groupings.

 o added if-feature statements for the new "ssh-host-keys" and
 "x509-certificates" features defined in draft-ietf-netconf-trust-
 anchors.

A.8. 07 to 08

 o Added a number of compatibility matricies to Section 5 (thanks
 Frank!)

 o Claified that any configured "host-key-alg" values need to be
 compatible with the configured private key.

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, Balazs Kovacs, David
 Lamparter, Alan Luchuk, Ladislav Lhotka, Radek Krejci, Tom Petch,
 Juergen Schoenwaelder, Phil Shafer, Sean Turner, Michal Vasko, and
 Bert Wijnen.

Watsen, et al. Expires April 25, 2019 [Page 39]

Internet-Draft Groupings for SSH Clients and Servers October 2018

Authors’ Addresses

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

 Gary Wu
 Cisco Systems

 EMail: garywu@cisco.com

 Liang Xia
 Huawei

 EMail: frank.xialiang@huawei.com

Watsen, et al. Expires April 25, 2019 [Page 40]

NETCONF E. Voit
Internet-Draft Cisco Systems
Intended status: Standards Track A. Clemm
Expires: April 26, 2019 Huawei
 A. Gonzalez Prieto
 Microsoft
 E. Nilsen-Nygaard
 A. Tripathy
 Cisco Systems
 October 23, 2018

 Subscription to YANG Event Notifications
 draft-ietf-netconf-subscribed-notifications-18

Abstract

 This document defines a YANG data model and associated mechanisms
 enabling subscriber-specific subscriptions to a publisher’s event
 streams. Applying these elements allows a subscriber to request for
 and receive a continuous, custom feed of publisher generated
 information.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Voit, et al. Expires April 26, 2019 [Page 1]

Internet-Draft Subscribed Notifications October 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Motivation . 3
 1.2. Terminology . 3
 1.3. Solution Overview . 5
 1.4. Relationship to RFC 5277 6
 2. Solution . 6
 2.1. Event Streams . 7
 2.2. Event Stream Filters 7
 2.3. QoS . 8
 2.4. Dynamic Subscriptions 9
 2.5. Configured Subscriptions 17
 2.6. Event Record Delivery 24
 2.7. subscription state change notifications 25
 2.8. Subscription Monitoring 31
 2.9. Advertisement . 32
 3. YANG Data Model Trees . 32
 3.1. Event Streams Container 32
 3.2. Filters Container . 33
 3.3. Subscriptions Container 33
 4. Data Model . 35
 5. Considerations . 62
 5.1. IANA Considerations 62
 5.2. Implementation Considerations 62
 5.3. Transport Requirements 63
 5.4. Security Considerations 64
 6. Acknowledgments . 68
 7. References . 68
 7.1. Normative References 68
 7.2. Informative References 70
 Appendix A. Example Configured Transport Augmentation 70
 Appendix B. Changes between revisions 72
 Authors’ Addresses . 77

1. Introduction

 This document defines a YANG data model and associated mechanisms
 enabling subscriber-specific subscriptions to a publisher’s event
 streams. Effectively this enables a ’subscribe then publish’
 capability where the customized information needs and access

Voit, et al. Expires April 26, 2019 [Page 2]

Internet-Draft Subscribed Notifications October 2018

 permissions of each target receiver are understood by the publisher
 before subscribed event records are marshaled and pushed. The
 receiver then gets a continuous, custom feed of publisher generated
 information.

 While the functionality defined in this document is transport-
 agnostic, transports like NETCONF [RFC6241] or RESTCONF [RFC8040] can
 be used to configure or dynamically signal subscriptions, and there
 are bindings defined for subscribed event record delivery for NETCONF
 within [I-D.draft-ietf-netconf-netconf-event-notifications], and for
 HTTP2 or HTTP1.1 within [I-D.draft-ietf-netconf-restconf-notif].

 The YANG model in this document conforms to the Network Management
 Datastore Architecture defined in [RFC8342].

1.1. Motivation

 Various limitations in [RFC5277] are discussed in [RFC7923].
 Resolving these issues is the primary motivation for this work. Key
 capabilities supported by this document include:

 o multiple subscriptions on a single transport session

 o support for dynamic and configured subscriptions

 o modification of an existing subscription in progress

 o per-subscription operational counters

 o negotiation of subscription parameters (through the use of hints
 returned as part of declined subscription requests)

 o subscription state change notifications (e.g., publisher driven
 suspension, parameter modification)

 o independence from transport

1.2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Client: defined in [RFC8342].

 Configuration: defined in [RFC8342].

Voit, et al. Expires April 26, 2019 [Page 3]

Internet-Draft Subscribed Notifications October 2018

 Configuration datastore: defined in [RFC8342].

 Configured subscription: A subscription installed via configuration
 into a configuration datastore.

 Dynamic subscription: A subscription created dynamically by a
 subscriber via a remote procedure call.

 Event: An occurrence of something that may be of interest. Examples
 include a configuration change, a fault, a change in status, crossing
 a threshold, or an external input to the system.

 Event occurrence time: a timestamp matching the time an originating
 process identified as when an event happened.

 Event record: A set of information detailing an event.

 Event stream: A continuous, chronologically ordered set of events
 aggregated under some context.

 Event stream filter: Evaluation criteria which may be applied against
 event records within an event stream. Event records pass the filter
 when specified criteria are met.

 Notification message: Information intended for a receiver indicating
 that one or more events have occurred.

 Publisher: An entity responsible for streaming notification messages
 per the terms of a subscription.

 Receiver: A target to which a publisher pushes subscribed event
 records. For dynamic subscriptions, the receiver and subscriber are
 the same entity.

 Subscriber: A client able to request and negotiate a contract for the
 generation and push of event records from a publisher. For dynamic
 subscriptions, the receiver and subscriber are the same entity.

 Subscription: A contract with a publisher, stipulating which
 information one or more receivers wish to have pushed from the
 publisher without the need for further solicitation.

 All YANG tree diagrams used in this document follow the notation
 defined in [RFC8340].

Voit, et al. Expires April 26, 2019 [Page 4]

Internet-Draft Subscribed Notifications October 2018

1.3. Solution Overview

 This document describes a transport agnostic mechanism for
 subscribing to and receiving content from an event stream within a
 publisher. This mechanism is through the use of a subscription.

 Two types of subscriptions are supported:

 1. Dynamic subscriptions, where a subscriber initiates a
 subscription negotiation with a publisher via an RPC. If the
 publisher is able to serve this request, it accepts it, and then
 starts pushing notification messages back to the subscriber. If
 the publisher is not able to serve it as requested, then an error
 response is returned. This response MAY include hints at
 subscription parameters that, had they been present, may have
 enabled the dynamic subscription request to be accepted.

 2. Configured subscriptions, which allow the management of
 subscriptions via a configuration so that a publisher can send
 notification messages to a receiver. Support for configured
 subscriptions is optional, with its availability advertised via a
 YANG feature.

 Additional characteristics differentiating configured from dynamic
 subscriptions include:

 o The lifetime of a dynamic subscription is bound by the transport
 session used to establish it. For connection-oriented stateful
 transports like NETCONF, the loss of the transport session will
 result in the immediate termination of any associated dynamic
 subscriptions. For connectionless or stateless transports like
 HTTP, a lack of receipt acknowledgment of a sequential set of
 notification messages and/or keep-alives can be used to trigger a
 termination of a dynamic subscription. Contrast this to the
 lifetime of a configured subscription. This lifetime is driven by
 relevant configuration being present within the publisher’s
 applied configuration. Being tied to configuration operations
 implies configured subscriptions can be configured to persist
 across reboots, and implies a configured subscription can persist
 even when its publisher is fully disconnected from any network.

 o Configured subscriptions can be modified by any configuration
 client with write permission on the configuration of the
 subscription. Dynamic subscriptions can only be modified via an
 RPC request made by the original subscriber, or a change to
 configuration data referenced by the subscription.

Voit, et al. Expires April 26, 2019 [Page 5]

Internet-Draft Subscribed Notifications October 2018

 Note that there is no mixing-and-matching of dynamic and configured
 operations on a single subscription. Specifically, a configured
 subscription cannot be modified or deleted using RPCs defined in this
 document. Also note that transport specific transport drafts based
 on this specification MUST detail the life cycles of both dynamic and
 configured subscriptions.

 A publisher MAY terminate a dynamic subscription at any time.
 Similarly, it MAY decide to temporarily suspend the sending of
 notification messages for any dynamic subscription, or for one or
 more receivers of a configured subscription. Such termination or
 suspension is driven by internal considerations of the publisher.

1.4. Relationship to RFC 5277

 This document is intended to provide a superset of the subscription
 capabilities initially defined within [RFC5277]. Especially when
 extending an existing [RFC5277] implementation, it is important to
 understand what has been reused and what has been replaced. Key
 relationships between these two documents include:

 o this document defines a transport independent capability,
 [RFC5277] is specific to NETCONF.

 o the data model in this document is used instead of the data model
 in Section 3.4 of [RFC5277] for the new operations.

 o the RPC operations in this draft replace the operation "create-
 subscription" defined in [RFC5277], section 4.

 o the <notification> message of [RFC5277], Section 4 is used.

 o the included contents of the "NETCONF" event stream are identical
 between this document and [RFC5277].

 o a publisher MAY implement both the Notification Management Schema
 and RPCs defined in [RFC5277] and this new document concurrently.

 o unlike [RFC5277], this document enables a single transport session
 to intermix notification messages and RPCs for different
 subscriptions.

2. Solution

 Per the overview provided in Section 1.3, this section details the
 overall context, state machines, and subsystems which may be
 assembled to allow the subscription of events from a publisher.

Voit, et al. Expires April 26, 2019 [Page 6]

Internet-Draft Subscribed Notifications October 2018

2.1. Event Streams

 An event stream is a named entity on a publisher which exposes a
 continuously updating set of YANG encoded event records. An event
 record is an intantiation of a "notification" YANG statement. If the
 "notification" is defined as a child to a data node, the intantiation
 includes the hierarchy of nodes that identifies the data node in the
 datastore (see Section 7.16.2 of [RFC7950]). Each event stream is
 available for subscription. It is out of the scope of this document
 to identify a) how event streams are defined (other than the NETCONF
 stream), b) how event records are defined/generated, and c) how event
 records are assigned to event streams.

 There is only one reserved event stream name within this document:
 "NETCONF". The "NETCONF" event stream contains all NETCONF event
 record information supported by the publisher, except where an event
 record has explicitly been excluded from the stream. Beyond the
 "NETCONF" stream, implementations MAY define additional event
 streams.

 As YANG encoded event records are created by a system, they may be
 assigned to one or more streams. The event record is distributed to
 a subscription’s receiver(s) where: (1) a subscription includes the
 identified stream, and (2) subscription filtering does not exclude
 the event record from that receiver.

 Access control permissions may be used to silently exclude event
 records from within an event stream for which the receiver has no
 read access. As an example of how this might be accomplished, see
 [RFC8341] section 3.4.6. Note that per Section 2.7 of this document,
 subscription state change notifications are never filtered out.

 If no access control permissions are in place for event records on an
 event stream, then a receiver MUST be allowed access to all the event
 records. If subscriber permissions change during the lifecycle of a
 subscription and event stream access is no longer permitted, then the
 subscription MUST be terminated.

 Event records MUST NOT be delivered to a receiver in a different
 order than they were placed onto an event stream.

2.2. Event Stream Filters

 This document defines an extensible filtering mechanism. The filter
 itself is a boolean test which is placed on the content of an event
 record. A ’false’ filtering result causes the event message to be
 excluded from delivery to a receiver. A filter never results in
 information being stripped from within an event record prior to that

Voit, et al. Expires April 26, 2019 [Page 7]

Internet-Draft Subscribed Notifications October 2018

 event record being encapsulated within a notification message. The
 two optional event stream filtering syntaxes supported are [XPATH]
 and subtree [RFC6241].

 If no event stream filter is provided within a subscription, all
 event records on an event stream are to be sent.

2.3. QoS

 This document provide for several QoS parameters. These parameters
 indicate the treatment of a subscription relative to other traffic
 between publisher and receiver. Included are:

 o A "dscp" marking to differentiate prioritization of notification
 messages during network transit.

 o A "weighting" so that bandwidth proportional to this weighting can
 be allocated to this subscription relative to other subscriptions.

 o a "dependency" upon another subscription.

 If the publisher supports the "dscp" feature, then a subscription
 with a "dscp" leaf MUST result in a corresponding [RFC2474] DSCP
 marking being placed within the IP header of any resulting
 notification messages and subscription state change notifications.

 For the "weighting" parameter, when concurrently dequeuing
 notification messages from multiple subscriptions to a receiver, the
 publisher MUST allocate bandwidth to each subscription proportionally
 to the weights assigned to those subscriptions. "Weighting" is an
 optional capability of the publisher; support for it is identified
 via the "qos" feature.

 If a subscription has the "dependency" parameter set, then any
 buffered notification messages containing event records selected by
 the parent subscription MUST be dequeued prior to the notification
 messages of the dependent subscription. If notification messages
 have dependencies on each other, the notification message queued the
 longest MUST go first. If a "dependency" included within an RPC
 references a subscription which does not exist or is no longer
 accessible to that subscriber, that "dependency" MUST be silently
 removed. "Dependency" is an optional capability of the publisher;
 support for it is identified via the "qos" feature.

Voit, et al. Expires April 26, 2019 [Page 8]

Internet-Draft Subscribed Notifications October 2018

2.4. Dynamic Subscriptions

 Dynamic subscriptions are managed via protocol operations (in the
 form of [RFC7950], Section 7.14 RPCs) made against targets located
 within the publisher. These RPCs have been designed extensibly so
 that they may be augmented for subscription targets beyond event
 streams. For examples of such augmentations, see the RPC
 augmentations within [I-D.ietf-netconf-yang-push]’s YANG model.

2.4.1. Dynamic Subscription State Model

 Below is the publisher’s state machine for a dynamic subscription.
 Each state is shown in its own box. It is important to note that
 such a subscription doesn’t exist at the publisher until an
 "establish-subscription" RPC is accepted. The mere request by a
 subscriber to establish a subscription is insufficient for that
 subscription to be externally visible. Start and end states are
 depicted to reflect subscription creation and deletion events.

 : start :
 :.......:
 |
 establish-subscription
 |
 | .-------modify-subscription--------.
 v v |
 .-----------. .-----------.
 .--------. | receiver |--insufficient CPU, b/w-->| receiver |
 modify- ’| active | | suspended |
 subscription | |<----CPU, b/w sufficient--| |
 ---------->’-----------’ ’-----------’
 | |
 delete/kill-subscription delete/kill-
 | subscription
 v |
 |
 : end :<---------------------------------’
 :.......:

 Figure 1: Publisher’s state for a dynamic subscription

 Of interest in this state machine are the following:

 o Successful "establish-subscription" or "modify-subscription" RPCs
 put the subscription into the active state.

Voit, et al. Expires April 26, 2019 [Page 9]

Internet-Draft Subscribed Notifications October 2018

 o Failed "modify-subscription" RPCs will leave the subscription in
 its previous state, with no visible change to any streaming
 updates.

 o A "delete-subscription" or "kill-subscription" RPC will end the
 subscription, as will the reaching of a "stop-time".

 o A publisher may choose to suspend a subscription when there is
 insufficient CPU or bandwidth available to service the
 subscription. This is notified to a subscriber with a
 "subscription-suspended" subscription state change notification.

 o A suspended subscription may be modified by the subscriber (for
 example in an attempt to use fewer resources). Successful
 modification returns the subscription to the active state.

 o Even without a "modify-subscription" request, a publisher may
 return a subscription to the active state should the resource
 constraints become sufficient again. This is announced to the
 subscriber via the "subscription-resumed" subscription state
 change notification.

2.4.2. Establishing a Dynamic Subscription

 The "establish-subscription" RPC allows a subscriber to request the
 creation of a subscription.

 The input parameters of the operation are:

 o A "stream" name which identifies the targeted event stream against
 which the subscription is applied.

 o An event stream filter which may reduce the set of event records
 pushed.

 o Where the transport used by the RPC supports multiple encodings,
 an optional "encoding" for the event records pushed. If no
 "encoding" is included, the encoding of the RPC MUST be used.

 o An optional "stop-time" for the subscription. If no "stop-time"
 is present, notification messages will continue to be sent until
 the subscription is terminated.

 o An optional "replay-start-time" for the subscription. The
 "replay-start-time" MUST be in the past and indicates that the
 subscription is requesting a replay of previously generated
 information from the event stream. For more on replay, see

Voit, et al. Expires April 26, 2019 [Page 10]

Internet-Draft Subscribed Notifications October 2018

 Section 2.4.2.1. Where there is no "replay-start-time", the
 subscription starts immediately.

 If the publisher can satisfy the "establish-subscription" request, it
 replies with an identifier for the subscription, and then immediately
 starts streaming notification messages.

 Below is a tree diagram for "establish-subscription". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---x establish-subscription
 +---w input
 | +---w (target)
 | | +--:(stream)
 | | +---w (stream-filter)?
 | | | +--:(by-reference)
 | | | | +---w stream-filter-name
 | | | | stream-filter-ref
 | | | +--:(within-subscription)
 | | | +---w (filter-spec)?
 | | | +--:(stream-subtree-filter)
 | | | | +---w stream-subtree-filter? <anydata>
 | | | | {subtree}?
 | | | +--:(stream-xpath-filter)
 | | | +---w stream-xpath-filter?
 | | | yang:xpath1.0 {xpath}?
 | | +---w stream stream-ref
 | | +---w replay-start-time?
 | | yang:date-and-time {replay}?
 | +---w stop-time?
 | | yang:date-and-time
 | +---w dscp? inet:dscp
 | | {dscp}?
 | +---w weighting? uint8
 | | {qos}?
 | +---w dependency?
 | | subscription-id {qos}?
 | +---w encoding? encoding
 +--ro output
 +--ro id subscription-id
 +--ro replay-start-time-revision? yang:date-and-time
 {replay}?

 Figure 2: establish-subscription RPC tree diagram

Voit, et al. Expires April 26, 2019 [Page 11]

Internet-Draft Subscribed Notifications October 2018

 A publisher MAY reject the "establish-subscription" RPC for many
 reasons as described in Section 2.4.6. The contents of the resulting
 RPC error response MAY include details on input parameters which if
 considered in a subsequent "establish-subscription" RPC, may result
 in a successful subscription establishment. Any such hints MUST be
 transported within a yang-data "establish-subscription-stream-error-
 info" container included within the RPC error response.

 yang-data establish-subscription-stream-error-info
 +--ro establish-subscription-stream-error-info
 +--ro reason? identityref
 +--ro filter-failure-hint? string

 Figure 3: establish-subscription RPC yang-data tree diagram

2.4.2.1. Requesting a replay of event records

 Replay provides the ability to establish a subscription which is also
 capable of passing recently generated event records. In other words,
 as the subscription initializes itself, it sends any event records
 within the target event stream which meet the filter criteria, which
 have an event time which is after the "replay-start-time", and which
 have an event time before the "stop-time" should this "stop-time"
 exist. The end of these historical event records is identified via a
 "replay-completed" subscription state change notification. Any event
 records generated since the subscription establishment may then
 follow. For a particular subscription, all event records will be
 delivered in the order they are placed into the event stream.

 Replay is an optional feature which is dependent on an event stream
 supporting some form of logging. This document puts no restrictions
 on the size or form of the log, where it resides within the
 publisher, or when event record entries in the log are purged.

 The inclusion of a "replay-start-time" within an "establish-
 subscription" RPC indicates a replay request. If the "replay-start-
 time" contains a value that is earlier than what a publisher’s
 retained history supports, then if the subscription is accepted, the
 actual publisher’s revised start time MUST be set in the returned
 "replay-start-time-revision" object.

 A "stop-time" parameter may be included in a replay subscription.
 For a replay subscription, the "stop-time" MAY be earlier than the
 current time, but MUST be later than the "replay-start-time".

 If the given "replay-start-time" is later than the time marked within
 any event records retained within the replay buffer, then the

Voit, et al. Expires April 26, 2019 [Page 12]

Internet-Draft Subscribed Notifications October 2018

 publisher MUST send a "replay-completed" notification immediately
 after a successful establish-subscription RPC response.

 If an event stream supports replay, the "replay-support" leaf is
 present in the "/streams/stream" list entry for the event stream. An
 event stream that does support replay is not expected to have an
 unlimited supply of saved notifications available to accommodate any
 given replay request. To assess the timeframe available for replay,
 subscribers can read the leafs "replay-log-creation-time" and
 "replay-log-aged-time". See Figure 18 for the YANG tree, and
 Section 4 for the YANG model describing these elements. The actual
 size of the replay log at any given time is a publisher specific
 matter. Control parameters for the replay log are outside the scope
 of this document.

2.4.3. Modifying a Dynamic Subscription

 The "modify-subscription" operation permits changing the terms of an
 existing dynamic subscription. Dynamic subscriptions can be modified
 any number of times. Dynamic subscriptions can only be modified via
 this RPC using a transport session connecting to the subscriber. If
 the publisher accepts the requested modifications, it acknowledges
 success to the subscriber, then immediately starts sending event
 records based on the new terms.

 Subscriptions created by configuration cannot be modified via this
 RPC. However configuration may be used to modify objects referenced
 by the subscription (such as a referenced filter).

 Below is a tree diagram for "modify-subscription". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

Voit, et al. Expires April 26, 2019 [Page 13]

Internet-Draft Subscribed Notifications October 2018

 +---x modify-subscription
 +---w input
 +---w id
 | subscription-id
 +---w (target)
 | +--:(stream)
 | +---w (stream-filter)?
 | +--:(by-reference)
 | | +---w stream-filter-name
 | | stream-filter-ref
 | +--:(within-subscription)
 | +---w (filter-spec)?
 | +--:(stream-subtree-filter)
 | | +---w stream-subtree-filter? <anydata>
 | | {subtree}?
 | +--:(stream-xpath-filter)
 | +---w stream-xpath-filter?
 | yang:xpath1.0 {xpath}?
 +---w stop-time?
 yang:date-and-time

 Figure 4: modify-subscription RPC tree diagram

 If the publisher accepts the requested modifications on a currently
 suspended subscription, the subscription will immediately be resumed
 (i.e., the modified subscription is returned to the active state.)
 The publisher MAY immediately suspend this newly modified
 subscription through the "subscription-suspended" notification before
 any event records are sent.

 If the publisher rejects the RPC request, the subscription remains as
 prior to the request. That is, the request has no impact whatsoever.
 Rejection of the RPC for any reason is indicated by via RPC error as
 described in Section 2.4.6. The contents of such a rejected RPC MAY
 include hints on inputs which (if considered) may result in a
 successfully modified subscription. These hints MUST be transported
 within a yang-data "modify-subscription-stream-error-info" container
 inserted into the RPC error response.

 Below is a tree diagram for "modify-subscription-RPC-yang-data". All
 objects contained in this tree are described within the included YANG
 model within Section 4.

Voit, et al. Expires April 26, 2019 [Page 14]

Internet-Draft Subscribed Notifications October 2018

 yang-data modify-subscription-stream-error-info
 +--ro modify-subscription-stream-error-info
 +--ro reason? identityref
 +--ro filter-failure-hint? string

 Figure 5: modify-subscription RPC yang-data tree diagram

2.4.4. Deleting a Dynamic Subscription

 The "delete-subscription" operation permits canceling an existing
 subscription. If the publisher accepts the request, and the
 publisher has indicated success, the publisher MUST NOT send any more
 notification messages for this subscription. If the delete request
 matches a known subscription established on the same transport
 session, then it MUST be deleted; otherwise it MUST be rejected with
 no changes to the publisher.

 Below is a tree diagram for "delete-subscription". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---x delete-subscription
 +---w input
 +---w id subscription-id

 Figure 6: delete-subscription RPC tree diagram

 Dynamic subscriptions can only be deleted via this RPC using a
 transport session connecting to the subscriber. Configured
 subscriptions cannot be deleted using RPCs.

2.4.5. Killing a Dynamic Subscription

 The "kill-subscription" operation permits an operator to end a
 dynamic subscription which is not associated with the transport
 session used for the RPC. A publisher MUST terminate any dynamic
 subscription identified by the "id" parameter in the RPC request, if
 such a subscription exists.

 Configured subscriptions cannot be killed using this RPC. Instead,
 configured subscriptions are deleted as part of regular configuration
 operations. Publishers MUST reject any RPC attempt to kill a
 configured subscription.

 Below is a tree diagram for "kill-subscription". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

Voit, et al. Expires April 26, 2019 [Page 15]

Internet-Draft Subscribed Notifications October 2018

 +---x kill-subscription
 +---w input
 +---w id subscription-id

 Figure 7: kill-subscription RPC tree diagram

2.4.6. RPC Failures

 Whenever an RPC is unsuccessful, the publisher returns relevant
 information as part of the RPC error response. Transport level error
 processing MUST be done before RPC error processing described in this
 section. In all cases, RPC error information returned will use
 existing transport layer RPC structures, such as those seen with
 NETCONF in [RFC6241] Appendix A, or with RESTCONF in [RFC8040]
 Section 7.1. These structures MUST be able to encode subscription
 specific errors identified below and defined within this document’s
 YANG model.

 As a result of this mixture, how subscription errors are encoded
 within an RPC error response is transport dependent. Following are
 valid errors which can occur for each RPC:

 establish-subscription modify-subscription
 ---------------------- -------------------
 dscp-unavailable filter-unsupported
 encoding-unsupported insufficient-resources
 filter-unsupported no-such-subscription
 insufficient-resources
 replay-unsupported

 delete-subscription kill-subscription
 ---------------------- ----------------------
 no-such-subscription no-such-subscription

 To see a NETCONF based example of an error response from above, see
 [I-D.draft-ietf-netconf-netconf-event-notifications], Figure 10.

 There is one final set of transport independent RPC error elements
 included in the YANG model. These are three yang-data structures
 which enable the publisher to provide to the receiver that error
 information which does not fit into existing transport layer RPC
 structures. These three yang-data structures are:

 1. "establish-subscription-stream-error-info": This MUST be returned
 with the leaf "reason" populated if an RPC error reason has not
 been placed elsewhere within the transport portion of a failed

Voit, et al. Expires April 26, 2019 [Page 16]

Internet-Draft Subscribed Notifications October 2018

 "establish-subscription" RPC response. This MUST be sent if
 hints on how to overcome the RPC error are included.

 2. "modify-subscription-stream-error-info": This MUST be returned
 with the leaf "reason" populated if an RPC error reason has not
 been placed elsewhere within the transport portion of a failed
 "modify-subscription" RPC response. This MUST be sent if hints
 on how to overcome the RPC error are included.

 3. "delete-subscription-error-info": This MUST be returned with the
 leaf "reason" populated if an RPC error reason has not been
 placed elsewhere within the transport portion of a failed
 "delete-subscription" or "kill-subscription" RPC response.

2.5. Configured Subscriptions

 A configured subscription is a subscription installed via
 configuration. Configured subscriptions may be modified by any
 configuration client with the proper permissions. Subscriptions can
 be modified or terminated via configuration at any point of their
 lifetime. Multiple configured subscriptions MUST be supportable over
 a single transport session.

 Configured subscriptions have several characteristics distinguishing
 them from dynamic subscriptions:

 o persistence across publisher reboots,

 o persistence even when transport is unavailable, and

 o an ability to send notification messages to more than one receiver
 (note that receivers are unaware of the existence of any other
 receivers.)

 On the publisher, supporting configured subscriptions is optional and
 advertised using the "configured" feature. On a receiver of a
 configured subscription, support for dynamic subscriptions is
 optional except where replaying missed event records is required.

 In addition to the subscription parameters available to dynamic
 subscriptions described in Section 2.4.2, the following additional
 parameters are also available to configured subscriptions:

 o A "transport" which identifies the transport protocol to use to
 connect with all subscription receivers.

Voit, et al. Expires April 26, 2019 [Page 17]

Internet-Draft Subscribed Notifications October 2018

 o One or more receivers, each intended as the destination for event
 records. Note that each individual receiver is identifiable by
 its "name".

 o Optional parameters to identify where traffic should egress a
 publisher:

 * A "source-interface" which identifies the egress interface to
 use from the publisher. Publisher support for this is optional
 and advertised using the "interface-designation" feature.

 * A "source-address" address, which identifies the IP address to
 stamp on notification messages destined for the receiver.

 * A "source-vrf" which identifies the VRF on which to reach
 receivers. This VRF is a network instance as defined within
 [I-D.draft-ietf-rtgwg-ni-model]. Publisher support for VRFs is
 optional and advertised using the "supports-vrf" feature.

 If none of the above parameters are set, notification messages
 MUST egress the publisher’s default interface.

 A tree diagram describing these parameters is shown in Figure 20
 within Section 3.3. All parameters are described within the YANG
 model in Section 4.

2.5.1. Configured Subscription State Model

 Below is the state machine for a configured subscription on the
 publisher. This state machine describes the three states (valid,
 invalid, and concluded), as well as the transitions between these
 states. Start and end states are depicted to reflect configured
 subscription creation and deletion events. The creation or
 modification of a configured subscription initiates an evaluation by
 the publisher to determine if the subscription is in valid or invalid
 states. The publisher uses its own criteria in making this
 determination. If in the valid state, the subscription becomes
 operational. See (1) in the diagram below.

Voit, et al. Expires April 26, 2019 [Page 18]

Internet-Draft Subscribed Notifications October 2018

 : start :-.
 :.......: |
 create .---modify-----.----------------------------------.
 | | | |
 V V .-------. ---------.
 .----[evaluate]--no--->|invalid|-delete->: end :<-delete-|concluded|
 | ’-------’ :.....: ’---------’
 |-[evaluate]--no-(2). ^ ^ ^
 | ^ | | | |
 yes | ’->unsupportable delete stop-time
 | modify (subscription- (subscription- (subscription-
 | | terminated*) terminated*) concluded*)
 | | | | |
 (1) | (3) (4) (5)
 | .---.
 ’-->| valid |
 ’---’

 Legend:
 dotted boxes: subscription added or removed via configuration
 dashed boxes: states for a subscription
 [evaluate]: decision point on whether the subscription is supportable
 (*): resulting subscription state change notification

 Figure 8: Publisher state model for a configured subscription

 A subscription in the valid state may move to the invalid state in
 one of two ways. First, it may be modified in a way which fails a
 re-evaluation. See (2) in the diagram. Second, the publisher might
 determine that the subscription is no longer supportable. This could
 be for reasons of an unexpected but sustained increase in an event
 stream’s event records, degraded CPU capacity, a more complex
 referenced filter, or other higher priority subscriptions which have
 usurped resources. See (3) in the diagram. No matter the case, a
 "subscription-terminated" notification is sent to any receivers in an
 active or suspended state. A subscription in the valid state may
 also transition to the concluded state via (5) if a configured stop
 time has been reached. In this case, a "subscription-concluded"
 notification is sent to any receivers in active or suspended states.
 Finally, a subscription may be deleted by configuration (4).

 When a subscription is in the valid state, a publisher will attempt
 to connect with all receivers of a configured subscription and
 deliver notification messages. Below is the state machine for each
 receiver of a configured subscription. This receiver state machine
 is fully contained within the state machine of the configured

Voit, et al. Expires April 26, 2019 [Page 19]

Internet-Draft Subscribed Notifications October 2018

 subscription, and is only relevant when the configured subscription
 is in the valid state.

 .---.
 | valid |
 | .----------. .------------. |
 | | receiver |---timeout---------------->| receiver | |
 | |connecting|<----------------reset--(c)|disconnected| |
 | | |<-transport ’------------’ |
 | ’----------’ loss,reset------------------------------. |
 | (a) | | |
 | subscription- (b) (b) |
 | started* .--------. .---------. |
 | ’----->| |(d)-insufficient CPU,------->| | |
 | |receiver| buffer overflow |receiver | |
 | subscription-| active | |suspended| |
 | modified* | |<----CPU, b/w sufficient,-(e)| | |
 | ’---->’--------’ subscription-modified* ’---------’ |
 ’---’

 Legend:
 dashed boxes which include the word ’receiver’ show the possible
 states for an individual receiver of a valid configured subscription.
 * indicates a subscription state change notification

 Figure 9: Receiver state for a configured subscription on a Publisher

 When a configured subscription first moves to the valid state, the
 "state" leaf of each receiver is initialized to the connecting state.
 If transport connectivity is not available to any receiver and there
 are any notification messages to deliver, a transport session is
 established (e.g., through [RFC8071]). Individual receivers are
 moved to the active state when a "subscription-started" subscription
 state change notification is successfully passed to that receiver
 (a). Event records are only sent to active receivers. Receivers of
 a configured subscription remain active if both transport
 connectivity can be verified to the receiver, and event records are
 not being dropped due to a publisher buffer overflow. The result is
 that a receiver will remain active on the publisher as long as events
 aren’t being lost, or the receiver cannot be reached. In addition, a
 configured subscription’s receiver MUST be moved to the connecting
 state if the receiver is reset via the "reset" action (b), (c). For
 more on reset, see Section 2.5.5. If transport connectivity cannot
 be achieved while in the connecting state, the receiver MAY be moved
 to the disconnected state.

 A configured subscription’s receiver MUST be moved to the suspended
 state if there is transport connectivity between the publisher and

Voit, et al. Expires April 26, 2019 [Page 20]

Internet-Draft Subscribed Notifications October 2018

 receiver, but notification messages are failing to be delivered due
 to publisher buffer overflow, or notification messages are not able
 to be generated for that receiver due to insufficient CPU (d). This
 is indicated to the receiver by the "subscription-suspended"
 subscription state change notification.

 A configured subscription receiver MUST be returned to the active
 state from the suspended state when notification messages are able to
 be generated, bandwidth is sufficient to handle the notification
 messages, and a receiver has successfully been sent a "subscription-
 resumed" or "subscription-modified" subscription state change
 notification (e). The choice as to which of these two subscription
 state change notifications is sent is determined by whether the
 subscription was modified during the period of suspension.

 Modification of a configured subscription is possible at any time. A
 "subscription-modified" subscription state change notification will
 be sent to all active receivers, immediately followed by notification
 messages conforming to the new parameters. Suspended receivers will
 also be informed of the modification. However this notification will
 await the end of the suspension for that receiver (e).

 The mechanisms described above are mirrored in the RPCs and
 notifications within the document. It should be noted that these
 RPCs and notifications have been designed to be extensible and allow
 subscriptions into targets other than event streams. For instance,
 the YANG module defined in Section 5 of [I-D.ietf-netconf-yang-push]
 augments "/sn:modify-subscription/sn:input/sn:target".

2.5.2. Creating a Configured Subscription

 Configured subscriptions are established using configuration
 operations against the top-level "subscriptions" subtree.

 Because there is no explicit association with an existing transport
 session, configuration operations MUST include additional parameters
 beyond those of dynamic subscriptions. These parameters identify
 each receiver, how to connect with that receiver, and possibly
 whether the notification messages need to come from a specific egress
 interface on the publisher. Receiver specific transport connectivity
 parameters MUST be configured via transport specific augmentations to
 this specification. See Section 2.5.7 for details.

 After a subscription is successfully established, the publisher
 immediately sends a "subscription-started" subscription state change
 notification to each receiver. It is quite possible that upon
 configuration, reboot, or even steady-state operations, a transport
 session may not be currently available to the receiver. In this

Voit, et al. Expires April 26, 2019 [Page 21]

Internet-Draft Subscribed Notifications October 2018

 case, when there is something to transport for an active
 subscription, transport specific call-home operations will be used to
 establish the connection. When transport connectivity is available,
 notification messages may then be pushed.

 With active configured subscriptions, it is allowable to buffer event
 records even after a "subscription-started" has been sent. However
 if events are lost (rather than just delayed) due to replay buffer
 overflow, a new "subscription-started" must be sent. This new
 "subscription-started" indicates an event record discontinuity.

 To see an example of subscription creation using configuration
 operations over NETCONF, see Appendix A of
 [I-D.draft-ietf-netconf-netconf-event-notifications].

2.5.3. Modifying a Configured Subscription

 Configured subscriptions can be modified using configuration
 operations against the top-level "subscriptions" subtree.

 If the modification involves adding receivers, added receivers are
 placed in the connecting state. If a receiver is removed, the
 subscription state change notification "subscription-terminated" is
 sent to that receiver if that receiver is active or suspended.

 If the modification involves changing the policies for the
 subscription, the publisher sends to currently active receivers a
 "subscription-modified" notification. For any suspended receivers, a
 "subscription-modified" notification will be delayed until the
 receiver is resumed. (Note: in this case, the "subscription-
 modified" notification informs the receiver that the subscription has
 been resumed, so no additional "subscription-resumed" need be sent.
 Also note that if multiple modifications have occurred during the
 suspension, only the "subscription-modified" notification describing
 the latest one need be sent to the receiver.)

2.5.4. Deleting a Configured Subscription

 Subscriptions can be deleted through configuration against the top-
 level "subscriptions" subtree.

 Immediately after a subscription is successfully deleted, the
 publisher sends to all receivers of that subscription a subscription
 state change notification stating the subscription has ended (i.e.,
 "subscription-terminated").

Voit, et al. Expires April 26, 2019 [Page 22]

Internet-Draft Subscribed Notifications October 2018

2.5.5. Resetting a Configured Subscription Receiver

 It is possible that a configured subscription to a receiver needs to
 be reset. This is accomplished via the "reset" action within the
 YANG model at "/subscriptions/subscription/receivers/receiver/reset".
 This action may be useful in cases where a publisher has timed out
 trying to reach a receiver. When such a reset occurs, a transport
 session will be initiated if necessary, and a new "subscription-
 started" notification will be sent. This action does not have any
 effect on transport connectivity if the needed connectivity already
 exists.

2.5.6. Replay for a Configured Subscription

 It is possible to do replay on a configured subscription. This is
 supported via the configuration of the "configured-replay" object on
 the subscription. The setting of this object enables the streaming
 of the buffered event records for the subscribed event stream. All
 buffered event records which have been retained since the last
 publisher restart will be sent to each configured receiver.

 Replay of events records created since restart is useful. It allows
 event records generated before transport connectivity establishment
 to be passed to a receiver. Setting the restart time as the earliest
 configured replay time precludes possibility of resending of event
 records logged prior to publisher restart. It also ensures the same
 records will be sent to each configured receiver, regardless of the
 speed of transport connectivity establishment to each receiver.
 Finally, establishing restart as the earliest potential time for
 event records to be included within notification messages, a well-
 understood timeframe for replay is defined.

 As a result, when any configured subscription receivers become
 active, buffered event records will be sent immediately after the
 "subscription-started" notification. If the publisher knows the last
 event record sent to a receiver, and the publisher has not rebooted,
 the next event record on the event stream which meets filtering
 criteria will be the leading event record sent. Otherwise, the
 leading event record will be the first event record meeting filtering
 criteria subsequent to the latest of three different times: the
 "replay-log-creation-time", "replay-log-aged-time", or the most
 recent publisher boot time. The "replay-log-creation-time" and
 "replay-log-aged-time" are discussed in Section 2.4.2.1. The most
 recent publisher boot time ensures that duplicate event records are
 not replayed from a previous time the publisher was booted.

 It is quite possible that a receiver might want to retrieve event
 records from an event stream prior to the latest boot. If such

Voit, et al. Expires April 26, 2019 [Page 23]

Internet-Draft Subscribed Notifications October 2018

 records exist where there is a configured replay, the publisher MUST
 send the time of the event record immediately preceding the "replay-
 start-time" within the "replay-previous-event-time" leaf. Through
 the existence of the "replay-previous-event-time", the receiver will
 know that earlier events prior to reboot exist. In addition, if the
 subscriber was previously receiving event records with the same
 subscription "id", the receiver can determine if there was a timegap
 where records generated on the publisher were not successully
 received. And with this information, the receiver may choose to
 dynamically subscribe to retrieve any event records placed into the
 event stream before the most recent boot time.

 All other replay functionality remains the same as with dynamic
 subscriptions as described in Section 2.4.2.1.

2.5.7. Transport Connectivity for a Configured Subscription

 This specification is transport independent. However supporting a
 configured subscription will often require the establishment of
 transport connectivity. And the parameters used for this transport
 connectivity establishment are transport specific. As a result, the
 YANG model defined within Section 4 is not able to directly define
 and expose these transport parameters.

 It is necessary for an implementation to support the connection
 establishment process. To support this function, the YANG model does
 include a node where transport specific parameters for a particular
 receiver may be augmented. This node is
 "/subscriptions/subscription/receivers/receiver". By augmenting
 transport parameters from this node, system developers are able to
 incorporate the YANG objects necessary to support the transport
 connectivity establishment process.

 The result of this is the following requirement. A publisher
 supporting the feature "configured" MUST also support least one YANG
 model which augments transport connectivity parameters on
 "/subscriptions/subscription/receivers/receiver". For an example of
 such an augmentation, see Appendix A.

2.6. Event Record Delivery

 Whether dynamic or configured, once a subscription has been set up,
 the publisher streams event records via notification messages per the
 terms of the subscription. For dynamic subscriptions, notification
 messages are sent over the session used to establish the
 subscription. For configured subscriptions, notification messages
 are sent over the connections specified by the transport and each
 receiver of a configured subscription.

Voit, et al. Expires April 26, 2019 [Page 24]

Internet-Draft Subscribed Notifications October 2018

 A notification message is sent to a receiver when an event record is
 not blocked by either the specified filter criteria or receiver
 permissions. This notification message MUST include an "eventTime"
 object as defined per [RFC5277] Section 4. This "eventTime" MUST be
 at the top level of YANG structured event record.

 The following example within [RFC7950] section 7.16.3 is an example
 of a compliant message:

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2007-09-01T10:00:00Z</eventTime>
 <link-failure xmlns="http://acme.example.com/system">
 <if-name>so-1/2/3.0</if-name>
 <if-admin-status>up</if-admin-status>
 <if-oper-status>down</if-oper-status>
 </link-failure>
 </notification>

 Figure 10: subscribed notification message

 When a dynamic subscription has been started or modified, with
 "establish-subscription" or "modify-subscription" respectively, event
 records matching the newly applied filter criteria MUST NOT be sent
 until after the RPC reply has been sent.

 When a configured subscription has been started or modified, event
 records matching the newly applied filter criteria MUST NOT be sent
 until after the "subscription-started" or "subscription-modified"
 notifications has been sent, respectively.

2.7. subscription state change notifications

 In addition to sending event records to receivers, a publisher MUST
 also send subscription state change notifications when events related
 to subscription management have occurred.

 subscription state change notifications are unlike other
 notifications in that they are never included in any event stream.
 Instead, they are inserted (as defined in this section) within the
 sequence of notification messages sent to a particular receiver.
 subscription state change notifications cannot be filtered out, they
 cannot be stored in replay buffers, and they are delivered only to
 impacted receivers of a subscription. The identification of
 subscription state change notifications is easy to separate from
 other notification messages through the use of the YANG extension
 "subscription-state-notif". This extension tags a notification as a
 subscription state change notification.

Voit, et al. Expires April 26, 2019 [Page 25]

Internet-Draft Subscribed Notifications October 2018

 The complete set of subscription state change notifications is
 described in the following subsections.

2.7.1. subscription-started

 This notification indicates that a configured subscription has
 started, and event records may be sent. Included in this
 subscription state change notification are all the parameters of the
 subscription, except for the receiver(s) transport connection
 information and origin information indicating where notification
 messages will egress the publisher. Note that if a referenced filter
 from the "filters" container has been used within the subscription,
 the notification still provides the contents of that referenced
 filter under the "within-subscription" subtree.

 Note that for dynamic subscriptions, no "subscription-started"
 notifications are ever sent.

 Below is a tree diagram for "subscription-started". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

Voit, et al. Expires April 26, 2019 [Page 26]

Internet-Draft Subscribed Notifications October 2018

 +---n subscription-started {configured}?
 +--ro id
 | subscription-id
 +--ro (target)
 | +--:(stream)
 | +--ro (stream-filter)?
 | | +--:(by-reference)
 | | | +--ro stream-filter-name
 | | | stream-filter-ref
 | | +--:(within-subscription)
 | | +--ro (filter-spec)?
 | | +--:(stream-subtree-filter)
 | | | +--ro stream-subtree-filter? <anydata>
 | | | {subtree}?
 | | +--:(stream-xpath-filter)
 | | +--ro stream-xpath-filter? yang:xpath1.0
 | | {xpath}?
 | +--ro stream stream-ref
 | +--ro replay-start-time?
 | | yang:date-and-time {replay}?
 | +--ro replay-previous-event-time?
 | yang:date-and-time {replay}?
 +--ro stop-time?
 | yang:date-and-time
 +--ro dscp? inet:dscp
 | {dscp}?
 +--ro weighting? uint8 {qos}?
 +--ro dependency?
 | subscription-id {qos}?
 +--ro transport? transport
 | {configured}?
 +--ro encoding? encoding
 +--ro purpose? string
 {configured}?

 Figure 11: subscription-started notification tree diagram

2.7.2. subscription-modified

 This notification indicates that a subscription has been modified by
 configuration operations. It is delivered directly after the last
 event records processed using the previous subscription parameters,
 and before any event records processed after the modification.

 Below is a tree diagram for "subscription-modified". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

Voit, et al. Expires April 26, 2019 [Page 27]

Internet-Draft Subscribed Notifications October 2018

 +---n subscription-modified
 +--ro id
 | subscription-id
 +--ro (target)
 | +--:(stream)
 | +--ro (stream-filter)?
 | | +--:(by-reference)
 | | | +--ro stream-filter-name
 | | | stream-filter-ref
 | | +--:(within-subscription)
 | | +--ro (filter-spec)?
 | | +--:(stream-subtree-filter)
 | | | +--ro stream-subtree-filter? <anydata>
 | | | {subtree}?
 | | +--:(stream-xpath-filter)
 | | +--ro stream-xpath-filter? yang:xpath1.0
 | | {xpath}?
 | +--ro stream stream-ref
 | +--ro replay-start-time?
 | yang:date-and-time {replay}?
 +--ro stop-time?
 | yang:date-and-time
 +--ro dscp? inet:dscp
 | {dscp}?
 +--ro weighting? uint8 {qos}?
 +--ro dependency?
 | subscription-id {qos}?
 +--ro transport? transport
 | {configured}?
 +--ro encoding? encoding
 +--ro purpose? string
 {configured}?

 Figure 12: subscription-modified notification tree diagram

 A publisher most often sends this notification directly after the
 modification of any configuration parameters impacting a configured
 subscription. But it may also be sent at two other times:

 1. Where a configured subscription has been modified during the
 suspension of a receiver, the notification will be delayed until
 the receiver’s suspension is lifted. In this situation, the
 notification indicates that the subscription has been both
 modified and resumed.

 2. A "subscription-modified" subscription state change notification
 MUST be sent if the contents of the filter identified by the
 subscription’s "stream-filter-ref" leaf has changed. This state

Voit, et al. Expires April 26, 2019 [Page 28]

Internet-Draft Subscribed Notifications October 2018

 change notification is to be sent for a filter change impacting
 any active receiver of a configured or dynamic subscription.

2.7.3. subscription-terminated

 This notification indicates that no further event records for this
 subscription should be expected from the publisher. A publisher may
 terminate the sending event records to a receiver for the following
 reasons:

 1. Configuration which removes a configured subscription, or a
 "kill-subscription" RPC which ends a dynamic subscription. These
 are identified via the reason "no-such-subscription".

 2. A referenced filter is no longer accessible. This is identified
 by "filter-unavailable".

 3. The event stream referenced by a subscription is no longer
 accessible by the receiver. This is identified by "stream-
 unavailable".

 4. A suspended subscription has exceeded some timeout. This is
 identified by "suspension-timeout".

 Each of the reasons above correspond one-to-one with a "reason"
 identityref specified within the YANG model.

 Below is a tree diagram for "subscription-terminated". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---n subscription-terminated
 +--ro id subscription-id
 +--ro reason identityref

 Figure 13: subscription-terminated notification tree diagram

 Note: this subscription state change notification MUST be sent to a
 dynamic subscription’s receiver when the subscription ends
 unexpectedly. The cases when this might happen are when a "kill-
 subscription" RPC is successful, or when some other event not
 including the reaching the subscription’s "stop-time" results in a
 publisher choosing to end the subscription.

Voit, et al. Expires April 26, 2019 [Page 29]

Internet-Draft Subscribed Notifications October 2018

2.7.4. subscription-suspended

 This notification indicates that a publisher has suspended the
 sending of event records to a receiver, and also indicates the
 possible loss of events. Suspension happens when capacity
 constraints stop a publisher from serving a valid subscription. The
 two conditions where is this possible are:

 1. "insufficient-resources" when a publisher is unable to produce
 the requested event stream of notification messages, and

 2. "unsupportable-volume" when the bandwidth needed to get generated
 notification messages to a receiver exceeds a threshold.

 These conditions are encoded within the "reason" object. No further
 notification will be sent until the subscription resumes or is
 terminated.

 Below is a tree diagram for "subscription-suspended". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---n subscription-suspended
 +--ro id subscription-id
 +--ro reason identityref

 Figure 14: subscription-suspended notification tree diagram

2.7.5. subscription-resumed

 This notification indicates that a previously suspended subscription
 has been resumed under the unmodified terms previously in place.
 Subscribed event records generated after the issuance of this
 subscription state change notification may now be sent.

 Below is the tree diagram for "subscription-resumed". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---n subscription-resumed
 +--ro id subscription-id

 Figure 15: subscription-resumed notification tree diagram

Voit, et al. Expires April 26, 2019 [Page 30]

Internet-Draft Subscribed Notifications October 2018

2.7.6. subscription-completed

 This notification indicates that a subscription that includes a
 "stop-time" has successfully finished passing event records upon the
 reaching of that time.

 Below is a tree diagram for "subscription-completed". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---n subscription-completed {configured}?
 +--ro id subscription-id

 Figure 16: subscription-completed notification tree diagram

2.7.7. replay-completed

 This notification indicates that all of the event records prior to
 the current time have been passed to a receiver. It is sent before
 any notification message containing an event record with a timestamp
 later than (1) the "stop-time" or (2) the subscription’s start time.

 If a subscription contains no "stop-time", or has a "stop-time" that
 has not been reached, then after the "replay-completed" notification
 has been sent, additional event records will be sent in sequence as
 they arise naturally on the publisher.

 Below is a tree diagram for "replay-completed". All objects
 contained in this tree are described within the included YANG model
 within Section 4.

 +---n replay-completed {replay}?
 +--ro id subscription-id

 Figure 17: replay-completed notification tree diagram

2.8. Subscription Monitoring

 In the operational state datastore, the container "subscriptions"
 maintains the state of all dynamic subscriptions, as well as all
 configured subscriptions. Using datastore retrieval operations, or
 subscribing to the "subscriptions" container
 [I-D.ietf-netconf-yang-push] allows the state of subscriptions and
 their connectivity to receivers to be monitored.

Voit, et al. Expires April 26, 2019 [Page 31]

Internet-Draft Subscribed Notifications October 2018

 Each subscription in the operational state datastore is represented
 as a list element. Included in this list are event counters for each
 receiver, the state of each receiver, as well as the subscription
 parameters currently in effect. The appearance of the leaf
 "configured-subscription-state" indicates that a particular
 subscription came into being via configuration. This leaf also
 indicates if the current state of that subscription is valid,
 invalid, and concluded.

 To understand the flow of event records within a subscription, there
 are two counters available for each receiver. The first counter is
 "sent-event-records" which shows the quantity of events actually
 identified for sending to a receiver. The second counter is
 "excluded-event-records" which shows event records not sent to
 receiver. "excluded-event-records" shows the combined results of
 both access control and per-subscription filtering. For configured
 subscriptions, counters are reset whenever the subscription is
 evaluated to valid (see (1) in Figure 8).

 Dynamic subscriptions are removed from the operational state
 datastore once they expire (reaching stop-time) or when they are
 terminated. While many subscription objects are shown as
 configurable, dynamic subscriptions are only included within the
 operational state datastore and as a result are not configurable.

2.9. Advertisement

 Publishers supporting this document MUST indicate support of the YANG
 model "ietf-subscribed-notifications" within the YANG library of the
 publisher. In addition if supported, the optional features "encode-
 xml", "encode-json", "configured" "supports-vrf", "qos", "xpath",
 "subtree", "interface-designation", "dscp", and "replay" MUST be
 indicated.

3. YANG Data Model Trees

 This section contains tree diagrams for nodes defined in Section 4.
 For tree diagrams of subscription state change notifications, see
 Section 2.7. For the tree diagrams for the RPCs, see Section 2.4.

3.1. Event Streams Container

 A publisher maintains a list of available event streams as
 operational data. This list contains both standardized and vendor-
 specific event streams. This enables subscribers to discover what
 streams a publisher supports.

Voit, et al. Expires April 26, 2019 [Page 32]

Internet-Draft Subscribed Notifications October 2018

 +--ro streams
 +--ro stream* [name]
 +--ro name string
 +--ro description string
 +--ro replay-support? empty {replay}?
 +--ro replay-log-creation-time yang:date-and-time
 | {replay}?
 +--ro replay-log-aged-time? yang:date-and-time
 {replay}?

 Figure 18: Stream Container tree diagram

 Above is a tree diagram for the "streams" container. All objects
 contained in this tree are described within the included YANG model
 within Section 4.

3.2. Filters Container

 The "filters" container maintains a list of all subscription filters
 that persist outside the life-cycle of a single subscription. This
 enables pre-defined filters which may be referenced by more than one
 subscription.

 +--rw filters
 +--rw stream-filter* [name]
 +--rw name string
 +--rw (filter-spec)?
 +--:(stream-subtree-filter)
 | +--rw stream-subtree-filter? <anydata> {subtree}?
 +--:(stream-xpath-filter)
 +--rw stream-xpath-filter? yang:xpath1.0 {xpath}?

 Figure 19: Filter Container tree diagram

 Above is a tree diagram for the filters container. All objects
 contained in this tree are described within the included YANG model
 within Section 4.

3.3. Subscriptions Container

 The "subscriptions" container maintains a list of all subscriptions
 on a publisher, both configured and dynamic. It can be used to
 retrieve information about the subscriptions which a publisher is
 serving.

 +--rw subscriptions

Voit, et al. Expires April 26, 2019 [Page 33]

Internet-Draft Subscribed Notifications October 2018

 +--rw subscription* [id]
 +--rw id
 | subscription-id
 +--rw (target)
 | +--:(stream)
 | +--rw (stream-filter)?
 | | +--:(by-reference)
 | | | +--rw stream-filter-name
 | | | stream-filter-ref
 | | +--:(within-subscription)
 | | +--rw (filter-spec)?
 | | +--:(stream-subtree-filter)
 | | | +--rw stream-subtree-filter? <anydata>
 | | | {subtree}?
 | | +--:(stream-xpath-filter)
 | | +--rw stream-xpath-filter?
 | | yang:xpath1.0 {xpath}?
 | +--rw stream stream-ref
 | +--ro replay-start-time?
 | | yang:date-and-time {replay}?
 | +--rw configured-replay? empty
 | {configured,replay}?
 +--rw stop-time?
 | yang:date-and-time
 +--rw dscp? inet:dscp
 | {dscp}?
 +--rw weighting? uint8 {qos}?
 +--rw dependency?
 | subscription-id {qos}?
 +--rw transport? transport
 | {configured}?
 +--rw encoding? encoding
 +--rw purpose? string
 | {configured}?
 +--rw (notification-message-origin)? {configured}?
 | +--:(interface-originated)
 | | +--rw source-interface?
 | | if:interface-ref {interface-designation}?
 | +--:(address-originated)
 | +--rw source-vrf?
 | | -> /ni:network-instances/network-instance/name
 | | {supports-vrf}?
 | +--rw source-address?
 | inet:ip-address-no-zone
 +--ro configured-subscription-state? enumeration
 | {configured}?
 +--rw receivers
 +--rw receiver* [name]

Voit, et al. Expires April 26, 2019 [Page 34]

Internet-Draft Subscribed Notifications October 2018

 +--rw name string
 +--ro sent-event-records?
 | yang:zero-based-counter64
 +--ro excluded-event-records?
 | yang:zero-based-counter64
 +--ro state enumeration
 +---x reset {configured}?
 +--ro output
 +--ro time yang:date-and-time

 Figure 20: Subscriptions tree diagram

 Above is a tree diagram for the subscriptions container. All objects
 contained in this tree are described within the included YANG model
 within Section 4.

4. Data Model

 This module imports typedefs from [RFC6991], [RFC8343], and
 [RFC8040], and it references [I-D.draft-ietf-rtgwg-ni-model],
 [XPATH], [RFC6241], [RFC7540], [RFC7951] and [RFC7950].

 [note to the RFC Editor - please replace XXXX within this YANG model
 with the number of this document, and XXXY with the number of
 [I-D.draft-ietf-rtgwg-ni-model]]

 [note to the RFC Editor - please replace the two dates within the
 YANG module with the date of publication]

 <CODE BEGINS> file "ietf-subscribed-notifications@2018-10-11.yang"
 module ietf-subscribed-notifications {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications";

 prefix sn;

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
 }

Voit, et al. Expires April 26, 2019 [Page 35]

Internet-Draft Subscribed Notifications October 2018

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }
 import ietf-network-instance {
 prefix ni;
 reference
 "draft-ietf-rtgwg-ni-model-12: YANG Model for Network Instances";
 }
 import ietf-restconf {
 prefix rc;
 reference
 "RFC 8040: RESTCONF Protocol";
 }
 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }

 organization "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Author: Eric Voit
 <mailto:evoit@cisco.com>

 Author: Alberto Gonzalez Prieto
 <mailto:alberto.gonzalez@microsoft.com>

 Author: Einar Nilsen-Nygaard
 <mailto:einarnn@cisco.com>

 Author: Ambika Prasad Tripathy
 <mailto:ambtripa@cisco.com>";

 description
 "Contains a YANG specification for subscribing to event records
 and receiving matching content within notification messages.

 Copyright (c) 2018 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

Voit, et al. Expires April 26, 2019 [Page 36]

Internet-Draft Subscribed Notifications October 2018

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section
 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC
 itself for full legal notices.";

 revision 2018-10-11 {
 description
 "Initial version";
 reference
 "RFC XXXX:Customized Subscriptions to a Publisher’s Event Streams";
 }

 /*
 * FEATURES
 */

 feature configured {
 description
 "This feature indicates that configuration of subscription is
 supported.";
 }

 feature dscp {
 description
 "This feature indicates a publisher supports the placement of
 suggested prioritization levels for network transport within
 notification messages.";
 }

 feature encode-json {
 description
 "This feature indicates that JSON encoding of notification
 messages is supported.";
 }

 feature encode-xml {
 description
 "This feature indicates that XML encoding of notification
 messages is supported.";
 }

 feature interface-designation {
 description
 "This feature indicates a publisher supports sourcing all

Voit, et al. Expires April 26, 2019 [Page 37]

Internet-Draft Subscribed Notifications October 2018

 receiver interactions for a configured subscription from a single
 designated egress interface.";
 }

 feature qos {
 description
 "This feature indicates a publisher supports absolute
 dependencies of one subscription’s traffic over another, as well
 as weighted bandwidth sharing between subscriptions. Both of
 these are Quality of Service (QoS) features which allow
 differentiated treatment of notification messages between a
 publisher and a specific receiver.";
 }

 feature replay {
 description
 "This feature indicates that historical event record replay is
 supported. With replay, it is possible for past event records to
 be streamed in chronological order.";
 }

 feature subtree {
 description
 "This feature indicates support for YANG subtree filtering.";
 reference "RFC 6241, Section 6.";
 }

 feature supports-vrf {
 description
 "This feature indicates a publisher supports VRF configuration
 for configured subscriptions. VRF support for dynamic
 subscriptions does not require this feature.";
 reference "RFC XXXY, Section 6.";
 }

 feature xpath {
 description
 "This feature indicates support for XPath filtering.";
 reference "http://www.w3.org/TR/1999/REC-xpath-19991116";
 }

 /*
 * EXTENSIONS
 */

 extension subscription-state-notification {
 description
 "This statement applies only to notifications. It indicates that

Voit, et al. Expires April 26, 2019 [Page 38]

Internet-Draft Subscribed Notifications October 2018

 the notification is a subscription state change notification.
 Therefore it does not participate in a regular event stream and
 does not need to be specifically subscribed to in order to be
 received. This statement can only occur as a substatement to the
 YANG ’notification’ statement. This statement is not for use
 outside of this YANG module.";
 }

 /*
 * IDENTITIES
 */

 /* Identities for RPC and Notification errors */

 identity delete-subscription-error {
 description
 "Problem found while attempting to fulfill either a
 ’delete-subscription’ RPC request or a ’kill-subscription’
 RPC request.";
 }

 identity establish-subscription-error {
 description
 "Problem found while attempting to fulfill an
 ’establish-subscription’ RPC request.";
 }

 identity modify-subscription-error {
 description
 "Problem found while attempting to fulfill a
 ’modify-subscription’ RPC request.";
 }

 identity subscription-suspended-reason {
 description
 "Problem condition communicated to a receiver as part of a
 ’subscription-terminated’ notification.";
 }

 identity subscription-terminated-reason {
 description
 "Problem condition communicated to a receiver as part of a
 ’subscription-terminated’ notification.";
 }

 identity dscp-unavailable {
 base establish-subscription-error;
 if-feature "dscp";

Voit, et al. Expires April 26, 2019 [Page 39]

Internet-Draft Subscribed Notifications October 2018

 description
 "The publisher is unable mark notification messages with a
 prioritization information in a way which will be respected
 during network transit.";
 }

 identity encoding-unsupported {
 base establish-subscription-error;
 description
 "Unable to encode notification messages in the desired format.";
 }

 identity filter-unavailable {
 base subscription-terminated-reason;
 description
 "Referenced filter does not exist. This means a receiver is
 referencing a filter which doesn’t exist, or to which they do not
 have access permissions.";
 }

 identity filter-unsupported {
 base establish-subscription-error;
 base modify-subscription-error;
 description
 "Cannot parse syntax within the filter. This failure can be from
 a syntax error, or a syntax too complex to be processed by the
 publisher.";
 }

 identity insufficient-resources {
 base establish-subscription-error;
 base modify-subscription-error;
 base subscription-suspended-reason;
 description
 "The publisher has insufficient resources to support the
 requested subscription. An example might be that allocated CPU
 is too limited to generate the desired set of notification
 messages.";
 }

 identity no-such-subscription {
 base modify-subscription-error;
 base delete-subscription-error;
 base subscription-terminated-reason;
 description
 "Referenced subscription doesn’t exist. This may be as a result of
 a non-existent subscription id, an id which belongs to another
 subscriber, or an id for configured subscription.";

Voit, et al. Expires April 26, 2019 [Page 40]

Internet-Draft Subscribed Notifications October 2018

 }

 identity replay-unsupported {
 base establish-subscription-error;
 if-feature "replay";
 description
 "Replay cannot be performed for this subscription. This means the
 publisher will not provide the requested historic information
 from the event stream via replay to this receiver.";
 }

 identity stream-unavailable {
 base subscription-terminated-reason;
 description
 "Not a subscribable event stream. This means the referenced event
 stream is not available for subscription by the receiver.";
 }

 identity suspension-timeout {
 base subscription-terminated-reason;
 description
 "Termination of previously suspended subscription. The publisher
 has eliminated the subscription as it exceeded a time limit for
 suspension.";
 }

 identity unsupportable-volume {
 base subscription-suspended-reason;
 description
 "The publisher does not have the network bandwidth needed to get
 the volume of generated information intended for a receiver.";
 }

 /* Identities for encodings */

 identity configurable-encoding {
 description
 "If a transport identity derives from this identity, it means
 that it supports configurable encodings.";
 }

 identity encoding {
 description
 "Base identity to represent data encodings";
 }

 identity encode-xml {
 base encoding;

Voit, et al. Expires April 26, 2019 [Page 41]

Internet-Draft Subscribed Notifications October 2018

 if-feature "encode-xml";
 description
 "Encode data using XML as described in RFC 7950";
 reference
 "RFC 7950 - The YANG 1.1 Data Modeling Language";
 }

 identity encode-json {
 base encoding;
 if-feature "encode-json";
 description
 "Encode data using JSON as described in RFC 7951";
 reference
 "RFC 7951 - JSON Encoding of Data Modeled with YANG";
 }

 /* Identities for transports */
 identity transport {
 description
 "An identity that represents the underlying mechanism for
 passing notification messages.";
 }

 /*
 * TYPEDEFs
 */

 typedef encoding {
 type identityref {
 base encoding;
 }
 description
 "Specifies a data encoding, e.g. for a data subscription.";
 }

 typedef stream-filter-ref {
 type leafref {
 path "/sn:filters/sn:stream-filter/sn:name";
 }
 description
 "This type is used to reference an event stream filter.";
 }

 typedef stream-ref {
 type leafref {
 path "/sn:streams/sn:stream/sn:name";
 }
 description

Voit, et al. Expires April 26, 2019 [Page 42]

Internet-Draft Subscribed Notifications October 2018

 "This type is used to reference a system-provided event stream.";
 }

 typedef subscription-id {
 type uint32;
 description
 "A type for subscription identifiers.";
 }

 typedef transport {
 type identityref {
 base transport;
 }
 description
 "Specifies transport used to send notification messages to a
 receiver.";
 }

 /*
 * GROUPINGS
 */

 grouping stream-filter-elements {
 description
 "This grouping defines the base for filters applied to event
 streams.";
 choice filter-spec {
 description
 "The content filter specification for this request.";
 anydata stream-subtree-filter {
 if-feature "subtree";
 description
 "Event stream evaluation criteria encoded in the syntax of a
 subtree filter as defined in RFC 6241, Section 6.

 The subtree filter is applied to the representation of
 individual, delineated event records as contained within the
 event stream.

 If the subtree filter returns a non-empty node set, the
 filter matches the event record, and the event record is
 included in the notification message sent to the receivers.";
 reference "RFC 6241, Section 6.";
 }
 leaf stream-xpath-filter {
 if-feature "xpath";
 type yang:xpath1.0;
 description

Voit, et al. Expires April 26, 2019 [Page 43]

Internet-Draft Subscribed Notifications October 2018

 "Event stream evaluation criteria encoded in the syntax of
 an XPath 1.0 expression.

 The XPath expression is evaluated on the representation of
 individual, delineated event records as contained within
 the event stream.

 The result of the XPath expression is converted to a
 boolean value using the standard XPath 1.0 rules. If the
 boolean value is ’true’, the filter matches the event
 record, and the event record is included in the notification
 message sent to the receivers.

 The expression is evaluated in the following XPath context:

 o The set of namespace declarations are those in scope on
 the ’stream-xpath-filter’ leaf element.

 o The set of variable bindings is empty.

 o The function library is the core function library, and
 the XPath functions defined in section 10 in RFC 7950.

 o The context node is the root node.";
 reference
 "http://www.w3.org/TR/1999/REC-xpath-19991116
 RFC 7950, Section 10.";

 }
 }
 }

 grouping update-qos {
 description
 "This grouping describes Quality of Service information
 concerning a subscription. This information is passed to lower
 layers for transport prioritization and treatment";
 leaf dscp {
 if-feature "dscp";
 type inet:dscp;
 default "0";
 description
 "The desired network transport priority level. This is the
 priority set on notification messages encapsulating the
 results of the subscription. This transport priority is
 shared for all receivers of a given subscription.";
 }
 leaf weighting {

Voit, et al. Expires April 26, 2019 [Page 44]

Internet-Draft Subscribed Notifications October 2018

 if-feature "qos";
 type uint8 {
 range "0 .. 255";
 }
 description
 "Relative weighting for a subscription. Allows an underlying
 transport layer perform informed load balance allocations
 between various subscriptions";
 reference
 "RFC-7540, section 5.3.2";
 }
 leaf dependency {
 if-feature "qos";
 type subscription-id;
 description
 "Provides the ’subscription-id’ of a parent subscription which
 has absolute precedence should that parent have push updates
 ready to egress the publisher. In other words, there should be
 no streaming of objects from the current subscription if
 the parent has something ready to push.

 If a dependency is asserted via configuration or via RPC, but
 the referenced ’subscription-id’ does not exist, the
 dependency is silently discarded. If a referenced
 subscription is deleted this dependency is removed.";
 reference
 "RFC-7540, section 5.3.1";
 }
 }

 grouping subscription-policy-modifiable {
 description
 "This grouping describes all objects which may be changed
 in a subscription.";
 choice target {
 mandatory true;
 description
 "Identifies the source of information against which a
 subscription is being applied, as well as specifics on the
 subset of information desired from that source.";
 case stream {
 choice stream-filter {
 description
 "An event stream filter can be applied to a subscription.
 That filter will come either referenced from a global list,
 or be provided within the subscription itself.";
 case by-reference {
 description

Voit, et al. Expires April 26, 2019 [Page 45]

Internet-Draft Subscribed Notifications October 2018

 "Apply a filter that has been configured separately.";
 leaf stream-filter-name {
 type stream-filter-ref;
 mandatory true;
 description
 "References an existing event stream filter which is to
 be applied to an event stream for the subscription.";
 }
 }
 case within-subscription {
 description
 "Local definition allows a filter to have the same
 lifecycle as the subscription.";
 uses stream-filter-elements;
 }
 }
 }
 }
 leaf stop-time {
 type yang:date-and-time;
 description
 "Identifies a time after which notification messages for a
 subscription should not be sent. If ’stop-time’ is not
 present, the notification messages will continue until the
 subscription is terminated. If ’replay-start-time’ exists,
 ’stop-time’ must be for a subsequent time. If
 ’replay-start-time’ doesn’t exist, ’stop-time’ when established
 must be for a future time.";
 }
 }

 grouping subscription-policy-dynamic {
 description
 "This grouping describes the only information concerning a
 subscription which can be passed over the RPCs defined in this
 model.";
 uses subscription-policy-modifiable {
 augment target/stream {
 description
 "Adds additional objects which can be modified by RPC.";
 leaf stream {
 type stream-ref {
 require-instance false;
 }
 mandatory true;
 description
 "Indicates the event stream to be considered for
 this subscription.";

Voit, et al. Expires April 26, 2019 [Page 46]

Internet-Draft Subscribed Notifications October 2018

 }
 leaf replay-start-time {
 if-feature "replay";
 type yang:date-and-time;
 config false;
 description
 "Used to trigger the replay feature for a dynamic
 subscription, with event records being selected needing to
 be at or after the start at the time specified. If
 ’replay-start-time’ is not present, this is not a replay
 subscription and event record push should start
 immediately. It is never valid to specify start times that
 are later than or equal to the current time.";
 }
 }
 }
 uses update-qos;
 }

 grouping subscription-policy {
 description
 "This grouping describes the full set of policy information
 concerning both dynamic and configured subscriptions, with the
 exclusion of both receivers and networking information specific
 to the publisher such as what interface should be used to
 transmit notification messages.";
 uses subscription-policy-dynamic;
 leaf transport {
 if-feature "configured";
 type transport;
 description
 "For a configured subscription, this leaf specifies the
 transport used to deliver messages destined to all receivers
 of that subscription.";
 }
 leaf encoding {
 when ’not(../transport) or derived-from(../transport,
 "sn:configurable-encoding")’;
 type encoding;
 description
 "The type of encoding for notification messages. For a
 dynamic subscription, if not included as part of an establish-
 subscription RPC, the encoding will be populated with the
 encoding used by that RPC. For a configured subscription, if
 not explicitly configured the encoding with be the default
 encoding for an underlying transport.";
 }
 leaf purpose {

Voit, et al. Expires April 26, 2019 [Page 47]

Internet-Draft Subscribed Notifications October 2018

 if-feature "configured";
 type string;
 description
 "Open text allowing a configuring entity to embed the
 originator or other specifics of this subscription.";
 }
 }

 /*
 * RPCs
 */

 rpc establish-subscription {
 description
 "This RPC allows a subscriber to create (and possibly negotiate)
 a subscription on its own behalf. If successful, the
 subscription remains in effect for the duration of the
 subscriber’s association with the publisher, or until the
 subscription is terminated. In case an error occurs, or the
 publisher cannot meet the terms of a subscription, an RPC error
 is returned, the subscription is not created. In that case, the
 RPC reply’s ’error-info’ MAY include suggested parameter
 settings that would have a higher likelihood of succeeding in a
 subsequent ’establish-subscription’ request.";
 input {
 uses subscription-policy-dynamic;
 leaf encoding {
 type encoding;
 description
 "The type of encoding for the subscribed data. If not
 included as part of the RPC, the encoding MUST be set by the
 publisher to be the encoding used by this RPC.";
 }
 }
 output {
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "Identifier used for this subscription.";
 }
 leaf replay-start-time-revision {
 if-feature "replay";
 type yang:date-and-time;
 description
 "If a replay has been requested, this represents the
 earliest time covered by the event buffer for the requested
 event stream. The value of this object is the

Voit, et al. Expires April 26, 2019 [Page 48]

Internet-Draft Subscribed Notifications October 2018

 ’replay-log-aged-time’ if it exists. Otherwise it is the
 ’replay-log-creation-time’. All buffered event records
 after this time will be replayed to a receiver. This
 object will only be sent if the starting time has been
 revised to be later than the time requested by the
 subscriber.";
 }
 }
 }

 rc:yang-data establish-subscription-stream-error-info {
 container establish-subscription-stream-error-info {
 description
 "If any ’establish-subscription’ RPC parameters are
 unsupportable against the event stream, a subscription is not
 created and the RPC error response MUST indicate the reason
 why the subscription failed to be created. This yang-data MAY
 be inserted as structured data within a subscription’s RPC
 error response to indicate the failure reason. This yang-data
 MUST be inserted if hints are to be provided back to the
 subscriber.";
 leaf reason {
 type identityref {
 base establish-subscription-error;
 }
 description
 "Indicates the reason why the subscription has failed to
 be created to a targeted event stream.";
 }
 leaf filter-failure-hint {
 type string;
 description
 "Information describing where and/or why a provided filter
 was unsupportable for a subscription.";
 }
 }
 }

 rpc modify-subscription {
 description
 "This RPC allows a subscriber to modify a dynamic subscription’s
 parameters. If successful, the changed subscription
 parameters remain in effect for the duration of the
 subscription, until the subscription is again modified, or until
 the subscription is terminated. In case of an error or an
 inability to meet the modified parameters, the subscription is
 not modified and the original subscription parameters remain in
 effect. In that case, the RPC error MAY include ’error-info’

Voit, et al. Expires April 26, 2019 [Page 49]

Internet-Draft Subscribed Notifications October 2018

 suggested parameter hints that would have a high likelihood of
 succeeding in a subsequent ’modify-subscription’ request. A
 successful ’modify-subscription’ will return a suspended
 subscription to an ’active’ state.";
 input {
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "Identifier to use for this subscription.";
 }
 uses subscription-policy-modifiable;
 }
 }

 rc:yang-data modify-subscription-stream-error-info {
 container modify-subscription-stream-error-info {
 description
 "This yang-data MAY be provided as part of a subscription’s RPC
 error response when there is a failure of a
 ’modify-subscription’ RPC which has been made against an event
 stream. This yang-data MUST be used if hints are to be
 provided back to the subscriber.";
 leaf reason {
 type identityref {
 base modify-subscription-error;
 }
 description
 "Information in a ’modify-subscription’ RPC error response
 which indicates the reason why the subscription to an event
 stream has failed to be modified.";
 }
 leaf filter-failure-hint {
 type string;
 description
 "Information describing where and/or why a provided filter
 was unsupportable for a subscription.";
 }
 }
 }

 rpc delete-subscription {
 description
 "This RPC allows a subscriber to delete a subscription that
 was previously created from by that same subscriber using the
 ’establish-subscription’ RPC.

 If an error occurs, the server replies with an ’rpc-error’ where

Voit, et al. Expires April 26, 2019 [Page 50]

Internet-Draft Subscribed Notifications October 2018

 the ’error-info’ field MAY contain an
 ’delete-subscription-error-info’ structure.";
 input {
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "Identifier of the subscription that is to be deleted.
 Only subscriptions that were created using
 ’establish-subscription’ from the same origin as this RPC
 can be deleted via this RPC.";
 }
 }
 }

 rpc kill-subscription {
 nacm:default-deny-all;
 description
 "This RPC allows an operator to delete a dynamic subscription
 without restrictions on the originating subscriber or underlying
 transport session.

 If an error occurs, the server replies with an ’rpc-error’ where
 the ’error-info’ field MAY contain an
 ’delete-subscription-error-info’ structure.";
 input {
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "Identifier of the subscription that is to be deleted. Only
 subscriptions that were created using
 ’establish-subscription’ can be deleted via this RPC.";
 }
 }
 }

 rc:yang-data delete-subscription-error-info {
 container delete-subscription-error-info {
 description
 "If a ’delete-subscription’ RPC or a ’kill-subscription’ RPC
 fails, the subscription is not deleted and the RPC error
 response MUST indicate the reason for this failure. This
 yang-data MAY be inserted as structured data within a
 subscription’s RPC error response to indicate the failure
 reason.";
 leaf reason {
 type identityref {

Voit, et al. Expires April 26, 2019 [Page 51]

Internet-Draft Subscribed Notifications October 2018

 base delete-subscription-error;
 }
 mandatory true;
 description
 "Indicates the reason why the subscription has failed to be
 deleted.";
 }
 }
 }

 /*
 * NOTIFICATIONS
 */

 notification replay-completed {
 sn:subscription-state-notification;
 if-feature "replay";
 description
 "This notification is sent to indicate that all of the replay
 notifications have been sent. It must not be sent for any other
 reason.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 }

 notification subscription-completed {
 sn:subscription-state-notification;
 if-feature "configured";
 description
 "This notification is sent to indicate that a subscription has
 finished passing event records, as the ’stop-time’ has been
 reached.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the gracefully completed subscription.";
 }
 }

 notification subscription-modified {
 sn:subscription-state-notification;
 description
 "This notification indicates that a subscription has been

Voit, et al. Expires April 26, 2019 [Page 52]

Internet-Draft Subscribed Notifications October 2018

 modified. Notification messages sent from this point on will
 conform to the modified terms of the subscription. For
 completeness, this subscription state change notification
 includes both modified and non-modified aspects of a
 subscription.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses subscription-policy {
 refine "target/stream/stream-filter/within-subscription" {
 description
 "Filter applied to the subscription. If the
 ’stream-filter-name’ is populated, the filter within the
 subscription came from the ’filters’ container. Otherwise it
 is populated in-line as part of the subscription.";
 }
 }
 }

 notification subscription-resumed {
 sn:subscription-state-notification;
 description
 "This notification indicates that a subscription that had
 previously been suspended has resumed. Notifications will once
 again be sent. In addition, a ’subscription-resumed’ indicates
 that no modification of parameters has occurred since the last
 time event records have been sent.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 }

 notification subscription-started {
 sn:subscription-state-notification;
 if-feature "configured";
 description
 "This notification indicates that a subscription has started and
 notifications are beginning to be sent. This notification shall
 only be sent to receivers of a subscription; it does not
 constitute a general-purpose notification.";
 leaf id {
 type subscription-id;

Voit, et al. Expires April 26, 2019 [Page 53]

Internet-Draft Subscribed Notifications October 2018

 mandatory true;
 description
 "This references the affected subscription.";
 }
 uses subscription-policy {
 refine "target/stream/replay-start-time" {
 description
 "Indicates the time that a replay using for the streaming of
 buffered event records. This will be populated with the
 most recent of the following: the event time of the previous
 event record sent to a receiver, the
 ’replay-log-creation-time’, the ’replay-log-aged-time’,
 or the most recent publisher boot time.";
 }
 refine "target/stream/stream-filter/within-subscription" {
 description
 "Filter applied to the subscription. If the
 ’stream-filter-name’ is populated, the filter within the
 subscription came from the ’filters’ container. Otherwise it
 is populated in-line as part of the subscription.";
 }
 augment "target/stream" {
 description
 "This augmentation adds additional parameters specific to a
 subscription-started notification.";
 leaf replay-previous-event-time {
 when "../replay-start-time";
 if-feature "replay";
 type yang:date-and-time;
 description
 "If there is at least one event in the replay buffer prior
 to ’replay-start-time’, this gives the time of the event
 generated immediately prior to the ’replay-start-time’.

 If a receiver previously received event records for this
 configured subscription, it can compare this time to the
 last event record previously received. If the two are not
 the same (perhaps due to a reboot), then a dynamic replay
 can be initiated to acquire any missing event records.";
 }
 }
 }
 }

 notification subscription-suspended {
 sn:subscription-state-notification;
 description
 "This notification indicates that a suspension of the

Voit, et al. Expires April 26, 2019 [Page 54]

Internet-Draft Subscribed Notifications October 2018

 subscription by the publisher has occurred. No further
 notifications will be sent until the subscription resumes.
 This notification shall only be sent to receivers of a
 subscription; it does not constitute a general-purpose
 notification.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 leaf reason {
 type identityref {
 base subscription-suspended-reason;
 }
 mandatory true;
 description
 "Identifies the condition which resulted in the suspension.";
 }
 }

 notification subscription-terminated {
 sn:subscription-state-notification;
 description
 "This notification indicates that a subscription has been
 terminated.";
 leaf id {
 type subscription-id;
 mandatory true;
 description
 "This references the affected subscription.";
 }
 leaf reason {
 type identityref {
 base subscription-terminated-reason;
 }
 mandatory true;
 description
 "Identifies the condition which resulted in the termination .";
 }
 }

 /*
 * DATA NODES
 */

 container streams {

Voit, et al. Expires April 26, 2019 [Page 55]

Internet-Draft Subscribed Notifications October 2018

 config false;
 description
 "This container contains information on the built-in event
 streams provided by the publisher.";
 list stream {
 key "name";
 description
 "Identifies the built-in event streams that are supported by
 the publisher.";
 leaf name {
 type string;
 description
 "A handle for a system-provided event stream made up of a
 sequential set of event records, each of which is
 characterized by its own domain and semantics.";
 }
 leaf description {
 type string;
 mandatory true;
 description
 "A description of the event stream, including such
 information as the type of event records that are available
 within this event stream.";
 }
 leaf replay-support {
 if-feature "replay";
 type empty;
 description
 "Indicates that event record replay is available on this
 event stream.";
 }
 leaf replay-log-creation-time {
 when "../replay-support";
 if-feature "replay";
 type yang:date-and-time;
 mandatory true;
 description
 "The timestamp of the creation of the log used to support the
 replay function on this event stream. This time might be
 earlier than the earliest available information contained in
 the log. This object is updated if the log resets for some
 reason.";
 }
 leaf replay-log-aged-time {
 when "../replay-support";
 if-feature "replay";
 type yang:date-and-time;
 description

Voit, et al. Expires April 26, 2019 [Page 56]

Internet-Draft Subscribed Notifications October 2018

 "The timestamp associated with last event record which has
 been aged out of the log. This timestamp identifies how far
 back into history this replay log extends, if it doesn’t
 extend back to the ’replay-log-creation-time’. This object
 MUST be present if replay is supported and any event records
 have been aged out of the log.";
 }
 }
 }

 container filters {
 description
 "This container contains a list of configurable filters
 that can be applied to subscriptions. This facilitates
 the reuse of complex filters once defined.";
 list stream-filter {
 key "name";
 description
 "A list of pre-configured filters that can be applied to
 subscriptions.";
 leaf name {
 type string;
 description
 "An name to differentiate between filters.";
 }
 uses stream-filter-elements;
 }
 }

 container subscriptions {
 description
 "Contains the list of currently active subscriptions, i.e.
 subscriptions that are currently in effect, used for
 subscription management and monitoring purposes. This includes
 subscriptions that have been setup via RPC primitives as well as
 subscriptions that have been established via configuration.";
 list subscription {
 key "id";
 description
 "The identity and specific parameters of a subscription.
 Subscriptions within this list can be created using a control
 channel or RPC, or be established through configuration.

 If configuration operations or the ’kill-subscription’ RPC are
 used to delete a subscription, a ’subscription-terminated’
 message is sent to any active or suspended receivers.";
 leaf id {
 type subscription-id;

Voit, et al. Expires April 26, 2019 [Page 57]

Internet-Draft Subscribed Notifications October 2018

 description
 "Identifier of a subscription; unique within a publisher";
 }
 uses subscription-policy {
 refine "target/stream/stream" {
 description
 "Indicates the event stream to be considered for this
 subscription. If an event stream has been removed,
 and no longer can be referenced by an active subscription,
 send a ’subscription-terminated’ notification with
 ’stream-unavailable’ as the reason. If a configured
 subscription refers to a non-existent event stream, move
 that subscription to the ’invalid’ state.";
 }
 refine "transport" {
 description
 "For a configured subscription, this leaf specifies the
 transport used to deliver messages destined to all
 receivers of that subscription. This object is mandatory
 for subscriptions in the configuration datastore. This
 object is not mandatory for dynamic subscriptions within
 the operational state datastore. The object should not
 be present for dynamic subscriptions.";
 }
 augment "target/stream" {
 description
 "Enables objects to added to a configured stream
 subscription";
 leaf configured-replay {
 if-feature "configured";
 if-feature "replay";
 type empty;
 description
 "The presence of this leaf indicates that replay for the
 configured subscription should start at the earliest time
 in the event log, or at the publisher boot time, which
 ever is later.";
 }
 }
 }
 choice notification-message-origin {
 if-feature "configured";
 description
 "Identifies the egress interface on the publisher from which
 notification messages are to be sent.";
 case interface-originated {
 description
 "When notification messages to egress a specific,

Voit, et al. Expires April 26, 2019 [Page 58]

Internet-Draft Subscribed Notifications October 2018

 designated interface on the publisher.";
 leaf source-interface {
 if-feature "interface-designation";
 type if:interface-ref;
 description
 "References the interface for notification messages.";
 }
 }
 case address-originated {
 description
 "When notification messages are to depart from a publisher
 using specific originating address and/or routing context
 information.";
 leaf source-vrf {
 if-feature "supports-vrf";
 type leafref {
 path "/ni:network-instances/ni:network-instance/ni:name";
 }
 description
 "VRF from which notification messages should egress a
 publisher.";
 }
 leaf source-address {
 type inet:ip-address-no-zone;
 description
 "The source address for the notification messages. If a
 source VRF exists, but this object doesn’t, a publisher’s
 default address for that VRF must be used.";
 }
 }
 }
 leaf configured-subscription-state {
 if-feature "configured";
 type enumeration {
 enum valid {
 value 1;
 description
 "Subscription is supportable with current parameters.";
 }
 enum invalid {
 value 2;
 description
 "The subscription as a whole is unsupportable with its
 current parameters.";
 }
 enum concluded {
 value 3;
 description

Voit, et al. Expires April 26, 2019 [Page 59]

Internet-Draft Subscribed Notifications October 2018

 "A subscription is inactive as it has hit a stop time,
 but not yet been removed from configuration.";
 }
 }
 config false;
 description
 "The presence of this leaf indicates that the subscription
 originated from configuration, not through a control channel
 or RPC. The value indicates the system established state
 of the subscription.";
 }
 container receivers {
 description
 "Set of receivers in a subscription.";
 list receiver {
 key "name";
 min-elements 1;
 description
 "A host intended as a recipient for the notification
 messages of a subscription. For configured subscriptions,
 transport specific network parameters (or a leafref to
 those parameters) may augmentated to a specific receiver
 within this list.";
 leaf name {
 type string;
 description
 "Identifies a unique receiver for a subscription.";
 }
 leaf sent-event-records {
 type yang:zero-based-counter64;
 config false;
 description
 "The number of event records sent to the receiver. The
 count is initialized when a dynamic subscription is
 established, or when a configured receiver
 transitions to the valid state.";
 }
 leaf excluded-event-records {
 type yang:zero-based-counter64;
 config false;
 description
 "The number of event records explicitly removed either
 via an event stream filter or an access control filter so
 that they are not passed to a receiver. This count is
 set to zero each time ’sent-event-records’ is
 initialized.";
 }
 leaf state {

Voit, et al. Expires April 26, 2019 [Page 60]

Internet-Draft Subscribed Notifications October 2018

 type enumeration {
 enum active {
 value 1;
 description
 "Receiver is currently being sent any applicable
 notification messages for the subscription.";
 }
 enum suspended {
 value 2;
 description
 "Receiver state is ’suspended’, so the publisher
 is currently unable to provide notification messages
 for the subscription.";
 }
 enum connecting {
 value 3;
 if-feature "configured";
 description
 "A subscription has been configured, but a
 ’subscription-started’ subscription state change
 notification needs to be successfully received before
 notification messages are sent.

 If the ’reset’ action is invoked for a receiver of an
 active configured subscription, the state must be
 moved to ’connecting’.";
 }
 enum disconnected {
 value 4;
 if-feature "configured";
 description
 "A subscription has failed in sending a subscription
 started state change to the receiver.
 Additional attempts at connection attempts are not
 currently being made.";
 }
 }
 config false;
 mandatory true;
 description
 "Specifies the state of a subscription from the
 perspective of a particular receiver. With this info it
 is possible to determine whether a subscriber is
 currently generating notification messages intended for
 that receiver.";
 }
 action reset {
 if-feature "configured";

Voit, et al. Expires April 26, 2019 [Page 61]

Internet-Draft Subscribed Notifications October 2018

 description
 "Allows the reset of this configured subscription
 receiver to the ’connecting’ state. This enables the
 connection process to be re-initiated.";
 output {
 leaf time {
 type yang:date-and-time;
 mandatory true;
 description
 "Time a publisher returned the receiver to a
 ’connecting’ state.";
 }
 }
 }
 }
 }
 }
 }
 }
 <CODE ENDS>

5. Considerations

5.1. IANA Considerations

 This document registers the following namespace URI in the "IETF XML
 Registry" [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

 This document registers the following YANG module in the "YANG Module
 Names" registry [RFC6020]:

 Name: ietf-subscribed-notifications
 Namespace: urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications
 Prefix: sn
 Reference: draft-ietf-netconf-ietf-subscribed-notifications-11.txt
 (RFC form)

5.2. Implementation Considerations

 To support deployments including both configured and dynamic
 subscriptions, it is recommended to split the subscription "id"
 domain into static and dynamic halves. That way it eliminates the
 possibility of collisions if the configured subscriptions attempt to
 set a subscription-id which might have already been dynamically

Voit, et al. Expires April 26, 2019 [Page 62]

Internet-Draft Subscribed Notifications October 2018

 allocated. A best practice is to use lower half the "id" object’s
 integer space when that "id" is assigned by an external entity (such
 as with a configured subscription). This leaves the upper half of
 subscription integer space available to be dynamically assigned by
 the publisher.

 If a subscription is unable to marshal a series of filtered event
 records into transmittable notification messages, the receiver should
 be suspended with the reason "unsupportable-volume".

 For configured subscriptions, operations are against the set of
 receivers using the subscription "id" as a handle for that set. But
 for streaming updates, subscription state change notifications are
 local to a receiver. In this specification it is the case that
 receivers get no information from the publisher about the existence
 of other receivers. But if a network operator wants to let the
 receivers correlate results, it is useful to use the subscription
 "id" across the receivers to allow that correlation.

 For configured replay subscriptions, the receiver is protected from
 duplicated events being pushed after a publisher is rebooted.
 However it is possible that a receiver might want to acquire event
 records which failed to be delivered just prior to the reboot.
 Delivering these event records be accomplished by leveraging the
 "eventTime" from the last event record received prior to the receipt
 of a "subscription-started" subscription state change notification.
 With this "eventTime" and the "replay-start-time" from the
 "subscription-started" notification, an independent dynamic
 subscription can be established which retrieves any event records
 which may have been generated but not sent to the receiver.

5.3. Transport Requirements

 This section provides requirements for any subscribed notification
 transport supporting the solution presented in this document.

 The transport selected by the subscriber to reach the publisher MUST
 be able to support multiple "establish-subscription" requests made
 within the same transport session.

 For both configured and dynamic subscriptions the publisher MUST
 authenticate a receiver via some transport level mechanism before
 sending any event records for which they are authorized to see. In
 addition, the receiver MUST authenticate the publisher at the
 transport level. The result is mutual authentication between the
 two.

Voit, et al. Expires April 26, 2019 [Page 63]

Internet-Draft Subscribed Notifications October 2018

 A secure transport is highly recommended and the publisher MUST
 ensure that the receiver has sufficient authorization to perform the
 function they are requesting against the specific subset of content
 involved.

 A specific transport specification built upon this document may or
 may not choose to require the use of the same logical channel for the
 RPCs and the event records. However the event records and the
 subscription state change notifications MUST be sent on the same
 transport session to ensure the properly ordered delivery.

 Additional transport requirements will be dictated by the choice of
 transport used with a subscription. For an example of such
 requirements with NETCONF transport, see
 [I-D.draft-ietf-netconf-netconf-event-notifications].

5.4. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management transports
 such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF
 layer is the secure transport layer, and the mandatory-to-implement
 secure transport is Secure Shell (SSH) [RFC6242]. The lowest
 RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS [RFC5246].

 The NETCONF Access Control Model (NACM) [RFC8341] provides the means
 to restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF operations
 and content.

 One subscription "id" can be used for two or more receivers of the
 same configured subscription. But due to the possibility of
 different access control permissions per receiver, it cannot be
 assumed that each receiver is getting identical updates.

 With configured subscriptions, one or more publishers could be used
 to overwhelm a receiver. Notification messages SHOULD NOT be sent to
 any receiver which does not support this specification. Receivers
 that do not want notification messages need only terminate or refuse
 any transport sessions from the publisher.

 When a receiver of a configured subscription gets a new
 "subscription-started" message for a known subscription where it is
 already consuming events, the receiver SHOULD retrieve any event
 records generated since the last event record was received. This can
 be accomplish by establishing a separate dynamic replay subscription

Voit, et al. Expires April 26, 2019 [Page 64]

Internet-Draft Subscribed Notifications October 2018

 with the same filtering criteria with the publisher, assuming the
 publisher supports the "replay" feature.

 For dynamic subscriptions, implementations need to protect against
 malicious or buggy subscribers which may send a large number
 "establish-subscription" requests, thereby using up system resources.
 To cover this possibility operators SHOULD monitor for such cases
 and, if discovered, take remedial action to limit the resources used,
 such as suspending or terminating a subset of the subscriptions or,
 if the underlying transport is session based, terminate the
 underlying transport session.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 where there is a specific sensitivity/vulnerability:

 Container: "/filters"

 o "stream-subtree-filter": updating a filter could increase the
 computational complexity of all referencing subscriptions.

 o "stream-xpath-filter": updating a filter could increase the
 computational complexity of all referencing subscriptions.

 Container: "/subscriptions"

 The following considerations are only relevant for configuration
 operations made upon configured subscriptions:

 o "configured-replay": can be used to send a large number of event
 records to a receiver.

 o "dependency": can be used to force important traffic to be queued
 behind less important updates.

 o "dscp": if unvalidated, can result in the sending of traffic with
 a higher priority marking than warranted.

 o "id": can overwrite an existing subscription, perhaps one
 configured by another entity.

 o "name": adding a new key entry can be used to attempt to send
 traffic to an unwilling receiver.

Voit, et al. Expires April 26, 2019 [Page 65]

Internet-Draft Subscribed Notifications October 2018

 o "replay-start-time": can be used to push very large logs, wasting
 resources.

 o "source-address": the configured address might not be able to
 reach a desired receiver.

 o "source-interface": the configured interface might not be able to
 reach a desired receiver.

 o "source-vrf": can place a subscription into a virtual network
 where receivers are not entitled to view the subscribed content.

 o "stop-time": could be used to terminate content at an inopportune
 time.

 o "stream": could set a subscription to an event stream containing
 no content permitted for the targeted receivers.

 o "stream-filter-name": could be set to a filter which is irrelevant
 to the event stream.

 o "stream-subtree-filter": a complex filter can increase the
 computational resources for this subscription.

 o "stream-xpath-filter": a complex filter can increase the
 computational resources for this subscription.

 o "weighting": placing a large weight can overwhelm the dequeuing of
 other subscriptions.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 Container: "/streams"

 o "name": if access control is not properly configured, can expose
 system internals to those who should have no access to this
 information.

 o "replay-support": if access control is not properly configured,
 can expose logs to those who should have no access.

 Container: "/subscriptions"

Voit, et al. Expires April 26, 2019 [Page 66]

Internet-Draft Subscribed Notifications October 2018

 o "excluded-event-records": leaf can provide information about
 filtered event records. A network operator should have
 permissions to know about such filtering.

 o "subscription": different operational teams might have a desire to
 set varying subsets of subscriptions. Access control should be
 designed to permit read access to just the allowed set.

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 RPC: all

 o If a malicious or buggy subscriber sends an unexpectedly large
 number of RPCs, the result might be an excessive use of system
 resources on the publisher just to determine that these
 subscriptions should be declined. In such a situation,
 subscription interactions MAY be terminated by terminating the
 transport session.

 RPC: "delete-subscription"

 o No special considerations.

 RPC: "establish-subscription"

 o Subscriptions could overload a publisher’s resources. For this
 reason, publishers MUST ensure that they have sufficient resources
 to fulfill this request or otherwise reject the request.

 RPC: "kill-subscription"

 o The "kill-subscription" RPC MUST be secured so that only
 connections with administrative rights are able to invoke this
 RPC.

 RPC: "modify-subscription"

 o Subscriptions could overload a publisher’s resources. For this
 reason, publishers MUST ensure that they have sufficient resources
 to fulfill this request or otherwise reject the request.

Voit, et al. Expires April 26, 2019 [Page 67]

Internet-Draft Subscribed Notifications October 2018

6. Acknowledgments

 For their valuable comments, discussions, and feedback, we wish to
 acknowledge Andy Bierman, Tim Jenkins, Martin Bjorklund, Kent Watsen,
 Balazs Lengyel, Robert Wilton, Sharon Chisholm, Hector Trevino, Susan
 Hares, Michael Scharf, and Guangying Zheng.

7. References

7.1. Normative References

 [I-D.draft-ietf-rtgwg-ni-model]
 Berger, L., Hopps, C., and A. Lindem, "YANG Network
 Instances", draft-ietf-rtgwg-ni-model-12 (work in
 progress), March 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 DOI 10.17487/RFC2474, December 1998,
 <https://www.rfc-editor.org/info/rfc2474>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <https://www.rfc-editor.org/info/rfc5277>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

Voit, et al. Expires April 26, 2019 [Page 68]

Internet-Draft Subscribed Notifications October 2018

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG",
 RFC 7951, DOI 10.17487/RFC7951, August 2016,
 <https://www.rfc-editor.org/info/rfc7951>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [XPATH] Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

Voit, et al. Expires April 26, 2019 [Page 69]

Internet-Draft Subscribed Notifications October 2018

7.2. Informative References

 [I-D.draft-ietf-netconf-netconf-event-notifications]
 Clemm, Alexander., Voit, Eric., Gonzalez Prieto, Alberto.,
 Nilsen-Nygaard, E., and A. Tripathy, "NETCONF support for
 event notifications", May 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-netconf-event-notifications/>.

 [I-D.draft-ietf-netconf-restconf-notif]
 Voit, Eric., Clemm, Alexander., Tripathy, A., Nilsen-
 Nygaard, E., and Alberto. Gonzalez Prieto, "Restconf and
 HTTP transport for event notifications", May 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-restconf-notif/>.

 [I-D.ietf-netconf-yang-push]
 Clemm, Alexander., Voit, Eric., Gonzalez Prieto, Alberto.,
 Tripathy, A., Nilsen-Nygaard, E., Bierman, A., and B.
 Lengyel, "YANG Datastore Subscription", May 2018,
 <https://datatracker.ietf.org/doc/
 draft-ietf-netconf-yang-push/>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

 [RFC8071] Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 RFC 8071, DOI 10.17487/RFC8071, February 2017,
 <https://www.rfc-editor.org/info/rfc8071>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Appendix A. Example Configured Transport Augmentation

 This appendix provides a non-normative example of how the YANG model
 defined in Section 4 may be enhanced to incorporate the configuration
 parameters needed to support the transport connectivity process. In
 this example, connectivity via an imaginary transport type of "foo"
 is explored. For more on the overall need, see Section 2.5.7.

Voit, et al. Expires April 26, 2019 [Page 70]

Internet-Draft Subscribed Notifications October 2018

 The YANG model defined in this section contains two main elements.
 First is a transport identity "foo". This transport identity allows
 a configuration agent to define "foo" as the selected type of
 transport for a subscription. Second is a YANG case augmentation
 "foo" which is made to the "/subscriptions/subscription/receivers/
 receiver" node of Section 4. Within this augmentation are the
 transport configuration parameters "address" and "port" which are
 necessary to make the connect to the receiver.

 module example-foo-subscribed-notifications {
 yang-version 1.1;
 namespace
 "urn:example:foo-subscribed-notifications";

 prefix fsn;

 import ietf-subscribed-notifications {
 prefix sn;
 }
 import ietf-inet-types {
 prefix inet;
 }

 description
 "Defines ’foo’ as a supported type of configured transport for
 subscribed event notifications.";

 identity foo {
 base sn:transport;
 description
 "Transport type ’foo’ is available for use as a configured
 subscription transport protocol for subscribed notifications.";
 }

 augment
 "/sn:subscriptions/sn:subscription/sn:receivers/sn:receiver" {
 when ’derived-from(../../../transport, "fsn:foo")’;
 description
 "This augmentation makes ’foo’ specific transport parameters
 available for a receiver.";
 leaf address {
 type inet:host;
 mandatory true;
 description
 "Specifies the address to use for messages destined to a
 receiver.";
 }
 leaf port {

Voit, et al. Expires April 26, 2019 [Page 71]

Internet-Draft Subscribed Notifications October 2018

 type inet:port-number;
 mandatory true;
 description
 "Specifies the port number to use for messages destined to a
 receiver.";
 }
 }
 }

 Figure 21: Example Transport Augmentation for the fictitious protocol
 foo

 This example YANG model for transport "foo" will not be seen in a
 real world deployment. For a real world deployment supporting an
 actual transport technology, a similar YANG model must be defined.

Appendix B. Changes between revisions

 (To be removed by RFC editor prior to publication)

 v17 - v18

 o Transport optional in YANG model.

 o Modify subscription must come from the originator of the
 subscription. (Text got dropped somewhere previously.)

 o Title change.

 v16 - v17

 o YANG renaming: Subscription identifier renamed to id. Counters
 renamed. Filters id made into name.

 o Text tweaks.

 v15 - v16

 o Mandatory empty case "transport" removed.

 o Appendix case turned from "netconf" to "foo".

 v14 - v15

 o Text tweaks.

 o Mandatory empty case "transport" added for transport parameters.
 This includes a new section and an appendix explaining it.

Voit, et al. Expires April 26, 2019 [Page 72]

Internet-Draft Subscribed Notifications October 2018

 v13 - v14

 o Removed the ’address’ leaf.

 o Replay is now of type ’empty’ for configured.

 v12 - v13

 o Tweaks from Kent’s comments

 o Referenced in YANG model updated per Tom Petch’s comments

 o Added leaf replay-previous-event-time

 o Renamed the event counters, downshifted the subscription states

 v11 - v12

 o Tweaks from Kent’s, Tim’s, and Martin’s comments

 o Clarified dscp text, and made its own feature

 o YANG model tweaks alphabetizing, features.

 v10 - v11

 o access control filtering of events in streams included to match
 RFC5277 behavior

 o security considerations updated based on YANG template.

 o dependency QoS made non-normative on HTTP2 QoS

 o tree diagrams referenced for each figure using them

 o reference numbers placed into state machine figures

 o broke configured replay into its own section

 o many tweaks updates based on LC and YANG doctor reviews

 o trees and YANG model reconciled were deltas existed

 o new feature for interface originated.

 o dscp removed from the qos feature

Voit, et al. Expires April 26, 2019 [Page 73]

Internet-Draft Subscribed Notifications October 2018

 o YANG model updated in a way which collapses groups only used once
 so that they are part of the ’subscriptions’ container.

 o alternative encodings only allowed for transports which support
 them.

 v09 - v10

 o Typos and tweaks

 v08 - v09

 o NMDA model supported. Non NMDA version at https://github.com/
 netconf-wg/rfc5277bis/

 o Error mechanism revamped to match to embedded implementations.

 o Explicitly identified error codes relevant to each RPC/
 Notification

 v07 - v08

 o Split YANG trees to separate document subsections.

 o Clarified configured state machine based on Balazs comments, and
 moved it into the configured subscription subsections.

 o Normative reference to Network Instance model for VRF

 o One transport for all receivers of configured subscriptions.

 o QoS section moved in from yang-push

 v06 - v07

 o Clarification on state machine for configured subscriptions.

 v05 - v06

 o Made changes proposed by Martin, Kent, and others on the list.
 Most significant of these are stream returned to string (with the
 SYSLOG identity removed), intro section on 5277 relationship, an
 identity set moved to an enumeration, clean up of definitions/
 terminology, state machine proposed for configured subscriptions
 with a clean-up of subscription state options.

 o JSON and XML become features. Also Xpath and subtree filtering
 become features

Voit, et al. Expires April 26, 2019 [Page 74]

Internet-Draft Subscribed Notifications October 2018

 o Terminology updates with event records, and refinement of filters
 to just event stream filters.

 o Encoding refined in establish-subscription so it takes the RPC’s
 encoding as the default.

 o Namespaces in examples fixed.

 v04 - v05

 o Returned to the explicit filter subtyping of v00

 o stream object changed to ’name’ from ’stream’

 o Cleaned up examples

 o Clarified that JSON support needs notification-messages draft.

 v03 - v04

 o Moved back to the use of RFC5277 one-way notifications and
 encodings.

 v03 - v04

 o Replay updated

 v02 - v03

 o RPCs and Notification support is identified by the Notification
 2.0 capability.

 o Updates to filtering identities and text

 o New error type for unsupportable volume of updates

 o Text tweaks.

 v01 - v02

 o Subscription status moved under receiver.

 v00 - v01

 o Security considerations updated

 o Intro rewrite, as well as scattered text changes

Voit, et al. Expires April 26, 2019 [Page 75]

Internet-Draft Subscribed Notifications October 2018

 o Added Appendix A, to help match this to related drafts in progress

 o Updated filtering definitions, and filter types in yang file, and
 moved to identities for filter types

 o Added Syslog as an event stream

 o HTTP2 moved in from YANG-Push as a transport option

 o Replay made an optional feature for events. Won’t apply to
 datastores

 o Enabled notification timestamp to have different formats.

 o Two error codes added.

 v01 5277bis - v00 subscribed notifications

 o Kill subscription RPC added.

 o Renamed from 5277bis to Subscribed Notifications.

 o Changed the notification capabilities version from 1.1 to 2.0.

 o Extracted create-subscription and other elements of RFC5277.

 o Error conditions added, and made specific in return codes.

 o Simplified yang model structure for removal of ’basic’ grouping.

 o Added a grouping for items which cannot be statically configured.

 o Operational counters per receiver.

 o Subscription-id and filter-id renamed to identifier

 o Section for replay added. Replay now cannot be configured.

 o Control plane notification renamed to subscription state change
 notification

 o Source address: Source-vrf changed to string, default address
 option added

 o In yang model: ’info’ changed to ’policy’

 o Scattered text clarifications

Voit, et al. Expires April 26, 2019 [Page 76]

Internet-Draft Subscribed Notifications October 2018

 v00 - v01 of 5277bis

 o YANG Model changes. New groupings for subscription info to allow
 restriction of what is changeable via RPC. Removed notifications
 for adding and removing receivers of configured subscriptions.

 o Expanded/renamed definitions from event server to publisher, and
 client to subscriber as applicable. Updated the definitions to
 include and expand on RFC 5277.

 o Removal of redundancy with other drafts

 o Many other clean-ups of wording and terminology

Authors’ Addresses

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Alexander Clemm
 Huawei

 Email: ludwig@clemm.org

 Alberto Gonzalez Prieto
 Microsoft

 Email: alberto.gonzalez@microsoft.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Ambika Prasad Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

Voit, et al. Expires April 26, 2019 [Page 77]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track G. Wu
Expires: April 25, 2019 Cisco Systems
 L. Xia
 Huawei
 October 22, 2018

 YANG Groupings for TLS Clients and TLS Servers
 draft-ietf-netconf-tls-client-server-08

Abstract

 This document defines three YANG modules: the first defines groupings
 for a generic TLS client, the second defines groupings for a generic
 TLS server, and the third defines common identities and groupings
 used by both the client and the server. It is intended that these
 groupings will be used by applications using the TLS protocol.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 This document contains references to other drafts in progress, both
 in the Normative References section, as well as in body text
 throughout. Please update the following references to reflect their
 final RFC assignments:

 o I-D.ietf-netconf-trust-anchors

 o I-D.ietf-netconf-keystore

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

 o "YYYY" --> the assigned RFC value for I-D.ietf-netconf-trust-
 anchors

 o "ZZZZ" --> the assigned RFC value for I-D.ietf-netconf-keystore

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

Watsen, et al. Expires April 25, 2019 [Page 1]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix A. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. The TLS Client Model . 4
 3.1. Tree Diagram . 4
 3.2. Example Usage . 4
 3.3. YANG Module . 6
 4. The TLS Server Model . 9
 4.1. Tree Diagram . 9

Watsen, et al. Expires April 25, 2019 [Page 2]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 4.2. Example Usage . 10
 4.3. YANG Module . 12
 5. The TLS Common Model . 15
 5.1. Tree Diagram . 24
 5.2. Example Usage . 24
 5.3. YANG Module . 24
 6. Security Considerations 33
 7. IANA Considerations . 34
 7.1. The IETF XML Registry 34
 7.2. The YANG Module Names Registry 34
 8. References . 35
 8.1. Normative References 35
 8.2. Informative References 36
 Appendix A. Change Log . 38
 A.1. 00 to 01 . 38
 A.2. 01 to 02 . 38
 A.3. 02 to 03 . 38
 A.4. 03 to 04 . 38
 A.5. 04 to 05 . 39
 A.6. 05 to 06 . 39
 A.7. 06 to 07 . 39
 A.8. 07 to 08 . 39
 Acknowledgements . 39
 Authors’ Addresses . 39

1. Introduction

 This document defines three YANG 1.1 [RFC7950] modules: the first
 defines a grouping for a generic TLS client, the second defines a
 grouping for a generic TLS server, and the third defines identities
 and groupings common to both the client and the server (TLS is
 defined in [RFC5246]). It is intended that these groupings will be
 used by applications using the TLS protocol. For instance, these
 groupings could be used to help define the data model for an HTTPS
 [RFC2818] server or a NETCONF over TLS [RFC7589] based server.

 The client and server YANG modules in this document each define one
 grouping, which is focused on just TLS-specific configuration, and
 specifically avoids any transport-level configuration, such as what
 ports to listen-on or connect-to. This affords applications the
 opportunity to define their own strategy for how the underlying TCP
 connection is established. For instance, applications supporting
 NETCONF Call Home [RFC8071] could use the "ssh-server-grouping"
 grouping for the TLS parts it provides, while adding data nodes for
 the TCP-level call-home configuration.

Watsen, et al. Expires April 25, 2019 [Page 3]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 The modules defined in this document uses groupings defined in
 [I-D.ietf-netconf-keystore] enabling keys to be either locally
 defined or a reference to globally configured values.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. The TLS Client Model

3.1. Tree Diagram

 This section provides a tree diagram [RFC8340] for the "ietf-tls-
 client" module that does not have groupings expanded.

 module: ietf-tls-client

 grouping server-auth-grouping
 +-- server-auth
 +-- pinned-ca-certs? ta:pinned-certificates-ref
 | {ta:x509-certificates}?
 +-- pinned-server-certs? ta:pinned-certificates-ref
 {ta:x509-certificates}?
 grouping tls-client-grouping
 +---u client-identity-grouping
 +---u server-auth-grouping
 +---u hello-params-grouping
 grouping client-identity-grouping
 +-- client-identity
 +-- (auth-type)?
 +--:(certificate)
 +-- certificate
 +---u client-identity-grouping
 grouping hello-params-grouping
 +-- hello-params {tls-client-hello-params-config}?
 +---u hello-params-grouping

3.2. Example Usage

 This section presents two examples showing the tls-client-grouping
 populated with some data. These examples are effectively the same
 except the first configures the client identity using a local key
 while the second uses a key configured in a keystore. Both examples
 are consistent with the examples presented in Section 3 of

Watsen, et al. Expires April 25, 2019 [Page 4]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 [I-D.ietf-netconf-trust-anchors] and Section 3.2 of
 [I-D.ietf-netconf-keystore].

 The following example configures the client identity using a local
 key:

 [Note: ’\’ line wrapping for formatting only]

 <tls-client xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client">

 <!-- how this client will authenticate itself to the server -->
 <client-identity>
 <certificate>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-t\
 ypes">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <cert>base64encodedvalue==</cert>
 </certificate>
 </client-identity>

 <!-- which certificates will this client trust -->
 <server-auth>
 <pinned-ca-certs>explicitly-trusted-server-ca-certs</pinned-ca-c\
 erts>
 <pinned-server-certs>explicitly-trusted-server-certs</pinned-ser\
 ver-certs>
 </server-auth>

 </tls-client>

 The following example configures the client identity using a key from
 the keystore:

Watsen, et al. Expires April 25, 2019 [Page 5]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 [Note: ’\’ line wrapping for formatting only]

 <tls-client xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-client">

 <!-- how this client will authenticate itself to the server -->
 <client-identity>
 <certificate>
 <reference>ex-rsa-cert</reference>
 </certificate>
 </client-identity>

 <!-- which certificates will this client trust -->
 <server-auth>
 <pinned-ca-certs>explicitly-trusted-server-ca-certs</pinned-ca-c\
 erts>
 <pinned-server-certs>explicitly-trusted-server-certs</pinned-ser\
 ver-certs>
 </server-auth>

 </tls-client>

3.3. YANG Module

 This YANG module has normative references to
 [I-D.ietf-netconf-trust-anchors] and [I-D.ietf-netconf-keystore].

 <CODE BEGINS> file "ietf-tls-client@2018-10-22.yang"
 module ietf-tls-client {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-client";
 prefix "tlsc";

 import ietf-tls-common {
 prefix tlscmn;
 revision-date 2018-10-22; // stable grouping definitions
 reference
 "RFC XXXX: YANG Groupings for TLS Clients and TLS Servers";
 }

 import ietf-trust-anchors {
 prefix ta;
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }

 import ietf-keystore {
 prefix ks;

Watsen, et al. Expires April 25, 2019 [Page 6]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 reference
 "RFC ZZZZ: YANG Data Model for a ’Keystore’ Mechanism";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description
 "This module defines a reusable grouping for a TLS client that
 can be used as a basis for specific TLS client instances.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2018-10-22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for TLS Clients and TLS Servers";
 }

 // features

 feature tls-client-hello-params-config {
 description
 "TLS hello message parameters are configurable on a TLS
 client.";

Watsen, et al. Expires April 25, 2019 [Page 7]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 }

 // groupings

 grouping tls-client-grouping {
 description
 "A reusable grouping for configuring a TLS client without
 any consideration for how an underlying TCP session is
 established.";
 uses client-identity-grouping;
 uses server-auth-grouping;
 uses hello-params-grouping;
 }

 grouping client-identity-grouping {
 description
 "A reusable grouping for configuring a TLS client identity.";
 container client-identity {
 description
 "The credentials used by the client to authenticate to
 the TLS server.";

 choice auth-type {
 description
 "The authentication type.";
 container certificate {
 uses ks:local-or-keystore-end-entity-cert-with-key-grouping;
 description
 "A locally-defined or referenced certificate
 to be used for client authentication.";
 reference
 "RFC ZZZZ: YANG Data Model for a ’Keystore’ Mechanism";
 }
 }
 } // end client-identity
 } // end client-identity-grouping

 grouping server-auth-grouping {
 description
 "A reusable grouping for configuring TLS server
 authentication.";
 container server-auth {
 must ’pinned-ca-certs or pinned-server-certs’;
 description
 "Trusted server identities.";
 leaf pinned-ca-certs {
 if-feature "ta:x509-certificates";
 type ta:pinned-certificates-ref;

Watsen, et al. Expires April 25, 2019 [Page 8]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 description
 "A reference to a list of certificate authority (CA)
 certificates used by the TLS client to authenticate
 TLS server certificates. A server certificate is
 authenticated if it has a valid chain of trust to
 a configured pinned CA certificate.";
 }
 leaf pinned-server-certs {
 if-feature "ta:x509-certificates";
 type ta:pinned-certificates-ref;
 description
 "A reference to a list of server certificates used by
 the TLS client to authenticate TLS server certificates.
 A server certificate is authenticated if it is an
 exact match to a configured pinned server certificate.";
 }
 }
 } // end server-auth-grouping

 grouping hello-params-grouping {
 description
 "A reusable grouping for configuring a TLS transport
 parameters.";
 container hello-params {
 if-feature tls-client-hello-params-config;
 uses tlscmn:hello-params-grouping;
 description
 "Configurable parameters for the TLS hello message.";
 }
 } // end transport-params-grouping

 }
 <CODE ENDS>

4. The TLS Server Model

4.1. Tree Diagram

 This section provides a tree diagram [RFC8340] for the "ietf-tls-
 server" module that does not have groupings expanded.

Watsen, et al. Expires April 25, 2019 [Page 9]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 module: ietf-tls-server

 grouping hello-params-grouping
 +-- hello-params {tls-server-hello-params-config}?
 +---u hello-params-grouping
 grouping server-identity-grouping
 +-- server-identity
 +---u server-identity-grouping
 grouping tls-server-grouping
 +---u server-identity-grouping
 +---u client-auth-grouping
 +---u hello-params-grouping
 grouping client-auth-grouping
 +-- client-auth
 +-- pinned-ca-certs? ta:pinned-certificates-ref
 | {ta:x509-certificates}?
 +-- pinned-client-certs? ta:pinned-certificates-ref
 {ta:x509-certificates}?

4.2. Example Usage

 This section presents two examples showing the tls-server-grouping
 populated with some data. These examples are effectively the same
 except the first configures the server identity using a local key
 while the second uses a key configured in a keystore. Both examples
 are consistent with the examples presented in Section 3 of
 [I-D.ietf-netconf-trust-anchors] and Section 3.2 of
 [I-D.ietf-netconf-keystore].

 The following example configures the server identity using a local
 key:

Watsen, et al. Expires April 25, 2019 [Page 10]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 [Note: ’\’ line wrapping for formatting only]

 <tls-server xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server">

 <!-- how this server will authenticate itself to the client -->
 <server-identity>
 <algorithm xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-typ\
 es">ct:rsa2048</algorithm>
 <private-key>base64encodedvalue==</private-key>
 <public-key>base64encodedvalue==</public-key>
 <cert>base64encodedvalue==</cert>
 </server-identity>

 <!-- which certificates will this server trust -->
 <client-auth>
 <pinned-ca-certs>explicitly-trusted-client-ca-certs</pinned-ca-c\
 erts>
 <pinned-client-certs>explicitly-trusted-client-certs</pinned-cli\
 ent-certs>
 </client-auth>

 </tls-server>

 The following example configures the server identity using a key from
 the keystore:

 [Note: ’\’ line wrapping for formatting only]

 <tls-server xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-server">

 <!-- how this server will authenticate itself to the client -->
 <server-identity>
 <reference>ex-rsa-cert</reference>
 </server-identity>

 <!-- which certificates will this server trust -->
 <client-auth>
 <pinned-ca-certs>explicitly-trusted-client-ca-certs</pinned-ca-c\
 erts>
 <pinned-client-certs>explicitly-trusted-client-certs</pinned-cli\
 ent-certs>
 </client-auth>

 </tls-server>

Watsen, et al. Expires April 25, 2019 [Page 11]

Internet-Draft Groupings for TLS Clients and Servers October 2018

4.3. YANG Module

 This YANG module has a normative references to [RFC5246],
 [I-D.ietf-netconf-trust-anchors] and [I-D.ietf-netconf-keystore].

 <CODE BEGINS> file "ietf-tls-server@2018-10-22.yang"
 module ietf-tls-server {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-server";
 prefix "tlss";

 import ietf-tls-common {
 prefix tlscmn;
 revision-date 2018-10-22; // stable grouping definitions
 reference
 "RFC XXXX: YANG Groupings for TLS Clients and TLS Servers";
 }

 import ietf-trust-anchors {
 prefix ta;
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }

 import ietf-keystore {
 prefix ks;
 reference
 "RFC ZZZZ: YANG Data Model for a ’Keystore’ Mechanism";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description
 "This module defines a reusable grouping for a TLS server that
 can be used as a basis for specific TLS server instances.

Watsen, et al. Expires April 25, 2019 [Page 12]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2018-10-22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for TLS Clients and TLS Servers";
 }

 // features

 feature tls-server-hello-params-config {
 description
 "TLS hello message parameters are configurable on a TLS
 server.";
 }

 // groupings

 grouping tls-server-grouping {
 description
 "A reusable grouping for configuring a TLS server without
 any consideration for how underlying TCP sessions are
 established.";
 uses server-identity-grouping;
 uses client-auth-grouping;
 uses hello-params-grouping;
 }

 grouping server-identity-grouping {
 description
 "A reusable grouping for configuring a TLS server identity.";
 container server-identity {
 description
 "A locally-defined or referenced end-entity certificate,
 including any configured intermediate certificates, the

Watsen, et al. Expires April 25, 2019 [Page 13]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 TLS server will present when establishing a TLS connection
 in its Certificate message, as defined in Section 7.4.2
 in RFC 5246.";
 reference
 "RFC 5246:
 The Transport Layer Security (TLS) Protocol Version 1.2
 RFC ZZZZ:
 YANG Data Model for a ’Keystore’ Mechanism";
 uses ks:local-or-keystore-end-entity-cert-with-key-grouping;
 }
 } // end server-identity-grouping

 grouping client-auth-grouping {
 description
 "A reusable grouping for configuring a TLS client
 authentication.";
 container client-auth {
 description
 "A reference to a list of pinned certificate authority (CA)
 certificates and a reference to a list of pinned client
 certificates.";
 leaf pinned-ca-certs {
 if-feature "ta:x509-certificates";
 type ta:pinned-certificates-ref;
 description
 "A reference to a list of certificate authority (CA)
 certificates used by the TLS server to authenticate
 TLS client certificates. A client certificate is
 authenticated if it has a valid chain of trust to
 a configured pinned CA certificate.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }
 leaf pinned-client-certs {
 if-feature "ta:x509-certificates";
 type ta:pinned-certificates-ref;
 description
 "A reference to a list of client certificates used by
 the TLS server to authenticate TLS client certificates.
 A clients certificate is authenticated if it is an
 exact match to a configured pinned client certificate.";
 reference
 "RFC YYYY: YANG Data Model for Global Trust Anchors";
 }
 }
 } // end client-auth-grouping

 grouping hello-params-grouping {

Watsen, et al. Expires April 25, 2019 [Page 14]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 description
 "A reusable grouping for configuring a TLS transport
 parameters.";
 container hello-params {
 if-feature tls-server-hello-params-config;
 uses tlscmn:hello-params-grouping;
 description
 "Configurable parameters for the TLS hello message.";
 }

 } // end tls-server-grouping

 }
 <CODE ENDS>

5. The TLS Common Model

 The TLS common model presented in this section contains identities
 and groupings common to both TLS clients and TLS servers. The hello-
 params-grouping can be used to configure the list of TLS algorithms
 permitted by the TLS client or TLS server. The lists of algorithms
 are ordered such that, if multiple algorithms are permitted by the
 client, the algorithm that appears first in its list that is also
 permitted by the server is used for the TLS transport layer
 connection. The ability to restrict the the algorithms allowed is
 provided in this grouping for TLS clients and TLS servers that are
 capable of doing so and may serve to make TLS clients and TLS servers
 compliant with local security policies. This model supports both
 TLS1.2 [RFC5246] and TLS 1.3 [RFC8446].

 TLS 1.2 and TLS 1.3 have different ways defining their own supported
 cryptographic algorithms, see TLS and DTLS IANA registries page
 (https://www.iana.org/assignments/tls-parameters/tls-
 parameters.xhtml):

 o TLS 1.2 defines four categories of registries for cryptographic
 algorithms: TLS Cipher Suites, TLS SignatureAlgorithm, TLS
 HashAlgorithm, TLS Supported Groups. TLS Cipher Suites plays the
 role of combining all of them into one set, as each value of the
 set represents a unique and feasible combination of all the
 cryptographic algorithms, and thus the other three registry
 categories do not need to be considered here. In this document,
 the TLS common model only chooses those TLS1.2 algorithms in TLS
 Cipher Suites which are marked as recommended:
 TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,
 TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
 TLS_DHE_PSK_WITH_AES_128_GCM_SHA256,

Watsen, et al. Expires April 25, 2019 [Page 15]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 TLS_DHE_PSK_WITH_AES_256_GCM_SHA384, and so on. All chosen
 algorithms are enumerated in Table 1-1 below;

 o TLS 1.3 defines its supported algorithms differently. Firstly, it
 defines three categories of registries for cryptographic
 algorithms: TLS Cipher Suites, TLS SignatureScheme, TLS Supported
 Groups. Secondly, all three of these categories are useful, since
 they represent different parts of all the supported algorithms
 respectively. Thus, all of these registries categories are
 considered here. In this draft, the TLS common model chooses only
 those TLS1.3 algorithms specified in B.4, 4.2.3, 4.2.7 of
 [RFC8446].

 Thus, in order to support both TLS1.2 and TLS1.3, the cipher-suites
 part of the hello-params-grouping should include three parameters for
 configuring its permitted TLS algorithms, which are: TLS Cipher
 Suites, TLS SignatureScheme, TLS Supported Groups. Note that TLS1.2
 only uses TLS Cipher Suites.

 [I-D.ietf-netconf-crypto-types] defines six categories of
 cryptographic algorithms (hash-algorithm, symmetric-key-encryption-
 algorithm, mac-algorithm, asymmetric-key-encryption-algorithm,
 signature-algorithm, key-negotiation-algorithm) and lists several
 widely accepted algorithms for each of them. The TLS client and
 server models use one or more of these algorithms. The following
 tables are provided, in part to define the subset of algorithms
 defined in the crypto-types model used by TLS, and in part to ensure
 compatibility of configured TLS cryptographic parameters for
 configuring its permitted TLS algorithms:

Watsen, et al. Expires April 25, 2019 [Page 16]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 +---+---------+
 | ciper-suites in hello-params-grouping | HASH |
 +---+---------+
 | TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 | sha-256 |
 | TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 | sha-384 |
 | TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 | sha-256 |
 | TLS_DHE_PSK_WITH_AES_256_GCM_SHA384 | sha-384 |
 | TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 | sha-256 |
 | TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 | sha-384 |
 | TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 | sha-256 |
 | TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 | sha-384 |
 | TLS_DHE_RSA_WITH_AES_128_CCM | sha-256 |
 | TLS_DHE_RSA_WITH_AES_256_CCM | sha-256 |
 | TLS_DHE_PSK_WITH_AES_128_CCM | sha-256 |
 | TLS_DHE_PSK_WITH_AES_256_CCM | sha-256 |
 | TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 | sha-256 |
 | TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 | sha-256 |
 | TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 | sha-256 |
 | TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 | sha-256 |
 | TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256 | sha-256 |
 | TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256 | sha-256 |
 | TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384 | sha-384 |
 | TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256 | sha-256 |
 +---+---------+

 Table 1-1 TLS 1.2 Compatibility Matrix Part 1: ciper-suites mapping
 to hash-algorithm

Watsen, et al. Expires April 25, 2019 [Page 17]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 +--- +---------------------+
 | ciper-suites in hello-params-grouping | symmetric |
 | | |
 +--- +---------------------+
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	enc-aes-128-gcm
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	enc-aes-256-gcm
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256	enc-aes-128-gcm
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384	enc-aes-256-gcm
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	enc-aes-128-gcm
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	enc-aes-256-gcm
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	enc-aes-128-gcm
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	enc-aes-256-gcm
TLS_DHE_RSA_WITH_AES_128_CCM	enc-aes-128-ccm
TLS_DHE_RSA_WITH_AES_256_CCM	enc-aes-256-ccm
TLS_DHE_PSK_WITH_AES_128_CCM	enc-aes-128-ccm
TLS_DHE_PSK_WITH_AES_256_CCM	enc-aes-256-ccm
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256	enc-chacha20-poly1305
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256	enc-chacha20-poly1305
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256	enc-chacha20-poly1305
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256	enc-chacha20-poly1305
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256	enc-chacha20-poly1305
TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256	enc-aes-128-gcm
TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384	enc-aes-256-gcm
TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256	enc-aes-128-ccm
 +--- +---------------------+

 Table 1-2 TLS 1.2 Compatibility Matrix Part 2: ciper-suites mapping
 to symmetric-key-encryption-algorithm

Watsen, et al. Expires April 25, 2019 [Page 18]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 +--- +---------------------+
 | ciper-suites in hello-params-grouping | MAC |
 | | |
 +--- +---------------------+
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	mac-aes-128-gcm
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	mac-aes-256-gcm
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256	mac-aes-128-gcm
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384	mac-aes-256-gcm
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	mac-aes-128-gcm
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	mac-aes-256-gcm
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	mac-aes-128-gcm
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	mac-aes-256-gcm
TLS_DHE_RSA_WITH_AES_128_CCM	mac-aes-128-ccm
TLS_DHE_RSA_WITH_AES_256_CCM	mac-aes-256-ccm
TLS_DHE_PSK_WITH_AES_128_CCM	mac-aes-128-ccm
TLS_DHE_PSK_WITH_AES_256_CCM	mac-aes-256-ccm
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256	mac-chacha20-poly1305
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256	mac-chacha20-poly1305
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256	mac-chacha20-poly1305
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256	mac-chacha20-poly1305
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256	mac-chacha20-poly1305
TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256	mac-aes-128-gcm
TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384	mac-aes-256-gcm
TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256	mac-aes-128-ccm
 +--- +---------------------+

 Table 1-3 TLS 1.2 Compatibility Matrix Part 3: ciper-suites mapping
 to MAC-algorithm

Watsen, et al. Expires April 25, 2019 [Page 19]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 +--+----------------------+
 |ciper-suites in hello-params-grouping | signature |
 +--- +----------------------+
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	rsa-pkcs1-sha256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	rsa-pkcs1-sha384
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256	N/A
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384	N/A
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	ecdsa-secp256r1-sha256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	ecdsa-secp384r1-sha384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	rsa-pkcs1-sha256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	rsa-pkcs1-sha384
TLS_DHE_RSA_WITH_AES_128_CCM	rsa-pkcs1-sha256
TLS_DHE_RSA_WITH_AES_256_CCM	rsa-pkcs1-sha256
TLS_DHE_PSK_WITH_AES_128_CCM	N/A
TLS_DHE_PSK_WITH_AES_256_CCM	N/A
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256	rsa-pkcs1-sha256
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256	ecdsa-secp256r1-sha256
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256	rsa-pkcs1-sha256
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256	N/A
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256	N/A
TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256	N/A
TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384	N/A
TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256	N/A
 +--+----------------------+

 Table 1-4 TLS 1.2 Compatibility Matrix Part 4: ciper-suites mapping
 to signature-algorithm

Watsen, et al. Expires April 25, 2019 [Page 20]

Internet-Draft Groupings for TLS Clients and Servers October 2018

+--+-----------------------+
|ciper-suites in hello-params-grouping | key-negotiation |
+--+-----------------------+
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	dhe-ffdhe2048, ...
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	dhe-ffdhe2048, ...
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256	psk-dhe-ffdhe2048, ...
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384	psk-dhe-ffdhe2048, ...
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	ecdhe-secp256r1, ...
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	ecdhe-secp256r1, ...
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	ecdhe-secp256r1, ...
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	ecdhe-secp256r1, ...
TLS_DHE_RSA_WITH_AES_128_CCM	dhe-ffdhe2048, ...
TLS_DHE_RSA_WITH_AES_256_CCM	dhe-ffdhe2048, ...
TLS_DHE_PSK_WITH_AES_128_CCM	psk-dhe-ffdhe2048, ...
TLS_DHE_PSK_WITH_AES_256_CCM	psk-dhe-ffdhe2048, ...
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256	ecdhe-secp256r1, ...
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256	ecdhe-secp256r1, ...
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256	dhe-ffdhe2048, ...
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256	psk-ecdhe-secp256r1,...
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256	psk-dhe-ffdhe2048, ...
TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256	psk-ecdhe-secp256r1,...
TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384	psk-ecdhe-secp256r1,...
TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256	psk-ecdhe-secp256r1,...
+--+-----------------------+

 Table 1-5 TLS 1.2 Compatibility Matrix Part 5: ciper-suites mapping
 to key-negotiation-algorithm

 +------------------------------+---------+
 | ciper-suites in hello | HASH |
 | -params-grouping | |
 +------------------------------+---------+
 | TLS_AES_128_GCM_SHA256 | sha-256 |
 | TLS_AES_256_GCM_SHA384 | sha-384 |
 | TLS_CHACHA20_POLY1305_SHA256 | sha-256 |
 | TLS_AES_128_CCM_SHA256 | sha-256 |
 +------------------------------+---------+

 Table 2-1 TLS 1.3 Compatibility Matrix Part 1: ciper-suites mapping
 to hash-algorithm

Watsen, et al. Expires April 25, 2019 [Page 21]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 +------------------------------+-----------------------+
 | ciper-suites in hello | symmetric |
 | -params-grouping | |
 +------------------------------+-----------------------+
 | TLS_AES_128_GCM_SHA256 | enc-aes-128-gcm |
 | TLS_AES_256_GCM_SHA384 | enc-aes-128-gcm |
 | TLS_CHACHA20_POLY1305_SHA256 | enc-chacha20-poly1305 |
 | TLS_AES_128_CCM_SHA256 | enc-aes-128-ccm |
 +------------------------------+-----------------------+

 Table 2-2 TLS 1.3 Compatibility Matrix Part 2: ciper-suites mapping
 to symmetric-key--encryption-algorithm

 +------------------------------+-----------------------+
 | ciper-suites in hello | symmetric |
 | -params-grouping | |
 +------------------------------+-----------------------+
 | TLS_AES_128_GCM_SHA256 | mac-aes-128-gcm |
 | TLS_AES_256_GCM_SHA384 | mac-aes-128-gcm |
 | TLS_CHACHA20_POLY1305_SHA256 | mac-chacha20-poly1305 |
 | TLS_AES_128_CCM_SHA256 | mac-aes-128-ccm |
 +------------------------------+-----------------------+

 Table 2-3 TLS 1.3 Compatibility Matrix Part 3: ciper-suites mapping
 to MAC-algorithm

 +----------------------------+-------------------------+
 |signatureScheme in hello | signature |
 | -params-grouping | |
 +----------------------------+-------------------------+
 | rsa-pkcs1-sha256 | rsa-pkcs1-sha256 |
 | rsa-pkcs1-sha384 | rsa-pkcs1-sha384 |
 | rsa-pkcs1-sha512 | rsa-pkcs1-sha512 |
 | rsa-pss-rsae-sha256 | rsa-pss-rsae-sha256 |
 | rsa-pss-rsae-sha384 | rsa-pss-rsae-sha384 |
 | rsa-pss-rsae-sha512 | rsa-pss-rsae-sha512 |
 | rsa-pss-pss-sha256 | rsa-pss-pss-sha256 |
 | rsa-pss-pss-sha384 | rsa-pss-pss-sha384 |
 | rsa-pss-pss-sha512 | rsa-pss-pss-sha512 |
 | ecdsa-secp256r1-sha256 | ecdsa-secp256r1-sha256 |
 | ecdsa-secp384r1-sha384 | ecdsa-secp384r1-sha384 |
 | ecdsa-secp521r1-sha512 | ecdsa-secp521r1-sha512 |
 | ed25519 | ed25519 |
 | ed448 | ed448 |
 +----------------------------+-------------------------+

 Table 2-4 TLS 1.3 Compatibility Matrix Part 4: SignatureScheme
 mapping to signature-algorithm

Watsen, et al. Expires April 25, 2019 [Page 22]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 +----------------------------+-------------------------+
 |supported Groups in hello | key-negotiation |
 | -params-grouping | |
 +----------------------------+-------------------------+
 | dhe-ffdhe2048 | dhe-ffdhe2048 |
 | dhe-ffdhe3072 | dhe-ffdhe3072 |
 | dhe-ffdhe4096 | dhe-ffdhe4096 |
 | dhe-ffdhe6144 | dhe-ffdhe6144 |
 | dhe-ffdhe8192 | dhe-ffdhe8192 |
 | psk-dhe-ffdhe2048 | psk-dhe-ffdhe2048 |
 | psk-dhe-ffdhe3072 | psk-dhe-ffdhe3072 |
 | psk-dhe-ffdhe4096 | psk-dhe-ffdhe4096 |
 | psk-dhe-ffdhe6144 | psk-dhe-ffdhe6144 |
 | psk-dhe-ffdhe8192 | psk-dhe-ffdhe8192 |
 | ecdhe-secp256r1 | ecdhe-secp256r1 |
 | ecdhe-secp384r1 | ecdhe-secp384r1 |
 | ecdhe-secp521r1 | ecdhe-secp521r1 |
 | ecdhe-x25519 | ecdhe-x25519 |
 | ecdhe-x448 | ecdhe-x448 |
 | psk-ecdhe-secp256r1 | psk-ecdhe-secp256r1 |
 | psk-ecdhe-secp384r1 | psk-ecdhe-secp384r1 |
 | psk-ecdhe-secp521r1 | psk-ecdhe-secp521r1 |
 | psk-ecdhe-x25519 | psk-ecdhe-x25519 |
 | psk-ecdhe-x448 | psk-ecdhe-x448 |
 +----------------------------+-------------------------+

 Table 2-5 TLS 1.3 Compatibility Matrix Part 5: Supported Groups
 mapping to key-negotiation-algorithm

 Note that in Table 1-5:

 o dhe-ffdhe2048, ... is the abbreviation of dhe-ffdhe2048, dhe-
 ffdhe3072, dhe-ffdhe4096, dhe-ffdhe6144, dhe-ffdhe8192;

 o psk-dhe-ffdhe2048, ... is the abbreviation of psk-dhe-ffdhe2048,
 psk-dhe-ffdhe3072, psk-dhe-ffdhe4096, psk-dhe-ffdhe6144, psk-dhe-
 ffdhe8192;

 o ecdhe-secp256r1, ... is the abbreviation of ecdhe-secp256r1,
 ecdhe-secp384r1, ecdhe-secp521r1, ecdhe-x25519, ecdhe-x448;

 o psk-ecdhe-secp256r1, ... is the abbreviation of psk-ecdhe-
 secp256r1, psk-ecdhe-secp384r1, psk-ecdhe-secp521r1, psk-ecdhe-
 x25519, psk-ecdhe-x448.

 Features are defined for algorithms that are OPTIONAL or are not
 widely supported by popular implementations. Note that the list of
 algorithms is not exhaustive.

Watsen, et al. Expires April 25, 2019 [Page 23]

Internet-Draft Groupings for TLS Clients and Servers October 2018

5.1. Tree Diagram

 The following tree diagram [RFC8340] provides an overview of the data
 model for the "ietf-tls-common" module.

 module: ietf-tls-common

 grouping hello-params-grouping
 +-- tls-versions
 | +-- tls-version* identityref
 +-- cipher-suites
 +-- cipher-suite* identityref

5.2. Example Usage

 This section shows how it would appear if the transport-params-
 grouping were populated with some data.

 <hello-params
 xmlns="urn:ietf:params:xml:ns:yang:ietf-tls-common"
 xmlns:tlscmn="urn:ietf:params:xml:ns:yang:ietf-tls-common">
 <tls-versions>
 <tls-version>tlscmn:tls-1.1</tls-version>
 <tls-version>tlscmn:tls-1.2</tls-version>
 </tls-versions>
 <cipher-suites>
 <cipher-suite>tlscmn:dhe-rsa-with-aes-128-cbc-sha</cipher-suite>
 <cipher-suite>tlscmn:rsa-with-aes-128-cbc-sha</cipher-suite>
 <cipher-suite>tlscmn:rsa-with-3des-ede-cbc-sha</cipher-suite>
 </cipher-suites>
 </hello-params>

5.3. YANG Module

 This YANG module has a normative references to [RFC2246], [RFC4346],
 [RFC5246], [RFC5288], [RFC5289], and [RFC8422].

 This YANG module has a informative references to [RFC2246],
 [RFC4346], and [RFC5246].

 <CODE BEGINS> file "ietf-tls-common@2018-10-22.yang"
 module ietf-tls-common {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-tls-common";
 prefix "tlscmn";

 organization

Watsen, et al. Expires April 25, 2019 [Page 24]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>

 Author: Gary Wu
 <mailto:garywu@cisco.com>";

 description
 "This module defines a common features, identities, and groupings
 for Transport Layer Security (TLS).

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2018-10-22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Groupings for TLS Clients and TLS Servers";
 }

 // features

 feature tls-1_0 {
 description
 "TLS Protocol Version 1.0 is supported.";
 reference
 "RFC 2246: The TLS Protocol Version 1.0";
 }

 feature tls-1_1 {
 description

Watsen, et al. Expires April 25, 2019 [Page 25]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 "TLS Protocol Version 1.1 is supported.";
 reference
 "RFC 4346: The Transport Layer Security (TLS) Protocol
 Version 1.1";
 }

 feature tls-1_2 {
 description
 "TLS Protocol Version 1.2 is supported.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 feature tls-ecc {
 description
 "Elliptic Curve Cryptography (ECC) is supported for TLS.";
 reference
 "RFC 8422: Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)";
 }

 feature tls-dhe {
 description
 "Ephemeral Diffie-Hellman key exchange is supported for TLS.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 feature tls-3des {
 description
 "The Triple-DES block cipher is supported for TLS.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 feature tls-gcm {
 description
 "The Galois/Counter Mode authenticated encryption mode is
 supported for TLS.";
 reference
 "RFC 5288: AES Galois Counter Mode (GCM) Cipher Suites for
 TLS";
 }

 feature tls-sha2 {

Watsen, et al. Expires April 25, 2019 [Page 26]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 description
 "The SHA2 family of cryptographic hash functions is supported
 for TLS.";
 reference
 "FIPS PUB 180-4: Secure Hash Standard (SHS)";
 }

 // identities

 identity tls-version-base {
 description
 "Base identity used to identify TLS protocol versions.";
 }

 identity tls-1.0 {
 base tls-version-base;
 if-feature tls-1_0;
 description
 "TLS Protocol Version 1.0.";
 reference
 "RFC 2246: The TLS Protocol Version 1.0";
 }

 identity tls-1.1 {
 base tls-version-base;
 if-feature tls-1_1;
 description
 "TLS Protocol Version 1.1.";
 reference
 "RFC 4346: The Transport Layer Security (TLS) Protocol
 Version 1.1";
 }

 identity tls-1.2 {
 base tls-version-base;
 if-feature tls-1_2;
 description
 "TLS Protocol Version 1.2.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 identity cipher-suite-base {
 description
 "Base identity used to identify TLS cipher suites.";
 }

Watsen, et al. Expires April 25, 2019 [Page 27]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 identity rsa-with-aes-128-cbc-sha {
 base cipher-suite-base;
 description
 "Cipher suite TLS_RSA_WITH_AES_128_CBC_SHA.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 identity rsa-with-aes-256-cbc-sha {
 base cipher-suite-base;
 description
 "Cipher suite TLS_RSA_WITH_AES_256_CBC_SHA.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 identity rsa-with-aes-128-cbc-sha256 {
 base cipher-suite-base;
 if-feature tls-sha2;
 description
 "Cipher suite TLS_RSA_WITH_AES_128_CBC_SHA256.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 identity rsa-with-aes-256-cbc-sha256 {
 base cipher-suite-base;
 if-feature tls-sha2;
 description
 "Cipher suite TLS_RSA_WITH_AES_256_CBC_SHA256.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 identity dhe-rsa-with-aes-128-cbc-sha {
 base cipher-suite-base;
 if-feature tls-dhe;
 description
 "Cipher suite TLS_DHE_RSA_WITH_AES_128_CBC_SHA.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

Watsen, et al. Expires April 25, 2019 [Page 28]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 identity dhe-rsa-with-aes-256-cbc-sha {
 base cipher-suite-base;
 if-feature tls-dhe;
 description
 "Cipher suite TLS_DHE_RSA_WITH_AES_256_CBC_SHA.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 identity dhe-rsa-with-aes-128-cbc-sha256 {
 base cipher-suite-base;
 if-feature "tls-dhe and tls-sha2";
 description
 "Cipher suite TLS_DHE_RSA_WITH_AES_128_CBC_SHA256.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 identity dhe-rsa-with-aes-256-cbc-sha256 {
 base cipher-suite-base;
 if-feature "tls-dhe and tls-sha2";
 description
 "Cipher suite TLS_DHE_RSA_WITH_AES_256_CBC_SHA256.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 identity ecdhe-ecdsa-with-aes-128-cbc-sha256 {
 base cipher-suite-base;
 if-feature "tls-ecc and tls-sha2";
 description
 "Cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA-256/384 and AES Galois Counter Mode (GCM)";
 }

 identity ecdhe-ecdsa-with-aes-256-cbc-sha384 {
 base cipher-suite-base;
 if-feature "tls-ecc and tls-sha2";
 description
 "Cipher suite TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA-256/384 and AES Galois Counter Mode (GCM)";

Watsen, et al. Expires April 25, 2019 [Page 29]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 }

 identity ecdhe-rsa-with-aes-128-cbc-sha256 {
 base cipher-suite-base;
 if-feature "tls-ecc and tls-sha2";
 description
 "Cipher suite TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA-256/384 and AES Galois Counter Mode (GCM)";
 }

 identity ecdhe-rsa-with-aes-256-cbc-sha384 {
 base cipher-suite-base;
 if-feature "tls-ecc and tls-sha2";
 description
 "Cipher suite TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA-256/384 and AES Galois Counter Mode (GCM)";
 }

 identity ecdhe-ecdsa-with-aes-128-gcm-sha256 {
 base cipher-suite-base;
 if-feature "tls-ecc and tls-gcm and tls-sha2";
 description
 "Cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA-256/384 and AES Galois Counter Mode (GCM)";
 }

 identity ecdhe-ecdsa-with-aes-256-gcm-sha384 {
 base cipher-suite-base;
 if-feature "tls-ecc and tls-gcm and tls-sha2";
 description
 "Cipher suite TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA-256/384 and AES Galois Counter Mode (GCM)";
 }

 identity ecdhe-rsa-with-aes-128-gcm-sha256 {
 base cipher-suite-base;
 if-feature "tls-ecc and tls-gcm and tls-sha2";
 description
 "Cipher suite TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256.";
 reference

Watsen, et al. Expires April 25, 2019 [Page 30]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA-256/384 and AES Galois Counter Mode (GCM)";
 }

 identity ecdhe-rsa-with-aes-256-gcm-sha384 {
 base cipher-suite-base;
 if-feature "tls-ecc and tls-gcm and tls-sha2";
 description
 "Cipher suite TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384.";
 reference
 "RFC 5289: TLS Elliptic Curve Cipher Suites with
 SHA-256/384 and AES Galois Counter Mode (GCM)";
 }

 identity rsa-with-3des-ede-cbc-sha {
 base cipher-suite-base;
 if-feature tls-3des;
 description
 "Cipher suite TLS_RSA_WITH_3DES_EDE_CBC_SHA.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";
 }

 identity ecdhe-rsa-with-3des-ede-cbc-sha {
 base cipher-suite-base;
 if-feature "tls-ecc and tls-3des";
 description
 "Cipher suite TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA.";
 reference
 "RFC 8422: Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)";
 }

 identity ecdhe-rsa-with-aes-128-cbc-sha {
 base cipher-suite-base;
 if-feature "tls-ecc";
 description
 "Cipher suite TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA.";
 reference
 "RFC 8422: Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)";
 }

 identity ecdhe-rsa-with-aes-256-cbc-sha {
 base cipher-suite-base;
 if-feature "tls-ecc";
 description

Watsen, et al. Expires April 25, 2019 [Page 31]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 "Cipher suite TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA.";
 reference
 "RFC 8422: Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)";
 }

 // groupings

 grouping hello-params-grouping {
 description
 "A reusable grouping for TLS hello message parameters.";
 reference
 "RFC 5246: The Transport Layer Security (TLS) Protocol
 Version 1.2";

 container tls-versions {
 description
 "Parameters regarding TLS versions.";
 leaf-list tls-version {
 type identityref {
 base tls-version-base;
 }
 description
 "Acceptable TLS protocol versions.

 If this leaf-list is not configured (has zero elements)
 the acceptable TLS protocol versions are implementation-
 defined.";
 }
 }
 container cipher-suites {
 description
 "Parameters regarding cipher suites.";
 leaf-list cipher-suite {
 type identityref {
 base cipher-suite-base;
 }
 ordered-by user;
 description
 "Acceptable cipher suites in order of descending
 preference. The configured host key algorithms should
 be compatible with the algorithm used by the configured
 private key. Please see Section 5 of RFC XXXX for
 valid combinations.

 If this leaf-list is not configured (has zero elements)
 the acceptable cipher suites are implementation-
 defined.";

Watsen, et al. Expires April 25, 2019 [Page 32]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 reference
 "RFC XXXX: YANG Groupings for TLS Clients and TLS Servers";
 }
 }

 } // end hello-params-grouping

 }
 <CODE ENDS>

6. Security Considerations

 The YANG modules defined in this document are designed to be accessed
 via YANG based management protocols, such as NETCONF [RFC6241] and
 RESTCONF [RFC8040]. Both of these protocols have mandatory-to-
 implement secure transport layers (e.g., SSH, TLS) with mutual
 authentication.

 The NETCONF access control model (NACM) [RFC8341] provides the means
 to restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

 Since the modules defined in this document only define groupings,
 these considerations are primarily for the designers of other modules
 that use these groupings.

 There are a number of data nodes defined in the YANG modules that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /: The entire data tree of all the groupings defined in this draft
 is sensitive to write operations. For instance, the addition
 or removal of references to keys, certificates, trusted
 anchors, etc., can dramatically alter the implemented security
 policy. However, no NACM annotations are applied as the data
 SHOULD be editable by users other than a designated ’recovery
 session’.

 Some of the readable data nodes in the YANG modules may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

Watsen, et al. Expires April 25, 2019 [Page 33]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 NONE

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 NONE

7. IANA Considerations

7.1. The IETF XML Registry

 This document registers three URIs in the "ns" subregistry of the
 IETF XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registrations are requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-tls-client
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-tls-server
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-tls-common
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

7.2. The YANG Module Names Registry

 This document registers three YANG modules in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registrations are requested:

Watsen, et al. Expires April 25, 2019 [Page 34]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 name: ietf-tls-client
 namespace: urn:ietf:params:xml:ns:yang:ietf-tls-client
 prefix: tlsc
 reference: RFC XXXX

 name: ietf-tls-server
 namespace: urn:ietf:params:xml:ns:yang:ietf-tls-server
 prefix: tlss
 reference: RFC XXXX

 name: ietf-tls-common
 namespace: urn:ietf:params:xml:ns:yang:ietf-tls-common
 prefix: tlscmn
 reference: RFC XXXX

8. References

8.1. Normative References

 [I-D.ietf-netconf-crypto-types]
 Watsen, K., "Common YANG Data Types for Cryptography",
 draft-ietf-netconf-crypto-types-01 (work in progress),
 September 2018.

 [I-D.ietf-netconf-keystore]
 Watsen, K., "YANG Data Model for a Centralized Keystore
 Mechanism", draft-ietf-netconf-keystore-06 (work in
 progress), September 2018.

 [I-D.ietf-netconf-trust-anchors]
 Watsen, K., "YANG Data Model for Global Trust Anchors",
 draft-ietf-netconf-trust-anchors-01 (work in progress),
 September 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5288] Salowey, J., Choudhury, A., and D. McGrew, "AES Galois
 Counter Mode (GCM) Cipher Suites for TLS", RFC 5288,
 DOI 10.17487/RFC5288, August 2008,
 <https://www.rfc-editor.org/info/rfc5288>.

 [RFC5289] Rescorla, E., "TLS Elliptic Curve Cipher Suites with SHA-
 256/384 and AES Galois Counter Mode (GCM)", RFC 5289,
 DOI 10.17487/RFC5289, August 2008,
 <https://www.rfc-editor.org/info/rfc5289>.

Watsen, et al. Expires April 25, 2019 [Page 35]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC7589] Badra, M., Luchuk, A., and J. Schoenwaelder, "Using the
 NETCONF Protocol over Transport Layer Security (TLS) with
 Mutual X.509 Authentication", RFC 7589,
 DOI 10.17487/RFC7589, June 2015,
 <https://www.rfc-editor.org/info/rfc7589>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8422] Nir, Y., Josefsson, S., and M. Pegourie-Gonnard, "Elliptic
 Curve Cryptography (ECC) Cipher Suites for Transport Layer
 Security (TLS) Versions 1.2 and Earlier", RFC 8422,
 DOI 10.17487/RFC8422, August 2018,
 <https://www.rfc-editor.org/info/rfc8422>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

8.2. Informative References

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, DOI 10.17487/RFC2246, January 1999,
 <https://www.rfc-editor.org/info/rfc2246>.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818,
 DOI 10.17487/RFC2818, May 2000,
 <https://www.rfc-editor.org/info/rfc2818>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

Watsen, et al. Expires April 25, 2019 [Page 36]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346,
 DOI 10.17487/RFC4346, April 2006,
 <https://www.rfc-editor.org/info/rfc4346>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8071] Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 RFC 8071, DOI 10.17487/RFC8071, February 2017,
 <https://www.rfc-editor.org/info/rfc8071>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Watsen, et al. Expires April 25, 2019 [Page 37]

Internet-Draft Groupings for TLS Clients and Servers October 2018

Appendix A. Change Log

A.1. 00 to 01

 o Noted that ’0.0.0.0’ and ’::’ might have special meanings.

 o Renamed "keychain" to "keystore".

A.2. 01 to 02

 o Removed the groupings containing transport-level configuration.
 Now modules contain only the transport-independent groupings.

 o Filled in previously incomplete ’ietf-tls-client’ module.

 o Added cipher suites for various algorithms into new ’ietf-tls-
 common’ module.

A.3. 02 to 03

 o Added a ’must’ statement to container ’server-auth’ asserting that
 at least one of the various auth mechanisms must be specified.

 o Fixed description statement for leaf ’trusted-ca-certs’.

A.4. 03 to 04

 o Updated title to "YANG Groupings for TLS Clients and TLS Servers"

 o Updated leafref paths to point to new keystore path

 o Changed the YANG prefix for ietf-tls-common from ’tlscom’ to
 ’tlscmn’.

 o Added TLS protocol verions 1.0 and 1.1.

 o Made author lists consistent

 o Now tree diagrams reference ietf-netmod-yang-tree-diagrams

 o Updated YANG to use typedefs around leafrefs to common keystore
 paths

 o Now inlines key and certificates (no longer a leafref to keystore)

Watsen, et al. Expires April 25, 2019 [Page 38]

Internet-Draft Groupings for TLS Clients and Servers October 2018

A.5. 04 to 05

 o Merged changes from co-author.

A.6. 05 to 06

 o Updated to use trust anchors from trust-anchors draft (was
 keystore draft)

 o Now Uses new keystore grouping enabling asymmetric key to be
 either locally defined or a reference to the keystore.

A.7. 06 to 07

 o factored the tls-[client|server]-groupings into more reusable
 groupings.

 o added if-feature statements for the new "x509-certificates"
 feature defined in draft-ietf-netconf-trust-anchors.

A.8. 07 to 08

 o Added a number of compatibility matricies to Section 5 (thanks
 Frank!)

 o Claified that any configured "cipher-suite" values need to be
 compatible with the configured private key.

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Andy Bierman, Martin
 Bjorklund, Benoit Claise, Mehmet Ersue, Balazs Kovacs, David
 Lamparter, Alan Luchuk, Ladislav Lhotka, Radek Krejci, Tom Petch,
 Juergen Schoenwaelder, Phil Shafer, Sean Turner, and Bert Wijnen.

Authors’ Addresses

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

 Gary Wu
 Cisco Systems

 EMail: garywu@cisco.com

Watsen, et al. Expires April 25, 2019 [Page 39]

Internet-Draft Groupings for TLS Clients and Servers October 2018

 Liang Xia
 Huawei

 EMail: frank.xialiang@huawei.com

Watsen, et al. Expires April 25, 2019 [Page 40]

NETCONF Working Group K. Watsen
Internet-Draft Juniper Networks
Intended status: Standards Track October 22, 2018
Expires: April 25, 2019

 YANG Data Model for Global Trust Anchors
 draft-ietf-netconf-trust-anchors-02

Abstract

 This document defines a YANG 1.1 data model for configuring global
 sets of X.509 certificates and SSH host-keys that can be referenced
 by other data models for trust. While the SSH host-keys are uniquely
 for the SSH protocol, the X.509 certificates may have multiple uses,
 including authenticating protocol peers and verifying signatures.

Editorial Note (To be removed by RFC Editor)

 This draft contains many placeholder values that need to be replaced
 with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 o "XXXX" --> the assigned RFC value for this draft

 o "YYYY" --> the assigned RFC value for draft-ietf-netconf-crypto-
 types

 Artwork in this document contains placeholder values for the date of
 publication of this draft. Please apply the following replacement:

 o "2018-10-22" --> the publication date of this draft

 The following Appendix section is to be removed prior to publication:

 o Appendix A. Change Log

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute

Watsen Expires April 25, 2019 [Page 1]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Requirements Language 3
 1.2. Tree Diagram Notation 3
 2. The Trust Anchors Model 3
 2.1. Tree Diagram . 3
 2.2. Example Usage . 4
 2.3. YANG Module . 7
 3. Security Considerations 12
 4. IANA Considerations . 12
 4.1. The IETF XML Registry 12
 4.2. The YANG Module Names Registry 13
 5. References . 13
 5.1. Normative References 13
 5.2. Informative References 13
 Appendix A. Change Log . 15
 A.1. 00 to 01 . 15
 A.2. 01 to 02 . 15
 Acknowledgements . 15
 Author’s Address . 15

Watsen Expires April 25, 2019 [Page 2]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

1. Introduction

 This document defines a YANG 1.1 [RFC7950] data model for configuring
 global sets of X.509 certificates and SSH host-keys that can be
 referenced by other data models for trust. While the SSH host-keys
 are uniquely for the SSH protocol, the X.509 certificates may be used
 for multiple uses, including authenticating protocol peers and
 verifying signatures.

 This document in compliant with Network Management Datastore
 Architecture (NMDA) [RFC8342]. For instance, to support trust
 anchors installed during manufacturing, it is expected that such data
 may appear only in <operational>.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Tree Diagram Notation

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

2. The Trust Anchors Model

2.1. Tree Diagram

 The following tree diagram provides an overview of the "ietf-trust-
 anchors" module.

Watsen Expires April 25, 2019 [Page 3]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

 module: ietf-trust-anchors
 +--rw trust-anchors
 +--rw pinned-certificates* [name] {x509-certificates}?
 | +--rw name string
 | +--rw description? string
 | +--rw pinned-certificate* [name]
 | +--rw name string
 | +--rw cert trust-anchor-cert-cms
 | +---n certificate-expiration
 | +-- expiration-date yang:date-and-time
 +--rw pinned-host-keys* [name] {ssh-host-keys}?
 +--rw name string
 +--rw description? string
 +--rw pinned-host-key* [name]
 +--rw name string
 +--rw host-key ct:ssh-host-key

2.2. Example Usage

 The following example illustrates trust anchors in <operational> as
 described by Section 5.3 in [RFC8342]. This datastore view
 illustrates data set by the manufacturing process alongside
 conventional configuration. This trust anchors instance has six sets
 of pinned certificates and one set of pinned host keys.

 <trust-anchors
 xmlns="urn:ietf:params:xml:ns:yang:ietf-trust-anchors"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin">

 <!-- Manufacturer’s trusted root CA certs -->
 <pinned-certificates or:origin="or:system">
 <name>manufacturers-root-ca-certs</name>
 <description>
 Certificates built into the device for authenticating
 manufacturer-signed objects, such as TLS server certificates,
 vouchers, etc. Note, though listed here, these are not
 configurable; any attempt to do so will be denied.
 </description>
 <pinned-certificate>
 <name>Manufacturer Root CA cert 1</name>
 <cert>base64encodedvalue==</cert>
 </pinned-certificate>
 <pinned-certificate>
 <name>Manufacturer Root CA cert 2</name>
 <cert>base64encodedvalue==</cert>
 </pinned-certificate>
 </pinned-certificates>

Watsen Expires April 25, 2019 [Page 4]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

 <!-- specific end-entity certs for authenticating servers -->
 <pinned-certificates or:origin="or:intended">
 <name>explicitly-trusted-server-certs</name>
 <description>
 Specific server authentication certificates for explicitly
 trusted servers. These are needed for server certificates
 that are not signed by a pinned CA.
 </description>
 <pinned-certificate>
 <name>Fred Flintstone</name>
 <cert>base64encodedvalue==</cert>
 </pinned-certificate>
 </pinned-certificates>

 <!-- trusted CA certs for authenticating servers -->
 <pinned-certificates or:origin="or:intended">
 <name>explicitly-trusted-server-ca-certs</name>
 <description>
 Trust anchors (i.e. CA certs) that are used to authenticate
 server connections. Servers are authenticated if their
 certificate has a chain of trust to one of these CA
 certificates.
 </description>
 <pinned-certificate>
 <name>ca.example.com</name>
 <cert>base64encodedvalue==</cert>
 </pinned-certificate>
 </pinned-certificates>

 <!-- specific end-entity certs for authenticating clients -->
 <pinned-certificates or:origin="or:intended">
 <name>explicitly-trusted-client-certs</name>
 <description>
 Specific client authentication certificates for explicitly
 trusted clients. These are needed for client certificates
 that are not signed by a pinned CA.
 </description>
 <pinned-certificate>
 <name>George Jetson</name>
 <cert>base64encodedvalue==</cert>
 </pinned-certificate>
 </pinned-certificates>

 <!-- trusted CA certs for authenticating clients -->
 <pinned-certificates or:origin="or:intended">
 <name>explicitly-trusted-client-ca-certs</name>
 <description>
 Trust anchors (i.e. CA certs) that are used to authenticate

Watsen Expires April 25, 2019 [Page 5]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

 client connections. Clients are authenticated if their
 certificate has a chain of trust to one of these CA
 certificates.
 </description>
 <pinned-certificate>
 <name>ca.example.com</name>
 <cert>base64encodedvalue==</cert>
 </pinned-certificate>
 </pinned-certificates>

 <!-- trusted CA certs for random HTTPS servers on Internet -->
 <pinned-certificates or:origin="or:system">
 <name>common-ca-certs</name>
 <description>
 Trusted certificates to authenticate common HTTPS servers.
 These certificates are similar to those that might be
 shipped with a web browser.
 </description>
 <pinned-certificate>
 <name>ex-certificate-authority</name>
 <cert>base64encodedvalue==</cert>
 </pinned-certificate>
 </pinned-certificates>

 <!-- specific SSH host keys for authenticating clients -->
 <pinned-host-keys or:origin="or:intended">
 <name>explicitly-trusted-ssh-host-keys</name>
 <description>
 Trusted SSH host keys used to authenticate SSH servers.
 These host keys would be analogous to those stored in
 a known_hosts file in OpenSSH.
 </description>
 <pinned-host-key>
 <name>corp-fw1</name>
 <host-key>base64encodedvalue==</host-key>
 </pinned-host-key>
 </pinned-host-keys>

 </trust-anchors>

 The following example illustrates the "certificate-expiration"
 notification in use with the NETCONF protocol.

Watsen Expires April 25, 2019 [Page 6]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

 [Note: ’\’ line wrapping for formatting only]

 <notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2018-05-25T00:01:00Z</eventTime>
 <trust-anchors
 xmlns="urn:ietf:params:xml:ns:yang:ietf-trust-anchors">
 <pinned-certificates>
 <name>explicitly-trusted-client-certs</name>
 <pinned-certificate>
 <name>George Jetson</name>
 <certificate-expiration>
 <expiration-date>2018-08-05T14:18:53-05:00</expiration-dat\
 e>
 </certificate-expiration>
 </pinned-certificate>
 </pinned-certificates>
 </trust-anchors>
 </notification>

2.3. YANG Module

 This YANG module imports modules from [RFC8341] and
 [I-D.ietf-netconf-crypto-types].

 <CODE BEGINS> file "ietf-trust-anchors@2018-10-22.yang"
 module ietf-trust-anchors {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-trust-anchors";
 prefix "ta";

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }

 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC YYYY: Common YANG Data Types for Cryptography";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

Watsen Expires April 25, 2019 [Page 7]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

 contact
 "WG Web: <http://datatracker.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Author: Kent Watsen
 <mailto:kwatsen@juniper.net>";

 description
 "This module defines a data model for configuring global
 trust anchors used by other data models. The data model
 enables the configuration of sets of trust anchors.
 This data model supports configuring trust anchors for
 both X.509 certificates and SSH host keys.

 Copyright (c) 2018 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Simplified
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision "2018-10-22" {
 description
 "Initial version";
 reference
 "RFC XXXX: YANG Data Model for Global Trust Anchors";
 }

 /**/
 /* Typedefs for leafrefs to commonly referenced objects */
 /**/

 feature x509-certificates {
 description
 "The ’x509-certificates’ feature indicates that the server
 implements the /trust-anchors/pinned-certificates subtree.";
 }

 feature ssh-host-keys {

Watsen Expires April 25, 2019 [Page 8]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

 description
 "The ’ssh-host-keys’ feature indicates that the server
 implements the /trust-anchors/pinned-host-keys subtree.";
 }

 /**/
 /* Typedefs for leafrefs to commonly referenced objects */
 /**/

 typedef pinned-certificates-ref {
 type leafref {
 path "/ta:trust-anchors/ta:pinned-certificates/ta:name";
 require-instance false;
 }
 description
 "This typedef enables importing modules to easily define a
 leafref to a ’pinned-certificates’ object. The require
 instance attribute is false to enable the referencing of
 pinned certificates that exist only in <operational>.";
 reference
 "RFC 8342: Network Management Datastore Architecture (NMDA)";
 }

 typedef pinned-host-keys-ref {
 type leafref {
 path "/ta:trust-anchors/ta:pinned-host-keys/ta:name";
 require-instance false;
 }
 description
 "This typedef enables importing modules to easily define a
 leafref to a ’pinned-host-keys’ object. The require
 instance attribute is false to enable the referencing of
 pinned host keys that exist only in <operational>.";
 reference
 "RFC 8342: Network Management Datastore Architecture (NMDA)";
 }

 /*********************************/
 /* Protocol accessible nodes */
 /*********************************/

 container trust-anchors {
 nacm:default-deny-write;

 description
 "Contains sets of X.509 certificates and SSH host keys.";

Watsen Expires April 25, 2019 [Page 9]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

 list pinned-certificates {
 if-feature "x509-certificates";
 key name;
 description
 "A list of pinned certificates. These certificates can be
 used by a server to authenticate clients, or by a client
 to authenticate servers. Each list of pinned certificates
 SHOULD be specific to a purpose, as the list as a whole
 may be referenced by other modules. For instance, a
 RESTCONF server’s configuration might use a specific list
 of pinned certificates for when authenticating RESTCONF
 client connections.";
 leaf name {
 type string;
 description
 "An arbitrary name for this list of pinned certificates.";
 }
 leaf description {
 type string;
 description
 "An arbitrary description for this list of pinned
 certificates.";
 }
 list pinned-certificate {
 key name;
 description
 "A pinned certificate.";
 leaf name {
 type string;
 description
 "An arbitrary name for this pinned certificate. The
 name must be unique across all lists of pinned
 certificates (not just this list) so that leafrefs
 from another module can resolve to unique values.";
 }
 uses ct:trust-anchor-cert-grouping {
 refine cert {
 mandatory true;
 }
 }
 }
 }

 list pinned-host-keys {
 if-feature "ssh-host-keys";
 key name;
 description
 "A list of pinned host keys. These pinned host-keys can

Watsen Expires April 25, 2019 [Page 10]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

 be used by clients to authenticate SSH servers. Each
 list of pinned host keys SHOULD be specific to a purpose,
 so the list as a whole may be referenced by other modules.
 For instance, a NETCONF client’s configuration might
 point to a specific list of pinned host keys for when
 authenticating specific SSH servers.";
 leaf name {
 type string;
 description
 "An arbitrary name for this list of pinned SSH
 host keys.";
 }
 leaf description {
 type string;
 description
 "An arbitrary description for this list of pinned SSH
 host keys.";
 }
 list pinned-host-key {
 key name;
 description
 "A pinned host key.";
 leaf name {
 type string;
 description
 "An arbitrary name for this pinned host-key. Must be
 unique across all lists of pinned host-keys (not just
 this list) so that a leafref to it from another module
 can resolve to unique values.";
 }
 leaf host-key {
 type ct:ssh-host-key;
 mandatory true;
 description
 "The binary public key data for this pinned host key.";
 reference
 "RFC YYYY: Common YANG Data Types for Cryptography";
 }
 }
 }
 }

 }
 <CODE ENDS>

Watsen Expires April 25, 2019 [Page 11]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

3. Security Considerations

 The YANG module defined in this document is designed to be accessed
 via YANG based management protocols, such as NETCONF [RFC6241] and
 RESTCONF [RFC8040]. Both of these protocols have mandatory-to-
 implement secure transport layers (e.g., SSH, TLS) with mutual
 authentication.

 The NETCONF access control model (NACM) [RFC8341] provides the means
 to restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

 /: The entire data tree defined by this module is sensitive to
 write operations. For instance, the addition or removal of any
 trust anchor may dramatically alter the implemented security
 policy. For this reason, the NACM extension "default-deny-
 write" has been set for the entire data tree.

 None of the readable data nodes in this YANG module are considered
 sensitive or vulnerable in network environments.

 This module does not define any RPCs, actions, or notifications, and
 thus the security consideration for such is not provided here.

4. IANA Considerations

4.1. The IETF XML Registry

 This document registers one URI in the "ns" subregistry of the IETF
 XML Registry [RFC3688]. Following the format in [RFC3688], the
 following registration is requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-trust-anchors
 Registrant Contact: The NETCONF WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

Watsen Expires April 25, 2019 [Page 12]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

4.2. The YANG Module Names Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC6020]. Following the format in [RFC6020], the the
 following registration is requested:

 name: ietf-trust-anchors
 namespace: urn:ietf:params:xml:ns:yang:ietf-trust-anchors
 prefix: ta
 reference: RFC XXXX

5. References

5.1. Normative References

 [I-D.ietf-netconf-crypto-types]
 Watsen, K., "Common YANG Data Types for Cryptography",
 draft-ietf-netconf-crypto-types-01 (work in progress),
 September 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

5.2. Informative References

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

Watsen Expires April 25, 2019 [Page 13]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

Watsen Expires April 25, 2019 [Page 14]

Internet-Draft YANG Data Model for Global Trust Anchors October 2018

Appendix A. Change Log

A.1. 00 to 01

 o Added features "x509-certificates" and "ssh-host-keys".

 o Added nacm:default-deny-write to "trust-anchors" container.

A.2. 01 to 02

 o Switched "list pinned-certificate" to use the "trust-anchor-cert-
 grouping" from crypto-types. Effectively the same definition as
 before.

Acknowledgements

 The authors would like to thank for following for lively discussions
 on list and in the halls (ordered by last name): Martin Bjorklund,
 Balazs Kovacs, Eric Voit, and Liang Xia.

Author’s Address

 Kent Watsen
 Juniper Networks

 EMail: kwatsen@juniper.net

Watsen Expires April 25, 2019 [Page 15]

NETCONF G. Zheng
Internet-Draft T. Zhou
Intended status: Standards Track A. Clemm
Expires: April 22, 2019 Huawei
 October 19, 2018

 UDP based Publication Channel for Streaming Telemetry
 draft-ietf-netconf-udp-pub-channel-04

Abstract

 This document describes a UDP-based publication channel for streaming
 telemetry use to collect data from devices. A new shim header is
 proposed to facilitate the distributed data collection mechanism
 which directly pushes data from line cards to the collector. Because
 of the lightweight UDP encapsulation, higher frequency and better
 transit performance can be achieved.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Zheng, et al. Expires April 22, 2019 [Page 1]

Internet-Draft udp-pub-channel October 2018

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminologies . 4
 3. Solution Overview . 4
 4. Transport Mechanisms . 5
 4.1. Dynamic Subscription 6
 4.2. Configured Subscription 7
 5. UDP Transport for Publication Channel 8
 5.1. Design Overview . 8
 5.2. Data Format of the UPC Message Header 9
 5.3. Options . 10
 5.3.1. Reliability Option 10
 5.3.2. Fragmentation Option 11
 5.4. Data Encoding . 12
 6. Using DTLS to Secure UPC 12
 6.1. Transport . 13
 6.2. Port Assignment . 14
 6.3. DTLS Session Initiation 14
 6.4. Sending Data . 14
 6.5. Closure . 15
 7. Congestion Control . 15
 8. A YANG Data Model for Management of UPC 16
 9. YANG Module . 16
 10. IANA Considerations . 18
 11. Security Considerations 19
 12. Acknowledgements . 19
 13. References . 19
 13.1. Normative References 19
 13.2. Informative References 20
 13.3. URIs . 21
 Appendix A. Change Log . 21
 Authors’ Addresses . 22

Zheng, et al. Expires April 22, 2019 [Page 2]

Internet-Draft udp-pub-channel October 2018

1. Introduction

 Streaming telemetry refers to sending a continuous stream of
 operational data from a device to a remote receiver. This provides
 an ability to monitor a network from remote and to provide network
 analytics. Devices generate telemetry data and push that data to a
 collector for further analysis. By streaming the data, much better
 performance, finer-grained sampling, monitoring accuracy, and
 bandwidth utilization can be achieved than with polling-based
 alternatives.

 Sub-Notif [I-D.ietf-netconf-subscribed-notifications] defines a
 mechanism that allows a collector to subscribe to updates of YANG-
 defined data that is maintained in a YANG [RFC7950] datastore. The
 mechanism separates the management and control of subscriptions from
 the transport that is used to actually stream and deliver the data.
 Two transports, NETCONF transport
 [I-D.ietf-netconf-netconf-event-notifications] and HTTP transport
 [I-D.ietf-netconf-restconf-notif], have been defined so far for the
 notification messages.

 While powerful in its features and general in its architecture, in
 its current form the mechanism needs to be extended to stream
 telemetry data at high velocity from devices that feature a
 distributed architecture. The transports that have been defined so
 far, NETCONF and HTTP, are ultimately based on TCP and lack the
 efficiency needed to stream data continuously at high velocity. A
 lighter-weight, more efficient transport, e.g. a transport based on
 UDP is needed.

 o Firstly, data collector will suffer a lot of TCP connections from,
 for example, many line cards equipped on different devices.

 o Secondly, as no connection state needs to be maintained, UDP
 encapsulation can be easily implemented by hardware which will
 further improve the performance.

 o Thirdly, because of the lightweight UDP encapsulation, higher
 frequency and better transit performance can be achieved, which is
 important for streaming telemetry.

 This document specifies a higher-performance transport option for
 Sub-Notif that leverages UDP. Specifically, it facilitates the
 distributed data collection mechanism described in
 [I-D.zhou-netconf-multi-stream-originators]. In the case of data
 originating from multiple line cards, the centralized design requires
 data to be internally forwarded from those line cards to the push
 server, presumably on a main board, which then combines the

Zheng, et al. Expires April 22, 2019 [Page 3]

Internet-Draft udp-pub-channel October 2018

 individual data items into a single consolidated stream. The
 centralized data collection mechanism can result in a performance
 bottleneck, especially when large amounts of data are involved. What
 is needed instead is the support for a distributed mechanism that
 allows to directly push multiple individual substreams, e.g. one from
 each line card, without needing to first pass them through an
 additional processing stage for internal consolidation, but still
 allowing those substreams to be managed and controlled via a single
 subscription. The proposed UDP based Publication Channel (UPC)
 natively supports the distributed data collection mechanism.

 The transport described in this document can be used for transmitting
 notification messages over both IPv4 and IPv6 [RFC8200].

 While this document will focus on the data publication channel, the
 subscription can be used in conjunction with the mechanism proposed
 in [I-D.ietf-netconf-subscribed-notifications] with extensions
 [I-D.zhou-netconf-multi-stream-originators].

2. Terminologies

 Streaming Telemetry: refers to sending a continuous stream of
 operational data from a device to a remote receiver. This provides
 an ability to monitor a network from remote and to provide network
 analytics.

 Component Subscription: A subscription that defines the data from
 each individual telemetry source which is managed and controlled by a
 single Subscription Server.

 Component Subscription Server: An agent that streams telemetry data
 per the terms of a component subscription.

3. Solution Overview

 The typical distributed data collection solution is shown in Fig. 1.
 Both the Collector and the Publisher can be distributed. The
 Collector includes the Subscriber and a set of Receivers. And the
 Publisher includes a Subscription Server and a set of Component
 Subscription Servers. The Subscriber cannot see the Component
 Subscription Servers directly, so it will send the Global
 Subscription information to the Subscription Server (e.g., main
 board) via the Subscription Channel. When receiving a Global
 Subscription, the Subscription Server decomposes the subscription
 request into multiple Component Subscriptions, each involving data
 from a separate internal telemetry source, for example a line card.
 The Component Subscriptions are distributed to the Component
 Subscription Server. Subsequently, each data originator generates

Zheng, et al. Expires April 22, 2019 [Page 4]

Internet-Draft udp-pub-channel October 2018

 its own stream of telemetry data, collecting and encapsulating the
 packets per the Component Subscription and streaming them to the
 designated Receivers. This distributed data collection mechanism may
 form multiple Publication Channels to the Receivers. The Receiver is
 able to assemble many pieces of data associated with one Global
 Subscription.

 The Publication Channel supports the reliable data streaming, for
 example for some alarm events. The Collector has the option of
 deducing the packet loss and the disorder based on the information
 carried by the notification data. And the Collector may decide the
 behavior to request retransmission.

 The rest of the draft describes the UDP based Publication Channel
 (UPC).

 +-------------------------------------+
 | Collector |
 | |
 | +------------+ +-----------+ |
 | | Subscriber | | Receivers | |
 | +----+-------+ +--^----^---+ |
 | | | | |
 +-------------------------------------+
 | | |
 Subscription | | | Publication
 Channel | | | Channel
 | +---------+ |
 | | |
 +-------------------------------------+
 | | | | |
 | +----v---+-----+ +------+-------+ |
 | | Subscription | | Component | |
 | | Server | | Subscription | |
 | | | | Servers | |
 | +--------------+ +--------------+ |
 | |
 | Publisher |
 +-------------------------------------+

 Fig. 1 Distributed Data Collection

4. Transport Mechanisms

 For a complete pub-sub mechanism, this section will describe how the
 UPC is used to interact with the Subscription Channel relying on
 NETCONF or RESTCONF.

Zheng, et al. Expires April 22, 2019 [Page 5]

Internet-Draft udp-pub-channel October 2018

4.1. Dynamic Subscription

 Dynamic subscriptions for Sub-Notif are configured and managed via
 signaling messages transported over NETCONF [RFC6241] or RESTCONF
 [RFC8040]. The Sub-Notif defined RPCs which are sent and responded
 via the Subscription Channel (a), between the Subscriber and the
 Subscription Server of the Publisher. In this case, only one
 Receiver is associated with the Subscriber. In the Publisher, there
 may be multiple data originators. Notification messages are pushed
 on separate channels (b), from different data originators to the
 Receiver.

 +--------------+ +--------------+
Collector		Publisher
(a) (b)		(a) (b)
 +--+------+----+ +--+-------+---+
 | | | |
 | | RPC:establish-subscription | |
 +--> |
 | | RPC Reply: OK | |
 <--+ |
 | | UPC:notifications | |
 | <---+
 | | | |
 | | RPC:modify-subscription | |
 +--> |
 | | RPC Reply: OK | |
 <--+ |
 | | UPC:notifications | |
 | <---+
 | | | |
 | | RPC:delete-subscription | |
 +--> |
 | | RPC Reply: OK | |
 <--+ |
 | | | |
 | | | |
 + + + +

 Fig. 2 Call Flow For Dynamic Subscription

 In the case of dynamic subscription, the Receiver and the Subscriber
 SHOULD be colocated. So UPC can use the source IP address of the
 Subscription Channel as it’s destination IP address. The Receiver
 MUST support listening messages at the IANA-assigned PORT-X or PORT-
 Y, but MAY be configured to listen at a different port.

Zheng, et al. Expires April 22, 2019 [Page 6]

Internet-Draft udp-pub-channel October 2018

 For dynamic subscription, the Publication Channels MUST share fate
 with the subscription session. In other words, when the delete-
 subscription is received or the subscription session is broken, all
 the associated Publication Channels MUST be closed.

4.2. Configured Subscription

 For a Configured Subscription, there is no guarantee that the
 Subscriber is currently in place with the associated Receiver(s). As
 defined in Sub-Notif, the subscription configuration contains the
 location information of all the receivers, including the IP address
 and the port number. So that the data originator can actively send
 generated messages to the corresponding Receivers via the UPC.

 The first message MUST be a separate subscription-started
 notification to indicate the Receiver that the pushing is started.
 Then, the notifications can be sent immediately without any wait.

 All the subscription state notifications, as defined in
 [I-D.ietf-netconf-subscribed-notifications], MUST be encapsulated to
 be separated notification messages.

Zheng, et al. Expires April 22, 2019 [Page 7]

Internet-Draft udp-pub-channel October 2018

 +--------------+ +--------------+
Collector		Publisher
(a) (b)		(a) (b)
 +--+------+----+ +--+-------+---+
 | | | |
 | | Capability Exchange | |
 <--> |
 | | | |
 | | Edit config(create) | |
 +--> |
 | | RPC Reply: OK | |
 <--+ |
 | | UPC:subscription started | |
 | <---+
 | | UPC:notifications | |
 | <---+
 | | | |
 | | Edit config(delete) | |
 +--> |
 | | RPC Reply: OK | |
 <--+ |
 | | UPC:subscription terminated | |
 | <---+
 | | | |
 | | | |
 + + + +

 Fig. 3 Call Flow For Configured Subscription

5. UDP Transport for Publication Channel

5.1. Design Overview

 As specified in Sub-Notif, the telemetry data is encapsulated in the
 NETCONF/RESTCONF notification message, which is then encapsulated and
 carried in the transport protocols, e.g. TLS, HTTP2. The following
 figure shows the overview of the typical UPC message structure.

 o The Message Header contains information that can facilitate the
 message transmission before de-serializing the notification
 message.

 o Notification Message is the encoded content that the publication
 channel transports. The common encoding method includes GPB [1],
 CBOR [RFC7049], JSON, and XML.
 [I-D.ietf-netconf-notification-messages] describes the structure

Zheng, et al. Expires April 22, 2019 [Page 8]

Internet-Draft udp-pub-channel October 2018

 of the Notification Message for both single notification and
 multiple bundled notifications.

 +-------+ +--------------+ +--------------+
 | UDP | | Message | | Notification |
 | | | Header | | Message |
 +-------+ +--------------+ +--------------+

 Fig. 4 UDP Publication Message Overview

5.2. Data Format of the UPC Message Header

 The UPC Message Header contains information that can facilitate the
 message transmission before de-serializing the notification message.
 The data format is shown as follows.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-------+---------------+-------+-------------------------------+
 | Vers. | Flag | ET | Length |
 +-------+---------------+-------+-------------------------------+
 | Message-Generator-ID |
 +---+
 | Message ID |
 +---+
 ˜ Options ˜
 +---+

 Fig. 3 UPC Message Header Format

 The Message Header contains the following field:

 o Vers.: represents the PDU (Protocol Data Unit) encoding version.
 The initial version value is 0.

 o Flag: is a bitmap indicating what features this packet has and the
 corresponding options attached. Each bit associates to one
 feature and one option data. When the bit is set to 1, the
 associated feature is enabled and the option data is attached.
 The sequence of the presence of the options follows the bit order
 of the bitmap. In this document, the flag is specified as
 follows:

 * bit 0, the reliability flag;

 * bit 1, the fragmentation flag;

Zheng, et al. Expires April 22, 2019 [Page 9]

Internet-Draft udp-pub-channel October 2018

 * other bits are reserved.

 o ET: is a 4 bits identifier to indicate the encoding type used for
 the Notification Message. 16 types of encoding can be expressed:

 * 0: GPB;

 * 1: CBOR;

 * 2: JSON;

 * 3: XML;

 * others are reserved.

 o Length: is the total length of the message, measured in octets,
 including message header.

 o Message-Generator-ID: is a 32-bit identifier of the process which
 created the notification message. This allows disambiguation of
 an information source, such as the identification of different
 line cards sending the notification messages. The source IP
 address of the UDP datagrams SHOULD NOT be interpreted as the
 identifier for the host that originated the UPC message. The
 entity sending the UPC message could be merely a relay.

 o The Message ID is generated continuously by the message generator.
 Different subscribers share the same notification ID sequence.

 o Options: is a variable-length field. The details of the Options
 will be described in the respective sections below.

5.3. Options

 The order of packing the data fields in the Options field follows the
 bit order of the Flag field.

5.3.1. Reliability Option

 The UDP based publication transport described in this document
 provides two streaming modes, the reliable mode an the unreliable
 mode, for different SLA (Service Level Agreement) and telemetry
 requirements.

 In the unreliable streaming mode, the line card pushes the
 encapsulated data to the data collector without any sequence
 information. So the subscriber does not know whether the data is
 correctly received or not. Hence no retransmission happens.

Zheng, et al. Expires April 22, 2019 [Page 10]

Internet-Draft udp-pub-channel October 2018

 The reliable streaming mode provides sequence information in the UDP
 packet, based on which the subscriber can deduce the packet loss and
 disorder. Then the subscriber can decide whether to request the
 retransmission of the lost packets.

 In most case, the unreliable streaming mode is preferred. Because
 the reliable streaming mode will cost more network bandwidth and
 precious device resource. Different from the unreliable streaming
 mode, the line card cannot remove the sent reliable notifications
 immediately, but to keep them in the memory for a while. Reliable
 notifications may be pushed multiple times, which will increase the
 traffic. When choosing the reliable streaming mode or the unreliable
 streaming mode, the operate need to consider the reliable requirement
 together with the resource usage.

 When the reliability flag bit is set to 1 in the Flag field, the
 following option data will be attached

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+
 | Previous Message ID |
 +---+

 Fig. 4 Reliability Option Format

 Current Message ID and Previous Message ID will be added in the
 packets.

 For example, there are two subscriber A and B,

 o Message IDs for the generator are : [1, 2, 3, 4, 5, 6, 7, 8, 9],
 in which Subscriber A subscribes [1,2,3,6,7] and Subscriber B
 subscribes [1,2,4,5,7,8,9].

 o Subscriber A will receive [Previous Message ID, Current Message
 ID] like: [0,1][1,2][2,3][3,6][6,7].

 o Subscriber B will receive [Previous Message ID, Current Message
 ID] like: [0,1][1,2][2,4][4,5][5,7][7,8][8,9].

5.3.2. Fragmentation Option

 UDP palyload has a theoretical length limitation to 65535. Other
 encapsulation headers will make the actual payload even shorter.
 Binary encodings like GPB and CBOR can make the message compact. So
 that the message can be encapsulated within one UDP packet, hence
 fragmentation will not easily happen. However, text encodings like

Zheng, et al. Expires April 22, 2019 [Page 11]

Internet-Draft udp-pub-channel October 2018

 JSON and XML can easily make the message exceed the UDP length
 limitation.

 The Fragmentation Option can help not Application layer can split the
 YANG tree into several leaves. Or table into several rows. But the
 leaf or the row cannot be split any further. Now we consider a very
 long path. Since the GPB and CBOR are so compact, it’s easy to fit
 into a UDP packet. But for JSON or XML, it is possible that even one
 leaf will exceed the UDP boundary.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---+-+
 | Fragment Number |L|
 +---+-+

 Fig. 5 Fragmentation Option Format

 The Fragmentation Option is available in the message header when the
 fragmentation flag is set to 1. The option contains:

 Fragment Number: indicates the sequence number of the current
 fragment.

 L: is a flag to indicate whether the current fragment is the last
 one. When 0 is set, current fragment is not the last one, hence more
 fragments are expected. When 1 is set, current fragment is the last
 one.

5.4. Data Encoding

 Subscribed data can be encoded in GPB, CBOR, XML or JSON format. It
 is conceivable that additional encodings may be supported as options
 in the future. This can be accomplished by augmenting the
 subscription data model with additional identity statements used to
 refer to requested encodings.

 Implementation may support different encoding method per
 subscription. When bundled notifications is supported between the
 publisher and the receiver, only subscribed notifications with the
 same encoding can be bundled as one message.

6. Using DTLS to Secure UPC

 The Datagram Transport Layer Security (DTLS) protocol [RFC6347] is
 designed to meet the requirements of applications that need secure
 datagram transport.

Zheng, et al. Expires April 22, 2019 [Page 12]

Internet-Draft udp-pub-channel October 2018

 DTLS can be used as a secure transport to counter all the primary
 threats to UDP based Publication Channel:

 o Confidentiality to counter disclosure of the message contents.

 o Integrity checking to counter modifications to a message on a hop-
 by-hop basis.

 o Server or mutual authentication to counter masquerade.

 In addition, DTLS also provides:

 o A cookie exchange mechanism during handshake to counter Denial of
 Service attacks.

 o A sequence number in the header to counter replay attacks.

6.1. Transport

 As shown in Figure 6, the DTLS is layered next to the UDP transport
 is to provide reusable security and authentication functions over
 UDP. No DTLS extension is required to enable UPC messages over DTLS.

 +-----------------------------+
 | UPC Message |
 +-----------------------------+
 | DTLS |
 +-----------------------------+
 | UDP |
 +-----------------------------+
 | IP |
 +-----------------------------+

 Fig. 6: Protocol Stack for DTLS secured UPC

 The application implementer will map a unique combination of the
 remote address, remote port number, local address, and local port
 number to a session.

 Each UPC message is delivered by the DTLS record protocol, which
 assigns a sequence number to each DTLS record. Although the DTLS
 implementer may adopt a queue mechanism to resolve reordering, it may
 not assure that all the messages are delivered in order when mapping
 on the UDP transport.

 Since UDP is an unreliable transport, with DTLS, an originator or
 relay may not realize that a collector has gone down or lost its DTLS
 connection state, so messages may be lost.

Zheng, et al. Expires April 22, 2019 [Page 13]

Internet-Draft udp-pub-channel October 2018

 The DTLS record has its own sequence number, the encryption and
 decryption will done by DTLS layer, UPC Message layer will not
 concern this.

6.2. Port Assignment

 The Publisher is always a DTLS client, and the Receiver is always a
 DTLS server. The Receivers MUST support accepting UPC Messages on
 the UDP port PORT-Y, but MAY be configurable to listen on a different
 port. The Publisher MUST support sending UPC messages to the UDP
 port PORT-Y, but MAY be configurable to send messages to a different
 port. The Publisher MAY use any source UDP port for transmitting
 messages.

6.3. DTLS Session Initiation

 The Publisher initiates a DTLS connection by sending a DTLS Client
 Hello to the Receiver. Implementations MUST support the denial of
 service countermeasures defined by DTLS. When these countermeasures
 are used, the Receiver responds with a DTLS Hello Verify Request
 containing a cookie. The Publisher responds with a DTLS Client Hello
 containing the received cookie, which initiates the DTLS handshake.
 The Publisher MUST NOT send any UPC messages before the DTLS
 handshake has successfully completed.

 Implementations MUST support DTLS 1.0 [RFC4347] and MUST support the
 mandatory to implement cipher suite, which is
 TLS_RSA_WITH_AES_128_CBC_SHA [RFC5246] as specified in DTLS 1.0. If
 additional cipher suites are supported, then implementations MUST NOT
 negotiate a cipher suite that employs NULL integrity or
 authentication algorithms.

 Where privacy is REQUIRED, then implementations must either negotiate
 a cipher suite that employs a non-NULL encryption algorithm or else
 achieve privacy by other means, such as a physically secured network.

6.4. Sending Data

 All UPC messages MUST be sent as DTLS "application_data". It is
 possible that multiple UPC messages be contained in one DTLS record,
 or that a publication message be transferred in multiple DTLS
 records. The application data is defined with the following ABNF
 [RFC5234] expression:

 APPLICATION-DATA = 1*UPC-FRAME

 UPC-FRAME = MSG-LEN SP UPC-MSG

Zheng, et al. Expires April 22, 2019 [Page 14]

Internet-Draft udp-pub-channel October 2018

 MSG-LEN = NONZERO-DIGIT *DIGIT

 SP = %d32

 NONZERO-DIGIT = %d49-57

 DIGIT = %d48 / NONZERO-DIGIT

 UPC-MSG is defined in section 5.2.

6.5. Closure

 A Publisher MUST close the associated DTLS connection if the
 connection is not expected to deliver any UPC Messages later. It
 MUST send a DTLS close_notify alert before closing the connection. A
 Publisher (DTLS client) MAY choose to not wait for the Receiver’s
 close_notify alert and simply close the DTLS connection. Once the
 Receiver gets a close_notify from the Publisher, it MUST reply with a
 close_notify.

 When no data is received from a DTLS connection for a long time
 (where the application decides what "long" means), Receiver MAY close
 the connection. The Receiver (DTLS server) MUST attempt to initiate
 an exchange of close_notify alerts with the Publisher before closing
 the connection. Receivers that are unprepared to receive any more
 data MAY close the connection after sending the close_notify alert.

 Although closure alerts are a component of TLS and so of DTLS, they,
 like all alerts, are not retransmitted by DTLS and so may be lost
 over an unreliable network.

7. Congestion Control

 Congestion control mechanisms that respond to congestion by reducing
 traffic rates and establish a degree of fairness between flows that
 share the same path are vital to the stable operation of the Internet
 [RFC2914]. While efficient, UDP has no build-in congestion control
 mechanism. Because streaming telemetry can generate unlimited
 amounts of data, transferring this data over UDP is generally
 problematic. It is not recommended to use the UDP based publication
 channel over congestion-sensitive network paths. The only
 environments where the UDP based publication channel MAY be used are
 managed networks. The deployments require the network path has been
 explicitly provisioned for the UDP based publication channel through
 traffic engineering mechanisms, such as rate limiting or capacity
 reservations.

Zheng, et al. Expires April 22, 2019 [Page 15]

Internet-Draft udp-pub-channel October 2018

8. A YANG Data Model for Management of UPC

 The YANG model defined in Section 9 has two leafs augmented into one
 place of Sub-Notif [I-D.ietf-netconf-subscribed-notifications], plus
 one identities.

 module: ietf-upc-subscribed-notifications
 augment /sn:subscriptions/sn:subscription/sn:receivers/sn:receiver:
 +--rw address? inet:ip-address
 +--rw port? inet:port-number

9. YANG Module

<CODE BEGINS> file "ietf-upc-subscribed-notifications@2018-10-19.yang"
module ietf-upc-subscribed-notifications {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-upc-subscribed-notifications";
 prefix upcsn;
 import ietf-subscribed-notifications {
 prefix sn;
 }
 import ietf-inet-types {
 prefix inet;
 }

 organization "IETF NETCONF (Network Configuration) Working Group";
 contact
 "WG Web: <http:/tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Editor: Guangying Zheng
 <mailto:zhengguangying@huawei.com>

 Editor: Tianran Zhou
 <mailto:zhoutianran@huawei.com>

 Editor: Alexander Clemm
 <mailto:alexander.clemm@huawei.com>";

 description
 "Defines UDP Publish Channel as a supported transport for subscribed
 event notifications.

 Copyright (c) 2018 IETF Trust and the persons identified as authors
 of the code. All rights reserved.

Zheng, et al. Expires April 22, 2019 [Page 16]

Internet-Draft udp-pub-channel October 2018

 Redistribution and use in source and binary forms, with or without
 modification, is permitted pursuant to, and subject to the license
 terms contained in, the Simplified BSD License set forth in Section
 4.c of the IETF Trust’s Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the RFC

 itself for full legal notices.";

 revision 2018-10-19 {
 description
 "Initial version";
 reference
 "RFC XXXX: UDP based Publication Channel for Streaming Telemetry";
 }

 identity upc {
 base sn:transport;
 description
 "UPC is used as transport for notification messages and state
 change notifications.";
 }

 grouping target-receiver {
 description
 "Provides a reusable description of a UPC target receiver.";
 leaf address {
 type inet:ip-address;
 description
 "Ip address of target upc receiver, which can be IPv4 address or
 IPV6 address.";
 }
 leaf port {
 type inet:port-number;
 description
 "Port number of target UPC receiver, if not specify, system
 should use default port number.";
 }
 }

 augment "/sn:subscriptions/sn:subscription/sn:receivers/sn:receiver" {
 description
 "This augmentation allows UPC specific parameters to be
 exposed for a subscription.";
 uses target-receiver;
 }
}

Zheng, et al. Expires April 22, 2019 [Page 17]

Internet-Draft udp-pub-channel October 2018

<CODE ENDS>

10. IANA Considerations

 This RFC requests that IANA assigns three UDP port numbers in the
 "Registered Port Numbers" range with the service names "upc" and
 "upc-dtls". These ports will be the default ports for the UDP based
 Publication Channel for NETCONF and RESTCONF. Below is the
 registration template following the rules in [RFC6335].

 Service Name: upc

 Transport Protocol(s): UDP

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: UDP based Publication Channel

 Reference: RFC XXXX

 Port Number: PORT-X

 Service Name: upc-dtls

 Transport Protocol(s): UDP

 Assignee: IESG <iesg@ietf.org>

 Contact: IETF Chair <chair@ietf.org>

 Description: UDP based Publication Channel (DTLS)

 Reference: RFC XXXX

 Port Number: PORT-Y

 IANA is requested to assign a new URI from the IETF XML Registry
 [RFC3688]. The following URI is suggested:

 URI: urn:ietf:params:xml:ns:yang:ietf-upc-subscribed-notifications
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

 This document also requests a new YANG module name in the YANG Module
 Names registry [RFC7950] with the following suggestion:

Zheng, et al. Expires April 22, 2019 [Page 18]

Internet-Draft udp-pub-channel October 2018

name: ietf-upc-subscribed-notifications
namespace: urn:ietf:params:xml:ns:yang:ietf-upc-subscribed-notifications
prefix: upcsn
reference: RFC XXXX

11. Security Considerations

 TBD

12. Acknowledgements

 The authors of this documents would like to thank Eric Voit, Tim
 Jenkins, and Huiyang Yang for the initial comments.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41,
 RFC 2914, DOI 10.17487/RFC2914, September 2000,
 <https://www.rfc-editor.org/info/rfc2914>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, DOI 10.17487/RFC4347, April 2006,
 <https://www.rfc-editor.org/info/rfc4347>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

Zheng, et al. Expires April 22, 2019 [Page 19]

Internet-Draft udp-pub-channel October 2018

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,
 RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

13.2. Informative References

 [I-D.ietf-netconf-netconf-event-notifications]
 Voit, E., Clemm, A., Prieto, A., Nilsen-Nygaard, E., and
 A. Tripathy, "NETCONF Support for Event Notifications",
 draft-ietf-netconf-netconf-event-notifications-13 (work in
 progress), October 2018.

 [I-D.ietf-netconf-notification-messages]
 Voit, E., Birkholz, H., Bierman, A., Clemm, A., and T.
 Jenkins, "Notification Message Headers and Bundles",
 draft-ietf-netconf-notification-messages-04 (work in
 progress), August 2018.

Zheng, et al. Expires April 22, 2019 [Page 20]

Internet-Draft udp-pub-channel October 2018

 [I-D.ietf-netconf-restconf-notif]
 Voit, E., Rahman, R., Nilsen-Nygaard, E., Clemm, A., and
 A. Bierman, "RESTCONF Transport for Event Notifications",
 draft-ietf-netconf-restconf-notif-08 (work in progress),
 October 2018.

 [I-D.ietf-netconf-subscribed-notifications]
 Voit, E., Clemm, A., Prieto, A., Nilsen-Nygaard, E., and
 A. Tripathy, "Customized Subscriptions to a Publisher’s
 Event Streams", draft-ietf-netconf-subscribed-
 notifications-17 (work in progress), September 2018.

 [I-D.zhou-netconf-multi-stream-originators]
 Zhou, T., Zheng, G., Voit, E., Clemm, A., and A. Bierman,
 "Subscription to Multiple Stream Originators", draft-zhou-
 netconf-multi-stream-originators-03 (work in progress),
 October 2018.

13.3. URIs

 [1] https://developers.google.com/protocol-buffers/

Appendix A. Change Log

 (To be removed by RFC editor prior to publication)

 A.1. draft-ietf-zheng-udp-pub-channel-00 to v00

 o Modified the message header format.

 o Added a section on the Authentication Option.

 o Cleaned up the text and removed unnecessary TBDs.

 A.2. v01

 o Removed the detailed description on distributed data collection
 mechanism from this document. Mainly focused on the description
 of a UDP based publication channel for telemetry use.

 o Modified the message header format.

 A.2. v02

 o Add the section on the transport mechanism.

 o Modified the fixed message header format.

Zheng, et al. Expires April 22, 2019 [Page 21]

Internet-Draft udp-pub-channel October 2018

 o Add the fragmentation option for the message header.

 A.2. v03

 o Clarify term through the document.

 o Add a section on DTLS support.

 A.2. v04

 o Add a section on UPC subscription model.

Authors’ Addresses

 Guangying Zheng
 Huawei
 101 Yu-Hua-Tai Software Road
 Nanjing, Jiangsu
 China

 Email: zhengguangying@huawei.com

 Tianran Zhou
 Huawei
 156 Beiqing Rd., Haidian District
 Beijing
 China

 Email: zhoutianran@huawei.com

 Alexander Clemm
 Huawei
 2330 Central Expressway
 Santa Clara, California
 USA

 Email: alexander.clemm@huawei.com

Zheng, et al. Expires April 22, 2019 [Page 22]

NETCONF A. Clemm
Internet-Draft Huawei
Intended status: Standards Track E. Voit
Expires: April 25, 2019 Cisco Systems
 A. Gonzalez Prieto
 VMware
 A. Tripathy
 E. Nilsen-Nygaard
 Cisco Systems
 A. Bierman
 YumaWorks
 B. Lengyel
 Ericsson
 October 22, 2018

 Subscription to YANG Datastores
 draft-ietf-netconf-yang-push-20

Abstract

 Via the mechanism described in this document, subscriber applications
 may request a continuous, customized stream of updates from a YANG
 datastore. Providing such visibility into updates enables new
 capabilities based on the remote mirroring and monitoring of
 configuration and operational state.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Clemm, et al. Expires April 25, 2019 [Page 1]

Internet-Draft YANG-Push October 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 3
 2. Definitions and Acronyms 4
 3. Solution Overview . 5
 3.1. Subscription Model 5
 3.2. Negotiation of Subscription Policies 6
 3.3. On-Change Considerations 7
 3.4. Reliability Considerations 8
 3.5. Data Encodings . 9
 3.6. Defining the Selection with a Datastore 10
 3.7. Streaming Updates . 11
 3.8. Subscription Management 13
 3.9. Receiver Authorization 15
 3.10. On-Change Notifiable Datastore Nodes 16
 3.11. Other Considerations 17
 4. A YANG Data Model for Management of Datastore Push
 Subscriptions . 18
 4.1. Overview . 18
 4.2. Subscription Configuration 23
 4.3. YANG Notifications 24

Clemm, et al. Expires April 25, 2019 [Page 2]

Internet-Draft YANG-Push October 2018

 4.4. YANG RPCs . 25
 5. YANG Module . 30
 6. IANA Considerations . 47
 7. Security Considerations 48
 8. Acknowledgments . 49
 9. References . 49
 9.1. Normative References 49
 9.2. Informative References 50
 Appendix A. Appendix A: Subscription Errors 51
 A.1. RPC Failures . 51
 A.2. Notifications of Failure 53
 Appendix B. Changes Between Revisions 53
 Authors’ Addresses . 57

1. Introduction

 Traditional approaches to providing visibility into managed entities
 from remote have been built on polling. With polling, data is
 periodically requested and retrieved by a client from a server to
 stay up-to-date. However, there are issues associated with polling-
 based management:

 o Polling incurs significant latency. This latency prohibits many
 application types.

 o Polling cycles may be missed, requests may be delayed or get lost,
 often when the network is under stress and the need for the data
 is the greatest.

 o Polling requests may undergo slight fluctuations, resulting in
 intervals of different lengths. The resulting data is difficult
 to calibrate and compare.

 o For applications that monitor for changes, many remote polling
 cycles place unwanted and ultimately wasteful load on the network,
 devices, and applications, particularly when changes occur only
 infrequently.

 A more effective alternative to polling is for an application to
 receive automatic and continuous updates from a targeted subset of a
 datastore. Accordingly, there is a need for a service that allows
 applications to subscribe to updates from a datastore and that
 enables the server (also referred to as publisher) to push and in
 effect stream those updates. The requirements for such a service
 have been documented in [RFC7923].

 This document defines a corresponding solution that is built on top
 of "Custom Subscription to Event Streams"

Clemm, et al. Expires April 25, 2019 [Page 3]

Internet-Draft YANG-Push October 2018

 [I-D.draft-ietf-netconf-subscribed-notifications]. Supplementing
 that work are YANG data model augmentations, extended RPCs, and new
 datastore specific update notifications. Transport options for
 [I-D.draft-ietf-netconf-subscribed-notifications] will work
 seamlessly with this solution.

2. Definitions and Acronyms

 This document uses the terminology defined in [RFC7950], [RFC8341],
 [RFC8342], and [I-D.draft-ietf-netconf-subscribed-notifications]. In
 addition, the following terms are introduced:

 o Datastore node: A node in the instantiated YANG data tree
 associated with a datastore. In this document, datastore nodes
 are often also simply referred to as "objects"

 o Datastore node update: A data item containing the current value of
 a datastore node at the time the datastore node update was
 created, as well as the path to the datastore node.

 o Datastore subscription: A subscription to a stream of datastore
 node updates.

 o Datastore subtree: A datastore node and all its descendant
 datastore nodes

 o On-change subscription: A datastore subscription with updates that
 are triggered when changes in subscribed datastore nodes are
 detected.

 o Periodic subscription: A datastore subscription with updates that
 are triggered periodically according to some time interval.

 o Selection filter: Evaluation and/or selection criteria, which may
 be applied against a targeted set of objects.

 o Update record: A representation of one or more datastore node
 updates. In addition, an update record may contain which type of
 update led to the datastore node update (e.g., whether the
 datastore node was added, changed, deleted). Also included in the
 update record may be other metadata, such as a subscription id of
 the subscription as part of which the update record was generated.
 In this document, update records are often also simply referred to
 as "updates".

 o Update trigger: A mechanism that determines when an update record
 needs to be generated.

Clemm, et al. Expires April 25, 2019 [Page 4]

Internet-Draft YANG-Push October 2018

 o YANG-Push: The subscription and push mechanism for datastore
 updates that is specified in this document.

3. Solution Overview

 This document specifies a solution that provides a subscription
 service for updates from a datastore. This solution supports dynamic
 as well as configured subscriptions to updates of datastore nodes.
 Subscriptions specify when notification messages (also referred to as
 "push updates") should be sent and what data to include in update
 records. Datastore node updates are subsequently pushed from the
 publisher to the receiver per the terms of the subscription.

3.1. Subscription Model

 YANG-push subscriptions are defined using a YANG data model. This
 model enhances the subscription model defined in
 [I-D.draft-ietf-netconf-subscribed-notifications] with capabilities
 that allow subscribers to subscribe to datastore node updates,
 specifically to specify the update triggers defining when to generate
 update records as well as what to include in an update record. Key
 enhancements include:

 o Specification of selection filters which identify targeted YANG
 datastore nodes and/or datastore subtrees for which updates are to
 be pushed.

 o Specification of update policies contain conditions which trigger
 the generation and pushing of new update records. There are two
 types of subscriptions, distinguished by how updates are
 triggered: periodic and on-change.

 * For periodic subscriptions, the update trigger is specified by
 two parameters that define when updates are to be pushed.
 These parameters are the period interval with which to report
 updates, and an "anchor time", i.e. a reference point in time
 that can be used to calculate at which points in time periodic
 updates need to be assembled and sent.

 * For on-change subscriptions, an update trigger occurs whenever
 a change in the subscribed information is detected. Included
 are additional parameters that include:

 + Dampening period: In an on-change subscription, detected
 object changes should be sent as quickly as possible.
 However it may be undesirable to send a rapid series of
 object changes. Such behavior has the potential to exhaust
 resources in the publisher or receiver. In order to protect

Clemm, et al. Expires April 25, 2019 [Page 5]

Internet-Draft YANG-Push October 2018

 against that, a dampening period MAY be used to specify the
 interval which has to pass before successive update records
 for the same subscription are generated for a receiver. The
 dampening period collectively applies to the set of all
 datastore nodes selected by a single subscription. This
 means that when there is a change to one or more subscribed
 objects, an update record containing those objects is
 created immediately (when no dampening period is in effect)
 or at the end of a dampening period (when a dampening period
 is in fact in effect). If multiple changes to a single
 object occur during a dampening period, only the value that
 is in effect at the time when the update record is created
 is included. The dampening period goes into effect every
 time an update record completes assembly.

 + Change type: This parameter can be used to reduce the types
 of datastore changes for which updates are sent (e.g., you
 might only send an update when an object is created or
 deleted, but not when an object value changes).

 + Sync on start: defines whether or not a complete push-update
 of all subscribed data will be sent at the beginning of a
 subscription. Such early synchronization establishes the
 frame of reference for subsequent updates.

 o An encoding (using anydata) for the contents of periodic and on-
 change push updates.

3.2. Negotiation of Subscription Policies

 A dynamic subscription request SHOULD be declined if a publisher’s
 assessment is that it may be unable to provide update records meeting
 the terms of an "establish-subscription" or "modify-subscription" RPC
 request. In this case, a subscriber may quickly follow up with a new
 RPC request using different parameters.

 Random guessing of different parameters by a subscriber is to be
 discouraged. Therefore, in order to minimize the number of
 subscription iterations between subscriber and publisher, a dynamic
 subscription supports a simple negotiation between subscribers and
 publishers for subscription parameters. This negotiation is in the
 form of supplemental information which should be inserted within
 error responses to a failed RPC request. This returned error
 response information, when considered, should increase the likelihood
 of success for subsequent RPC requests. Such hints include suggested
 periodic time intervals, acceptable dampening periods, and size
 estimates for the number or objects which would be returned from a

Clemm, et al. Expires April 25, 2019 [Page 6]

Internet-Draft YANG-Push October 2018

 proposed selection filter. However, there are no guarantees that
 subsequent requests which consider these hints will be accepted.

3.3. On-Change Considerations

 On-change subscriptions allow receivers to receive updates whenever
 changes to targeted objects occur. As such, on-change subscriptions
 are particularly effective for data that changes infrequently, yet
 for which applications need to be quickly notified whenever a change
 does occur with minimal delay.

 On-change subscriptions tend to be more difficult to implement than
 periodic subscriptions. Accordingly, on-change subscriptions may not
 be supported by all implementations or for every object.

 Whether or not to accept or reject on-change subscription requests
 when the scope of the subscription contains objects for which on-
 change is not supported is up to the publisher implementation. A
 publisher MAY accept an on-change subscription even when the scope of
 the subscription contains objects for which on-change is not
 supported. In that case, updates are sent only for those objects
 within the scope that do support on-change updates, whereas other
 objects are excluded from update records, even if their values
 change. In order for a subscriber to determine whether objects
 support on-change subscriptions, objects are marked accordingly on a
 publisher. Accordingly, when subscribing, it is the responsibility
 of the subscriber to ensure it is aware of which objects support on-
 change and which do not. For more on how objects are so marked, see
 Section 3.10.

 Alternatively, a publisher MAY decide to simply reject an on-change
 subscription in case the scope of the subscription contains objects
 for which on-change is not supported. In case of a configured
 subscription, the publisher MAY suspend the subscription.

 To avoid flooding receivers with repeated updates for subscriptions
 containing fast-changing objects, or objects with oscillating values,
 an on-change subscription allows for the definition of a dampening
 period. Once an update record for a given object is generated, no
 other updates for this particular subscription will be created until
 the end of the dampening period. Values sent at the end of the
 dampening period are the values that are current at the end of the
 dampening period of all changed objects. Changed objects include
 those which were deleted or newly created during that dampening
 period. If an object has returned to its original value (or even has
 been created and then deleted) during the dampening-period, that
 value (and not the interim change) will still be sent. This will
 indicate churn is occurring on that object.

Clemm, et al. Expires April 25, 2019 [Page 7]

Internet-Draft YANG-Push October 2018

 On-change subscriptions can be refined to let users subscribe only to
 certain types of changes. For example, a subscriber might only want
 object creations and deletions, but not modifications of object
 values.

 Putting it all together, following is the conceptual process for
 creating an update record as part of an on-change subscription:

 1. Just before a change, or at the start of a dampening period,
 evaluate any filtering and any access control rules to ensure
 receiver is authorized to view all subscribed datastore nodes
 (filtering out any nodes for which this is not the case). The
 result is a set "A" of datastore nodes and subtrees.

 2. Just after a change, or at the end of a dampening period,
 evaluate any filtering and any (possibly new) access control
 rules. The result is a set "B" of datastore nodes and subtrees.

 3. Construct an update record, which takes the form of YANG patch
 record [RFC8072] for going from A to B.

 4. If there were any changes made between A and B which canceled
 each other out, insert into the YANG patch record the last change
 made, even if the new value is no different from the original
 value (since changes that were made in the interim were canceled
 out). In case the changes involve creating a new datastore node,
 then deleting it, the YANG patch record will indicate deletion of
 the datastore node. Similarly, in case the changes involve
 deleting a new datastore node, then recreating it, the YANG patch
 record will indicate creation of the datastore node.

 5. If the resulting patch record is non-empty, send it to the
 receiver.

 Note: In cases where a subscriber wants to have separate dampening
 periods for different objects, the subscriber has the option to
 create multiple subscriptions with different selection filters.

3.4. Reliability Considerations

 A subscription to updates from a datastore is intended to obviate the
 need for polling. However, in order to do so, it is critical that
 subscribers can rely on the subscription and have confidence that
 they will indeed receive the subscribed updates without having to
 worry about updates being silently dropped. In other words, a
 subscription constitutes a promise on the side of the publisher to
 provide the receivers with updates per the terms of the subscription.

Clemm, et al. Expires April 25, 2019 [Page 8]

Internet-Draft YANG-Push October 2018

 Now, there are many reasons why a publisher may at some point no
 longer be able to fulfill the terms of the subscription, even if the
 subscription had been entered into with good faith. For example, the
 volume of datastore nodes may be larger than anticipated, the
 interval may prove too short to send full updates in rapid
 succession, or an internal problem may prevent objects from being
 collected. For this reason, the solution that is defined in this
 document mandates that a publisher notifies receivers immediately and
 reliably whenever it encounters a situation in which it is unable to
 keep the terms of the subscription, and provides the publisher with
 the option to suspend the subscription in such a case. This includes
 indicating the fact that an update is incomplete as part of a push-
 update or push-change-update notification, as well as emitting a
 subscription-suspended notification as applicable. This is described
 further in Section 3.11.1.

 A publisher SHOULD reject a request for a subscription if it is
 unlikely that the publisher will be able to fulfill the terms of that
 subscription request. In such cases, it is preferable to have a
 subscriber request a less resource intensive subscription than to
 deal with frequently degraded behavior.

3.5. Data Encodings

3.5.1. Periodic Subscriptions

 In a periodic subscription, the data included as part of an update
 record corresponds to data that could have been read using a
 retrieval operation.

3.5.2. On-Change Subscriptions

 In an on-change subscription, update records need to indicate not
 only values of changed datastore nodes but also the types of changes
 that occurred since the last update. Therefore, encoding rules for
 data in on-change updates will generally follow YANG-patch operation
 as specified in [RFC8072]. The YANG-patch will describe what needs
 to be applied to the earlier state reported by the preceding update,
 to result in the now-current state. Note that contrary to [RFC8072],
 objects encapsulated are not restricted to only configuration
 objects.

 A publisher indicates the type of change to a datastore node using
 the different YANG patch operations: the "create" operation is used
 for newly created objects (except entries in a user-ordered list),
 the "delete" operation is used for deleted objects (including in
 user-ordered lists), the "replace" operation is used when only the
 object value changes, the "insert" operation is used when a new entry

Clemm, et al. Expires April 25, 2019 [Page 9]

Internet-Draft YANG-Push October 2018

 is inserted in a list, and the "move" operation is used when an
 existing entry in a user-ordered list is moved.

 However, a patch must be able to do more than just describe the delta
 from the previous state to the current state. As per Section 3.3, it
 must also be able to identify whether transient changes have occurred
 on an object during a dampening period. To support this, it is valid
 to encode a YANG patch operation so that its application would result
 in no change between the previous and current state. This indicates
 that some churn has occurred on the object. An example of this would
 be a patch that indicates a "create" operation for a datastore node
 where the receiver believes one already exists, or a "replace"
 operation which replaces a previous value with the same value. Note
 that this means that the "create" and "delete" errors described in
 [RFC8072] section 2.5 are not errors, and are valid operations with
 YANG-Push.

3.6. Defining the Selection with a Datastore

 A subscription must specify both the selection filters and the
 datastore against which these selection filters will be applied.
 This information is used to choose and subsequently push data from
 the publisher’s datastore to the receivers.

 Only a single selection filter can be applied to a subscription at a
 time. An RPC request proposing a new selection filter replaces any
 existing filter. The following selection filter types are included
 in the yang-push data model, and may be applied against a datastore:

 o subtree: A subtree selection filter identifies one or more
 datastore subtrees. When specified, update records will only come
 from the datastore nodes of selected datastore subtree(s). The
 syntax and semantics correspond to that specified for [RFC6241]
 section 6.

 o xpath: An "xpath" selection filter is an XPath expression that
 returns a node set. When specified, updates will only come from
 the selected datastore nodes.

 These filters are intended to be used as selectors that define which
 objects are within the scope of a subscription. A publisher MUST
 support at least one type of selection filter.

 XPath itself provides powerful filtering constructs and care must be
 used in filter definition. Consider an XPath filter which only
 passes a datastore node when an interface is up. It is up to the
 receiver to understand implications of the presence or absence of
 objects in each update.

Clemm, et al. Expires April 25, 2019 [Page 10]

Internet-Draft YANG-Push October 2018

 When the set of selection filtering criteria is applied for a
 periodic subscription, then they are applied whenever a periodic
 update record is constructed, and only datastore nodes that pass the
 filter and to which a receiver has access are provided to that
 receiver. If the same filtering criteria is applied to an on-change
 subscription, only the subset of those datastore nodes supporting on-
 change is provided. A datastore node which doesn’t support on-change
 is never sent as part of an on-change subscription’s "push-update" or
 "push-change-update" (see Section 3.7).

3.7. Streaming Updates

 Contrary to traditional data retrieval requests, datastore
 subscription enables an unbounded series of update records to be
 streamed over time. Two generic YANG notifications for update
 records have been defined for this: "push-update" and "push-change-
 update".

 A "push-update" notification defines a complete, filtered update of
 the datastore per the terms of a subscription. This type of YANG
 notification is used for continuous updates of periodic
 subscriptions. A "push-update" notification can also be used for the
 on-change subscriptions in two cases. First, it MUST be used as the
 initial "push-update" if there is a need to synchronize the receiver
 at the start of a new subscription. It also MAY be sent if the
 publisher later chooses to resync an on-change subscription. The
 "push-update" update record contains an instantiated datastore
 subtree with all of the subscribed contents. The content of the
 update record is equivalent to the contents that would be obtained
 had the same data been explicitly retrieved using a datastore
 retrieval operation using the same transport with the same filters
 applied.

 A "push-change-update" notification is the most common type of update
 for on-change subscriptions. The update record in this case contains
 the set of changes that datastore nodes have undergone since the last
 notification message. In other words, this indicates which datastore
 nodes have been created, deleted, or have had changes to their
 values. In cases where multiple changes have occurred over the
 course of a dampening period and the object has not been deleted, the
 object’s most current value is reported. (In other words, for each
 object, only one change is reported, not its entire history. Doing
 so would defeat the purpose of the dampening period.)

 "Push-update" and "push-change-update" are encoded and placed within
 notification messages, and ultimately queued for egress over the
 specified transport.

Clemm, et al. Expires April 25, 2019 [Page 11]

Internet-Draft YANG-Push October 2018

 The following is an example of a notification message for a
 subscription tracking the operational status of a single Ethernet
 interface (per [RFC8343]). This notification message is encoded XML
 over NETCONF as per
 [I-D.draft-ietf-netconf-netconf-event-notifications].

 <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2017-10-25T08:00:11.22Z</eventTime>
 <push-update xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <id>1011</id>
 <datastore-contents>
 <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 <interface>
 <name>eth0</name>
 <oper-status>up</oper-status>
 </interface>
 </interfaces>
 </datastore-contents>
 </push-update>
 </notification>

 Figure 1: Push example

 The following is an example of an on-change notification message for
 the same subscription.

Clemm, et al. Expires April 25, 2019 [Page 12]

Internet-Draft YANG-Push October 2018

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2017-10-25T08:22:33.44Z</eventTime>
 <push-change-update xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <id>89</id>
 <datastore-changes>
 <yang-patch>
 <patch-id>0</patch-id>
 <edit>
 <edit-id>edit1</edit-id>
 <operation>replace</operation>
 <target>/ietf-interfaces:interfaces</target>
 <value>
 <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
 <interface>
 <name>eth0</name>
 <oper-status>down</oper-status>
 </interface>
 </interfaces>
 </value>
 </edit>
 </yang-patch>
 </datastore-changes>
 </push-change-update>
</notification>

 Figure 2: Push example for on change

 Of note in the above example is the ’patch-id’ with a value of ’0’.
 Per [RFC8072], the ’patch-id’ is an arbitrary string. With YANG
 Push, the publisher SHOULD put into the ’patch-id’ a counter starting
 at ’0’ which increments with every ’push-change-update’ generated for
 a subscription. If used as a counter, this counter MUST be reset to
 ’0’ anytime a resynchronization occurs (i.e., with the sending of a
 ’push-update’). Also if used as a counter, the counter MUST be reset
 to ’0’ after passing a maximum value of ’4294967295’ (i.e. maximum
 value that can be represented using uint32 data type). Such a
 mechanism allows easy identification of lost or out-of-sequence
 update records.

3.8. Subscription Management

 The RPCs defined within
 [I-D.draft-ietf-netconf-subscribed-notifications] have been enhanced
 to support datastore subscription negotiation. Also, new error codes
 have been added that are able to indicate why a datastore
 subscription attempt has failed, along with new yang-data that MAY be
 used to include details on input parameters that might result in a
 successful subsequent RPC invocation.

Clemm, et al. Expires April 25, 2019 [Page 13]

Internet-Draft YANG-Push October 2018

 The establishment or modification of a datastore subscription can be
 rejected for multiple reasons. This includes a too large subtree
 request, or the inability of the publisher to push update records as
 frequently as requested. In such cases, no subscription is
 established. Instead, the subscription-result with the failure
 reason is returned as part of the RPC response. As part of this
 response, a set of alternative subscription parameters MAY be
 returned that would likely have resulted in acceptance of the
 subscription request. The subscriber may consider these as part of
 future subscription attempts.

 In the case of a rejected request for an establishment of a datastore
 subscription, if there are hints, the hints SHOULD be transported
 within a yang-data "establish-subscription-datastore-error-info"
 container inserted into the RPC error response, in lieu of the
 "establish-subscription-stream-error-info" that is inserted in case
 of a stream subscription.

 Below is a tree diagram for "establish-subscription-datastore-error-
 info". All tree diagrams used in this document follow the notation
 defined in [RFC8340]

 yang-data establish-subscription-datastore-error-info
 +--ro establish-subscription-datastore-error-info
 +--ro reason? identityref
 +--ro period-hint? yang:timeticks
 +--ro filter-failure-hint? string
 +--ro object-count-estimate? uint32
 +--ro object-count-limit? uint32
 +--ro kilobytes-estimate? uint32
 +--ro kilobytes-limit? uint32

 Figure 3: Tree diagram for establish-subscription-datastore-error-
 info

 Similarly, in the case of a rejected request for modification of a
 datastore subscription, if there are hints, the hints SHOULD be
 transported within a yang-data "modify-subscription-datastore-error-
 info" container inserted into the RPC error response, in lieu of the
 "modify-subscription-stream-error-info" that is inserted in case of a
 stream subscription.

 Below is a tree diagram for "modify-subscription-datastore-error-
 info".

Clemm, et al. Expires April 25, 2019 [Page 14]

Internet-Draft YANG-Push October 2018

 yang-data modify-subscription-datastore-error-info
 +--ro modify-subscription-datasore-error-info
 +--ro reason? identityref
 +--ro period-hint? yang:timeticks
 +--ro filter-failure-hint? string
 +--ro object-count-estimate? uint32
 +--ro object-count-limit? uint32
 +--ro kilobytes-estimate? uint32
 +--ro kilobytes-limit? uint32

 Figure 4: Tree diagram for modify-subscription-datastore-error-info

3.9. Receiver Authorization

 A receiver of subscription data MUST only be sent updates for which
 it has proper authorization. A publisher MUST ensure that no non-
 authorized data is included in push updates. To do so, it needs to
 apply all corresponding checks applicable at the time of a specific
 pushed update and if necessary silently remove any non-authorized
 data from datastore subtrees. This enables YANG data pushed based on
 subscriptions to be authorized equivalently to a regular data
 retrieval (get) operation.

 Each "push-update" and "push-change-update" MUST have access control
 applied, as is depicted in the following diagram. This includes
 validating that read access is permitted for any new objects selected
 since the last notification message was sent to a particular
 receiver. To accomplish this, implementations SHOULD support the
 conceptual authorization model of [RFC8341], specifically section
 3.2.4.

 +-----------------+ +--------------------+
 push-update or --> | datastore node | yes | add datastore node |
 push-change-update | access allowed? | ---> | to update record |
 +-----------------+ +--------------------+

 Figure 5: Updated [RFC8341] access control for push updates

 A publisher MUST allow for the possibility that a subscription’s
 selection filter references non-existent data or data that a receiver
 is not allowed to access. Such support permits a receiver the
 ability to monitor the entire lifecyle of some datastore tree without
 needing to explicitly enumerate every individual datastore node. If,
 after access control has been applied, there are no objects remaining
 in an update record, then (in case of a periodic subscription) only a
 single empty "push-update" notification MUST be sent. Empty "push-
 change-update" messages (in case of an on-change subscription) MUST
 NOT be sent. This is required to ensure that clients cannot

Clemm, et al. Expires April 25, 2019 [Page 15]

Internet-Draft YANG-Push October 2018

 surreptitiously monitor objects that they do not have access to via
 carefully crafted selection filters. By the same token, changes to
 objects that are filtered MUST NOT affect any dampening intervals.

 A publisher MAY choose to reject an establish-subscription request
 which selects non-existent data or data that a receiver is not
 allowed to access. As reason, the error identity "unchanging-
 selection" SHOULD be returned. In addition, a publisher MAY choose
 to terminate a dynamic subscription or suspend a configured receiver
 when the authorization privileges of a receiver change, or the access
 controls for subscribed objects change. In that case, the publisher
 SHOULD include the error identity "unchanging-selection" as reason
 when sending the "subscription-terminated" respectively
 "subscription-suspended" notification. Such a capability enables the
 publisher to avoid having to support continuous and total filtering
 of a subscription’s content for every update record. It also reduces
 the possibility of leakage of access-controlled objects.

 If read access into previously accessible nodes has been lost due to
 a receiver permissions change, this SHOULD be reported as a patch
 "delete" operation for on-change subscriptions. If not capable of
 handling such receiver permission changes with such a "delete",
 publisher implementations MUST force dynamic subscription re-
 establishment or configured subscription re-initialization so that
 appropriate filtering is installed.

3.10. On-Change Notifiable Datastore Nodes

 In some cases, a publisher supporting on-change notifications may not
 be able to push on-change updates for some object types. Reasons for
 this might be that the value of the datastore node changes frequently
 (e.g., [RFC8343]’s in-octets counter), that small object changes are
 frequent and meaningless (e.g., a temperature gauge changing 0.1
 degrees), or that the implementation is not capable of on-change
 notification for a particular object.

 In those cases, it will be important for client applications to have
 a way to identify for which objects on-change notifications are
 supported and for which ones they are not supported. Otherwise
 client applications will have no way of knowing whether they can
 indeed rely on their on-change subscription to provide them with the
 change updates that they are interested in. In other words, if
 implementations do not provide a solution and do not support
 comprehensive on-change notifiability, clients of those
 implementations will have no way of knowing what their on-change
 subscription actually covers.

Clemm, et al. Expires April 25, 2019 [Page 16]

Internet-Draft YANG-Push October 2018

 Implementations are therefore strongly advised to provide a solution
 to this problem. It is expected that such a solution will be
 standardized at some point in the future. In the meantime and until
 this occurs, implementations SHOULD provide their own solution.

3.11. Other Considerations

3.11.1. Robustness and reliability

 Particularly in the case of on-change updates, it is important that
 these updates do not get lost. In case the loss of an update is
 unavoidable, it is critical that the receiver is notified
 accordingly.

 Update records for a single subscription MUST NOT be resequenced
 prior to transport.

 It is conceivable that under certain circumstances, a publisher will
 recognize that it is unable to include within an update record the
 full set of objects desired per the terms of a subscription. In this
 case, the publisher MUST act as follows.

 o The publisher MUST set the "incomplete-update" flag on any update
 record which is known to be missing information.

 o The publisher MAY choose to suspend the subscription as per
 [I-D.draft-ietf-netconf-subscribed-notifications]. If the
 publisher does not create an update record at all, it MUST suspend
 the subscription.

 o When resuming an on-change subscription, the publisher SHOULD
 generate a complete patch from the previous update record. If
 this is not possible and the "sync-on-start" option is true for
 the subscription, then the full datastore contents MAY be sent via
 a "push-update" instead (effectively replacing the previous
 contents). If neither of these are possible, then an "incomplete-
 update" flag MUST be included on the next "push-change-update".

 Note: It is perfectly acceptable to have a series of "push-change-
 update" notifications (and even "push update" notifications) serially
 queued at the transport layer awaiting transmission. It is not
 required for the publisher to merge pending update records sent at
 the same time.

Clemm, et al. Expires April 25, 2019 [Page 17]

Internet-Draft YANG-Push October 2018

3.11.2. Publisher capacity

 It is far preferable to decline a subscription request than to accept
 such a request when it cannot be met.

 Whether or not a subscription can be supported will be determined by
 a combination of several factors such as the subscription update
 trigger (on-change or periodic), the period in which to report
 changes (one second periods will consume more resources than one hour
 periods), the amount of data in the datastore subtree that is being
 subscribed to, and the number and combination of other subscriptions
 that are concurrently being serviced.

4. A YANG Data Model for Management of Datastore Push Subscriptions

4.1. Overview

 The YANG data model for datastore push subscriptions is depicted in
 the following figure. The tree diagram follows the notation defined
 in [RFC8340]. New schema objects defined here (i.e., beyond those
 from [I-D.draft-ietf-netconf-subscribed-notifications]) are
 identified with "yp". For the reader’s convenience, in order to
 compact the tree representation, some nodes that are defined in ietf-
 subscribed-notifications and that are not essential to the
 understanding of the data model defined here have been removed. This
 is indicated by "..." in the diagram where applicable.

 module: ietf-subscribed-notifications
 ...
 +--rw filters
 | ...
 | +--rw yp:selection-filter* [filter-id]
 | +--rw yp:filter-id string
 | +--rw (yp:filter-spec)?
 | +--:(yp:datastore-subtree-filter)
 | | +--rw yp:datastore-subtree-filter? <anydata>
 | | {sn:subtree}?
 | +--:(yp:datastore-xpath-filter)
 | +--rw yp:datastore-xpath-filter? yang:xpath1.0
 | {sn:xpath}?
 +--rw subscriptions
 +--rw subscription* [id]
 | ...
 +--rw (target)
 | +--:(stream)
 | | ...
 | +--:(yp:datastore)
 | +--rw yp:datastore identityref

Clemm, et al. Expires April 25, 2019 [Page 18]

Internet-Draft YANG-Push October 2018

 | +--rw (yp:selection-filter)?
 | +--:(yp:by-reference)
 | | +--rw yp:selection-filter-ref
 | | selection-filter-ref
 | +--:(yp:within-subscription)
 | +--rw (yp:filter-spec)?
 | +--:(yp:datastore-subtree-filter)
 | | +--rw yp:datastore-subtree-filter?
 | | <anydata> {sn:subtree}?
 | +--:(yp:datastore-xpath-filter)
 | +--rw yp:datastore-xpath-filter?
 | yang:xpath1.0 {sn:xpath}?
 | ...
 +--rw (yp:update-trigger)
 +--:(yp:periodic)
 | +--rw yp:periodic!
 | +--rw yp:period yang:timeticks
 | +--rw yp:anchor-time? yang:date-and-time
 +--:(yp:on-change) {on-change}?
 +--rw yp:on-change!
 +--rw yp:dampening-period? yang:timeticks
 +--rw yp:sync-on-start? boolean
 +--rw yp:excluded-change* change-type

 rpcs:
 +---x establish-subscription
 | +---w input
 | | ...
 | | +---w (target)
 | | | +--:(stream)
 | | | | ...
 | | | +--:(yp:datastore)
 | | | +---w yp:datastore identityref
 | | | +---w (yp:selection-filter)?
 | | | +--:(yp:by-reference)
 | | | | +---w yp:selection-filter-ref
 | | | | selection-filter-ref
 | | | +--:(yp:within-subscription)
 | | | +---w (yp:filter-spec)?
 | | | +--:(yp:datastore-subtree-filter)
 | | | | +---w yp:datastore-subtree-filter?
 | | | | <anydata> {sn:subtree}?
 | | | +--:(yp:datastore-xpath-filter)
 | | | +---w yp:datastore-xpath-filter?
 | | | yang:xpath1.0 {sn:xpath}?
 | | | ...
 | | +---w (yp:update-trigger)
 | | +--:(yp:periodic)

Clemm, et al. Expires April 25, 2019 [Page 19]

Internet-Draft YANG-Push October 2018

 | | | +---w yp:periodic!
 | | | +---w yp:period yang:timeticks
 | | | +---w yp:anchor-time? yang:date-and-time
 | | +--:(yp:on-change) {on-change}?
 | | +---w yp:on-change!
 | | +---w yp:dampening-period? yang:timeticks
 | | +---w yp:sync-on-start? boolean
 | | +---w yp:excluded-change* change-type
 | +--ro output
 | +--ro id subscription-id
 | +--ro replay-start-time-revision? yang:date-and-time
 | {replay}?
 +---x modify-subscription
 | +---w input
 | ...
 | +---w (target)
 | | ...
 | | +--:(yp:datastore)
 | | +---w (yp:selection-filter)?
 | | +--:(yp:by-reference)
 | | | +---w yp:selection-filter-ref
 | | | selection-filter-ref
 | | +--:(yp:within-subscription)
 | | +---w (yp:filter-spec)?
 | | +--:(yp:datastore-subtree-filter)
 | | | +---w yp:datastore-subtree-filter?
 | | | <anydata> {sn:subtree}?
 | | +--:(yp:datastore-xpath-filter)
 | | +---w yp:datastore-xpath-filter?
 | | yang:xpath1.0 {sn:xpath}?
 | | ...
 | +---w (yp:update-trigger)
 | +--:(yp:periodic)
 | | +---w yp:periodic!
 | | +---w yp:period yang:timeticks
 | | +---w yp:anchor-time? yang:date-and-time
 | +--:(yp:on-change) {on-change}?
 | +---w yp:on-change!
 | +---w yp:dampening-period? yang:timeticks
 +---x delete-subscription
 | ...
 +---x kill-subscription
 ...

 yang-data (for placement into rpc error responses)
 ...

 notifications:

Clemm, et al. Expires April 25, 2019 [Page 20]

Internet-Draft YANG-Push October 2018

 +---n replay-completed {replay}?
 | ...
 +---n subscription-completed
 | ...
 +---n subscription-started {configured}?
 | | ...
 | +--ro (target)
 | | ...
 | | +--:(yp:datastore)
 | | +--ro yp:datastore identityref
 | | +--ro (yp:selection-filter)?
 | | +--:(yp:by-reference)
 | | | +--ro yp:selection-filter-ref
 | | | selection-filter-ref
 | | +--:(yp:within-subscription)
 | | +--ro (yp:filter-spec)?
 | | +--:(yp:datastore-subtree-filter)
 | | | +--ro yp:datastore-subtree-filter?
 | | | <anydata> {sn:subtree}?
 | | +--:(yp:datastore-xpath-filter)
 | | +--ro yp:datastore-xpath-filter?
 | | yang:xpath1.0 {sn:xpath}?
 | ...
 | +--ro (yp:update-trigger)
 | +--:(yp:periodic)
 | | +--ro yp:periodic!
 | | +--ro yp:period yang:timeticks
 | | +--ro yp:anchor-time? yang:date-and-time
 | +--:(yp:on-change) {on-change}?
 | +--ro yp:on-change!
 | +--ro yp:dampening-period? yang:timeticks
 | +--ro yp:sync-on-start? boolean
 | +--ro yp:excluded-change* change-type
 +---n subscription-resumed
 | ...
 +---n subscription-modified
 | ...
 | +--ro (target)
 | | | ...
 | | +--:(yp:datastore)
 | | +--ro yp:datastore identityref
 | | +--ro (yp:selection-filter)?
 | | +--:(yp:by-reference)
 | | | +--ro yp:selection-filter-ref
 | | | selection-filter-ref
 | | +--:(yp:within-subscription)
 | | +--ro (yp:filter-spec)?
 | | +--:(yp:datastore-subtree-filter)

Clemm, et al. Expires April 25, 2019 [Page 21]

Internet-Draft YANG-Push October 2018

 | | | +--ro yp:datastore-subtree-filter?
 | | | <anydata> {sn:subtree}?
 | | +--:(yp:datastore-xpath-filter)
 | | +--ro yp:datastore-xpath-filter?
 | | yang:xpath1.0 {sn:xpath}?
 | ...
 | +--ro (yp:update-trigger)?
 | +--:(yp:periodic)
 | | +--ro yp:periodic!
 | | +--ro yp:period yang:timeticks
 | | +--ro yp:anchor-time? yang:date-and-time
 | +--:(yp:on-change) {on-change}?
 | +--ro yp:on-change!
 | +--ro yp:dampening-period? yang:timeticks
 | +--ro yp:sync-on-start? boolean
 | +--ro yp:excluded-change* change-type
 +---n subscription-terminated
 | ...
 +---n subscription-suspended
 ...

 module: ietf-yang-push

 rpcs:
 +---x resync-subscription {on-change}?
 +---w input
 +---w id sn:subscription-id

 yang-data: (for placement into rpc error responses)
 +-- resync-subscription-error
 | +--ro reason? identityref
 | +--ro period-hint? timeticks
 | +--ro filter-failure-hint? string
 | +--ro object-count-estimate? uint32
 | +--ro object-count-limit? uint32
 | +--ro kilobytes-estimate? uint32
 | +--ro kilobytes-limit? uint32
 +-- establish-subscription-error-datastore
 | +--ro reason? identityref
 | +--ro period-hint? timeticks
 | +--ro filter-failure-hint? string
 | +--ro object-count-estimate? uint32
 | +--ro object-count-limit? uint32
 | +--ro kilobytes-estimate? uint32
 | +--ro kilobytes-limit? uint32
 +-- modify-subscription-error-datastore
 +--ro reason? identityref
 +--ro period-hint? timeticks

Clemm, et al. Expires April 25, 2019 [Page 22]

Internet-Draft YANG-Push October 2018

 +--ro filter-failure-hint? string
 +--ro object-count-estimate? uint32
 +--ro object-count-limit? uint32
 +--ro kilobytes-estimate? uint32
 +--ro kilobytes-limit? uint32

 notifications:
 +---n push-update
 | +--ro id? sn:subscription-id
 | +--ro datastore-contents? <anydata>
 | +--ro incomplete-update? empty
 +---n push-change-update {on-change}?
 +--ro id? sn:subscription-id
 +--ro datastore-changes?
 | +--ro yang-patch
 | +--ro patch-id string
 | +--ro ypatch:comment? string
 | +--ro ypatch:edit* [edit-id]
 | +--ro ypatch:edit-id string
 | +--ro ypatch:operation enumeration
 | +--ro ypatch:target target-resource-offset
 | +--ro ypatch:point? target-resource-offset
 | +--ro ypatch:where? enumeration
 | +--ro ypatch:value?
 +--ro incomplete-update? empty

 Figure 6: Model structure

 Selected components of the model are summarized below.

4.2. Subscription Configuration

 Both configured and dynamic subscriptions are represented within the
 list "subscription". New parameters extending the basic subscription
 data model in [I-D.draft-ietf-netconf-subscribed-notifications]
 include:

 o The targeted datastore from which the selection is being made.
 The potential datastores include those from [RFC8341]. A platform
 may also choose to support a custom datastore.

 o A selection filter identifying yang nodes of interest within a
 datastore. Filter contents are specified via a reference to an
 existing filter, or via an in-line definition for only that
 subscription. Referenced filters allows an implementation to
 avoid evaluating filter acceptability during a dynamic

Clemm, et al. Expires April 25, 2019 [Page 23]

Internet-Draft YANG-Push October 2018

 subscription request. The case statement differentiates the
 options.

 o For periodic subscriptions, triggered updates will occur at the
 boundaries of a specified time interval. These boundaries can be
 calculated from the periodic parameters:

 * a "period" which defines the duration between push updates.

 * an "anchor-time"; update intervals fall on the points in time
 that are a multiple of a "period" from an "anchor-time". If
 "anchor-time" is not provided, then the "anchor-time" MUST be
 set with the creation time of the initial update record.

 o For on-change subscriptions, assuming any dampening period has
 completed, triggering occurs whenever a change in the subscribed
 information is detected. On-change subscriptions have more
 complex semantics that is guided by its own set of parameters:

 * a "dampening-period" specifies the interval that must pass
 before a successive update for the subscription is sent. If no
 dampening period is in effect, the update is sent immediately.
 If a subsequent change is detected, another update is only sent
 once the dampening period has passed for this subscription.

 * an "excluded-change" parameter which allows restriction of the
 types of changes for which updates should be sent (e.g., only
 add to an update record on object creation).

 * a "sync-on-start" specifies whether a complete update with all
 the subscribed data is to be sent at the beginning of a
 subscription.

4.3. YANG Notifications

4.3.1. State Change Notifications

 Subscription state notifications and mechanism are reused from
 [I-D.draft-ietf-netconf-subscribed-notifications]. Notifications
 "subscription-started" and "subscription-modified" have been
 augmented to include the datastore specific objects.

4.3.2. Notifications for Subscribed Content

 Along with the subscribed content, there are other objects which
 might be part of a "push-update" or "push-change-update"
 notification.

Clemm, et al. Expires April 25, 2019 [Page 24]

Internet-Draft YANG-Push October 2018

 An "id" (that identifies the subscription) MUST be transported along
 with the subscribed contents. This allows a receiver to
 differentiate which subscription resulted in a particular update
 record.

 A "time-of-update" which represents the time an update record
 snapshot was generated. A receiver MAY assume that at this point in
 time a publisher’s objects have the values that were pushed.

 An "incomplete-update" leaf. This leaf indicates that not all
 changes which have occurred since the last update are actually
 included with this update. In other words, the publisher has failed
 to fulfill its full subscription obligations. (For example a
 datastore was unable to provide the full set of datastore nodes to a
 publisher process.) To facilitate re-synchronization of on-change
 subscriptions, a publisher MAY subsequently send a "push-update"
 containing a full selection snapshot of subscribed data.

4.4. YANG RPCs

 YANG-Push subscriptions are established, modified, and deleted using
 RPCs augmented from
 [I-D.draft-ietf-netconf-subscribed-notifications].

4.4.1. Establish-subscription RPC

 The subscriber sends an establish-subscription RPC with the
 parameters in section 3.1. An example might look like:

Clemm, et al. Expires April 25, 2019 [Page 25]

Internet-Draft YANG-Push October 2018

<netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <yp:datastore xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:operational
 </yp:datastore>
 <yp:datastore-xpath-filter
 xmlns:ex="http://example.com/sample-data/1.0">
 /ex:foo
 </yp:datastore-xpath-filter>
 <yp:periodic>
 <yp:period>500</yp:period>
 </yp:periodic>
 </establish-subscription>
</netconf:rpc>

 Figure 7: Establish-subscription RPC

 A positive response includes the "id" of the accepted subscription.
 In that case a publisher may respond:

<rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <id
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications">
 52
 </id>
</rpc-reply>

 Figure 8: Establish-subscription positive RPC response

 A subscription can be rejected for multiple reasons, including the
 lack of authorization to establish a subscription, no capacity to
 serve the subscription at the publisher, or the inability of the
 publisher to select datastore content at the requested cadence.

 If a request is rejected because the publisher is not able to serve
 it, the publisher SHOULD include in the returned error hints which
 help a subscriber understand subscription parameters might have been
 accepted for the request. These hints would be included within the
 yang-data structure "establish-subscription-error-datastore".
 However even with these hints, there are no guarantee that subsequent
 requests will in fact be accepted.

Clemm, et al. Expires April 25, 2019 [Page 26]

Internet-Draft YANG-Push October 2018

 The specific parameters to be returned as part of the RPC error
 response depend on the specific transport that is used to manage the
 subscription. For example, in the case of NETCONF
 [I-D.draft-ietf-netconf-netconf-event-notifications], when a
 subscription request is rejected, the NETCONF RPC reply would be
 expected to include an "rpc-error" element with the following
 elements:

 o "error-type" of "application".

 o "error-tag" of "operation-failed".

 o Optionally, an "error-severity" of "error".

 o Optionally, an "error-app-tag" with the value being a string that
 corresponds to an identity associated with the error, i.e. an
 identity with a base of "establish-subscription-error".

 o Optionally, "error-info" containing XML-encoded data with hints
 for parameter settings that might result in future RPC success per
 yang-data definition "establish-subscription-error-datastore".

 For example, for the following request:

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:operational
 </yp:datastore>
 <yp:datastore-xpath-filter
 xmlns:ex="http://example.com/sample-data/1.0">
 /ex:foo
 </yp:datastore-xpath-filter>
 <yp:on-change>
 <yp:dampening-period>100</yp:dampening-period>
 </yp:on-change>
 </establish-subscription>
 </netconf:rpc>

 Figure 9: Establish-subscription request example 2

 a publisher that cannot serve on-change updates but periodic updates
 might return the following:

Clemm, et al. Expires April 25, 2019 [Page 27]

Internet-Draft YANG-Push October 2018

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications">
 <rpc-error>
 <error-type>application</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-path>/yp:periodic/yp:period</error-path>
 <error-info>
 <yp:establish-subscription-error-datastore>
 <yp:reason>yp:on-change-unsupported</yp:reason>
 </yp:establish-subscription-error-datastore>
 </error-info>
 </rpc-error>
 </rpc-reply>

 Figure 10: Establish-subscription error response example 2

4.4.2. Modify-subscription RPC

 The subscriber MAY invoke the "modify-subscription" RPC for a
 subscription it previously established. The subscriber will include
 newly desired values in the "modify-subscription" RPC. Parameters
 not included MUST remain unmodified. Below is an example where a
 subscriber attempts to modify the period and datastore XPath filter
 of a subscription.

 <netconf:rpc message-id="102"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <modify-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <id>1011</id>
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:operational
 </yp:datastore>
 <yp:datastore-xpath-filter
 xmlns:ex="http://example.com/sample-data/1.0">
 /ex:bar
 </yp:datastore-xpath-filter>
 <yp:periodic>
 <yp:period>250</yp:period>
 </yp:periodic>
 </modify-subscription>
 </netconf:rpc>

 Figure 11: Modify subscription request

Clemm, et al. Expires April 25, 2019 [Page 28]

Internet-Draft YANG-Push October 2018

 The publisher MUST respond to the subscription modification request.
 If the request is rejected, the existing subscription is left
 unchanged, and the publisher MUST send an RPC error response. This
 response might have hints encapsulated within the yang-data structure
 "modify-subscription-error-datastore". A subscription MAY be
 modified multiple times.

 The specific parameters to be returned in as part of the RPC error
 response depend on the specific transport that is used to manage the
 subscription. In the case of NETCONF
 [I-D.draft-ietf-netconf-netconf-event-notifications], when a
 subscription request is rejected, the NETCONF RPC reply MUST include
 an "rpc-error" element with the following elements:

 o "error-type" of "application".

 o "error-tag" of "operation-failed".

 o Optionally, an "error-severity" of "error" (this MAY but does not
 have to be included).

 o Optionally, an "error-app-tag" with the value being a string that
 corresponds to an identity associated with the error, i.e. an
 identity with a base of "modify-subscription-error".

 o "error-path" pointing to the object or parameter that caused the
 rejection.

 o Optionally, "error-info" containing XML-encoded data with hints
 for parameter settings that might result in future RPC success per
 yang-data definition "modify-subscription-error-datastore".

 A configured subscription cannot be modified using "modify-
 subscription" RPC. Instead, the configuration needs to be edited as
 needed.

4.4.3. Delete-subscription RPC

 To stop receiving updates from a subscription and effectively delete
 a subscription that had previously been established using an
 "establish-subscription" RPC, a subscriber can send a "delete-
 subscription" RPC, which takes as only input the subscription’s "id".
 This RPC is unmodified from
 [I-D.draft-ietf-netconf-subscribed-notifications].

Clemm, et al. Expires April 25, 2019 [Page 29]

Internet-Draft YANG-Push October 2018

4.4.4. Resync-subscription RPC

 This RPC is supported only for on-change subscriptions previously
 established using an "establish-subscription" RPC. For example:

 <netconf:rpc message-id="103"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <resync-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-yang-push"
 xmlns:sn="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifications">
 <id>1011</id>
 </resync-subscription>
 </netconf:rpc>

 Resync subscription

 On receipt, a publisher must either accept the request and quickly
 follow with a "push-update", or send an appropriate error within an
 rpc error response. Within an error response, the publisher MAY
 include supplemental information about the reasons within the yang-
 data structure "resync-subscription-error".

4.4.5. YANG Module Synchronization

 To make subscription requests, the subscriber needs to know the YANG
 datastore schemas used by the publisher, which are available via the
 YANG Library module, ietf-yang-library.yang from [RFC7895]. The
 receiver is expected to know the YANG library information before
 starting a subscription.

 The set of modules, revisions, features, and deviations can change at
 run-time (if supported by the publisher implementation). For this
 purpose, the YANG library provides a simple "yang-library-change"
 notification that informs the subscriber that the library has
 changed. In this case, a subscription may need to be updated to take
 the updates into account. The receiver may also need to be informed
 of module changes in order to process updates regarding datastore
 nodes from changed modules correctly.

5. YANG Module

 <CODE BEGINS> file "ietf-yang-push@2018-10-22.yang"
 module ietf-yang-push {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-push";
 prefix yp;

 import ietf-yang-types {

Clemm, et al. Expires April 25, 2019 [Page 30]

Internet-Draft YANG-Push October 2018

 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-subscribed-notifications {
 prefix sn;
 reference
 "draft-ietf-netconf-subscribed-notifications:
 Customized Subscriptions to a Publisher’s Event Streams

 NOTE TO RFC Editor: Please replace above reference to
 draft-ietf-netconf-subscribed-notifications with RFC number
 when published (i.e. RFC xxxx).";
 }
 import ietf-datastores {
 prefix ds;
 reference
 "RFC 8342: Network Management Datastore Architecture (NMDA)";
 }
 import ietf-restconf {
 prefix rc;
 reference
 "RFC 8040: RESTCONF Protocol";
 }

 import ietf-yang-patch {
 prefix ypatch;
 reference
 "RFC 8072: YANG Patch";
 }
 organization "IETF";
 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 Editor: Alexander Clemm
 <mailto:ludwig@clemm.org>

 Editor: Eric Voit
 <mailto:evoit@cisco.com>

 Editor: Alberto Gonzalez Prieto
 <mailto:agonzalezpri@vmware.com>

 Editor: Ambika Prasad Tripathy
 <mailto:ambtripa@cisco.com>

 Editor: Einar Nilsen-Nygaard

Clemm, et al. Expires April 25, 2019 [Page 31]

Internet-Draft YANG-Push October 2018

 <mailto:einarnn@cisco.com>

 Editor: Andy Bierman
 <mailto:andy@yumaworks.com>

 Editor: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>";

 description
 "This module contains YANG specifications for YANG push.

 Copyright (c) 2018 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of
 draft-ietf-netconf-yang-push-20; see the RFC itself for full
 legal notices.

 NOTE TO RFC EDITOR: Please replace above reference to
 draft-ietf-netconf-yang-push-20 with RFC number when published
 (i.e. RFC xxxx).";

 revision 2018-10-22 {
 description
 "Initial revision.
 NOTE TO RFC EDITOR:
 (1)Please replace the above revision date to
 the date of RFC publication when published.
 (2) Please replace the date in the file name
 (ietf-yang-push@2018-10-22.yang) to the date of RFC
 publication.
 (3) Please replace the following reference to
 draft-ietf-netconf-yang-push-20 with RFC number when
 published (i.e. RFC xxxx).";
 reference
 "draft-ietf-netconf-yang-push-20";
 }

 /*
 * FEATURES
 */

Clemm, et al. Expires April 25, 2019 [Page 32]

Internet-Draft YANG-Push October 2018

 feature on-change {
 description
 "This feature indicates that on-change triggered
 subscriptions are supported.";
 }

 /*
 * IDENTITIES
 */

 /* Error type identities for datastore subscription */

 identity resync-subscription-error {
 description
 "Problem found while attempting to fulfill an
 ’resync-subscription’ RPC request. ";
 }

 identity cant-exclude {
 base sn:establish-subscription-error;
 description
 "Unable to remove the set of ’excluded-changes’. This means
 the publisher is unable to restrict ’push-change-update’s to
 just the change types requested for this subscription.";
 }

 identity datastore-not-subscribable {
 base sn:establish-subscription-error;
 base sn:subscription-terminated-reason;
 description
 "This is not a subscribable datastore.";
 }

 identity no-such-subscription-resync {
 base resync-subscription-error;
 description
 "Referenced subscription doesn’t exist. This may be as a
 result of a non-existent subscription ID, an ID which
 belongs to another subscriber, or an ID for configured
 subscription.";
 }

 identity on-change-unsupported {
 base sn:establish-subscription-error;
 description
 "On-change is not supported for any objects which are
 selectable by this filter.";
 }

Clemm, et al. Expires April 25, 2019 [Page 33]

Internet-Draft YANG-Push October 2018

 identity on-change-sync-unsupported {
 base sn:establish-subscription-error;
 description
 "Neither sync on start nor resynchronization are supported
 for this subscription. This error will be used for two
 reasons. First if an ’establish-subscription’ RPC includes
 ’sync-on-start’, yet the publisher can’t support sending a
 ’push-update’ for this subscription for reasons other than
 ’on-change-unsupported’ or ’sync-too-big’. And second,
 if the ’resync-subscription’ RPC is invoked either for an
 existing periodic subscription, or for an on-change
 subscription which can’t support resynchronization.";
 }

 identity period-unsupported {
 base sn:establish-subscription-error;
 base sn:modify-subscription-error;
 base sn:subscription-suspended-reason;
 description
 "Requested time period or dampening-period is too short. This
 can be for both periodic and on-change subscriptions (with or
 without dampening.) Hints suggesting alternative periods may
 be returned as supplemental information.";
 }

 identity update-too-big {
 base sn:establish-subscription-error;
 base sn:modify-subscription-error;
 base sn:subscription-suspended-reason;
 description
 "Periodic or on-change push update datatrees exceed a maximum
 size limit. Hints on estimated size of what was too big may
 be returned as supplemental information.";
 }

 identity sync-too-big {
 base sn:establish-subscription-error;
 base sn:modify-subscription-error;
 base resync-subscription-error;
 base sn:subscription-suspended-reason;
 description
 "Sync-on-start or resynchronization datatree exceeds a
 maximum size limit. Hints on estimated size of what was too
 big may be returned as supplemental information.";
 }

 identity unchanging-selection {
 base sn:establish-subscription-error;

Clemm, et al. Expires April 25, 2019 [Page 34]

Internet-Draft YANG-Push October 2018

 base sn:modify-subscription-error;
 base sn:subscription-terminated-reason;
 description
 "Selection filter is unlikely to ever select datatree nodes.
 This means that based on the subscriber’s current access
 rights, the publisher recognizes that the selection filter is
 unlikely to ever select datatree nodes which change. Examples
 for this might be that node or subtree doesn’t exist, read
 access is not permitted for a receiver, or static objects
 that only change at reboot have been chosen.";
 }

 /*
 * TYPE DEFINITIONS
 */

 typedef change-type {
 type enumeration {
 enum "create" {
 description
 "A change that refers to the creation of a new datastore
 node.";
 }
 enum "delete" {
 description
 "A change that refers to the deletion of a datastore
 node.";
 }
 enum "insert" {
 description
 "A change that refers to the insertion of a new
 user-ordered datastore node.";
 }
 enum "move" {
 description
 "A change that refers to a reordering of the target
 datastore node";
 }
 enum "replace" {
 description
 "A change that refers to a replacement of the target
 datastore node’s value.";
 }
 }
 description
 "Specifies different types of datastore changes.";
 reference
 "RFC 8072 section 2.5, with a delta that it is valid for a

Clemm, et al. Expires April 25, 2019 [Page 35]

Internet-Draft YANG-Push October 2018

 receiver to process an update record which performs a create
 operation on a datastore node the receiver believes exists,
 or to process a delete on a datastore node the receiver
 believes is missing.";
 }

 typedef selection-filter-ref {
 type leafref {
 path "/sn:filters/yp:selection-filter/yp:filter-id";
 }
 description
 "This type is used to reference a selection filter.";
 }

 /*
 * GROUP DEFINITIONS
 */

 grouping datastore-criteria {
 description
 "A grouping to define criteria for which selected objects
 from a targeted datastore should be included in push
 updates.";
 leaf datastore {
 type identityref {
 base ds:datastore;
 }
 mandatory true;
 description
 "Datastore from which to retrieve data.";
 }
 uses selection-filter-objects;
 }

 grouping selection-filter-types {
 description
 "This grouping defines the types of selectors for objects
 from a datastore.";
 choice filter-spec {
 description
 "The content filter specification for this request.";
 anydata datastore-subtree-filter {
 if-feature "sn:subtree";
 description
 "This parameter identifies the portions of the
 target datastore to retrieve.";
 reference
 "RFC 6241: Network Configuration Protocol, Section 6.";

Clemm, et al. Expires April 25, 2019 [Page 36]

Internet-Draft YANG-Push October 2018

 }
 leaf datastore-xpath-filter {
 if-feature "sn:xpath";
 type yang:xpath1.0;
 description
 "This parameter contains an XPath expression identifying
 the portions of the target datastore to retrieve.

 If the expression returns a node-set, all nodes in the
 node-set are selected by the filter. Otherwise, if the
 expression does not return a node-set, the filter
 doesn’t select any nodes.

 The expression is evaluated in the following XPath
 context:

 o The set of namespace declarations are those in scope
 on the ’datastore-xpath-filter’ leaf element.

 o The set of variable bindings is empty.

 o The function library is the core function library, and
 the XPath functions defined in section 10 in RFC 7950.

 o The context node is the root node of the target
 datastore.";
 }
 }
 }

 grouping selection-filter-objects {
 description
 "This grouping defines a selector for objects from a
 datastore.";
 choice selection-filter {
 description
 "The source of the selection filter applied to the
 subscription. This will come either referenced from a
 global list, or be provided within the subscription
 itself.";
 case by-reference {
 description
 "Incorporate a filter that has been configured
 separately.";
 leaf selection-filter-ref {
 type selection-filter-ref;
 mandatory true;
 description

Clemm, et al. Expires April 25, 2019 [Page 37]

Internet-Draft YANG-Push October 2018

 "References an existing selection filter which is to be
 applied to the subscription.";
 }
 }
 case within-subscription {
 description
 "Local definition allows a filter to have the same
 lifecycle as the subscription.";
 uses selection-filter-types;
 }
 }
 }

 grouping update-policy-modifiable {
 description
 "This grouping describes the datastore specific subscription
 conditions that can be changed during the lifetime of the
 subscription.";
 choice update-trigger {
 when "../sn:target/yp:datastore";
 mandatory true;
 description
 "Defines necessary conditions for sending an event record to
 the subscriber.";
 case periodic {
 container periodic {
 presence "indicates a periodic subscription";
 description
 "The publisher is requested to notify periodically the
 current values of the datastore as defined by the
 selection filter.";
 leaf period {
 type yang:timeticks;
 mandatory true;
 description
 "Duration of time which should occur between periodic
 push updates, in one hundredths of a second.";
 }
 leaf anchor-time {
 type yang:date-and-time;
 description
 "Designates a timestamp before or after which a
 series of periodic push updates are determined. The
 next update will take place at a whole multiple
 interval from the anchor time. For example, for an
 anchor time is set for the top of a particular
 minute and a period interval of a minute, updates
 will be sent at the top of every minute this

Clemm, et al. Expires April 25, 2019 [Page 38]

Internet-Draft YANG-Push October 2018

 subscription is active.";
 }
 }
 }
 case on-change {
 if-feature "on-change";
 container on-change {
 presence "indicates an on-change subscription";
 description
 "The publisher is requested to notify changes in
 values in the datastore subset as defined by a
 selection filter.";
 leaf dampening-period {
 type yang:timeticks;
 default 0;
 description
 "Specifies the minimum interval between the assembly
 of successive update records for a single receiver
 of a subscription. Whenever subscribed objects
 change, and a dampening period interval (which may
 be zero) has elapsed since the previous update
 record creation for a receiver, then any subscribed
 objects and properties which have changed since the
 previous update record will have their current
 values marshalled and placed into a new update
 6 record.";
 }
 }
 }
 }
 }

 grouping update-policy {
 description
 "This grouping describes the datastore specific subscription
 conditions of a subscription.";
 uses update-policy-modifiable {
 augment "update-trigger/on-change/on-change" {
 description
 "Includes objects not modifiable once subscription is
 established.";
 leaf sync-on-start {
 type boolean;
 default "true";
 description
 "When this object is set to false, it restricts an
 on-change subscription from sending push-update
 notifications. When false, pushing a full selection

Clemm, et al. Expires April 25, 2019 [Page 39]

Internet-Draft YANG-Push October 2018

 per the terms of the selection filter MUST NOT be done
 for this subscription. Only updates about changes,
 i.e. only push-change-update notifications are sent.
 When true (default behavior), in order to facilitate a
 receiver’s synchronization, a full update is sent when
 the subscription starts using a push-update
 notification. After that, push-change-update
 notifications are exclusively sent unless the
 publisher chooses to resync the subscription via a new
 push-update notification.";
 }
 leaf-list excluded-change {
 type change-type;
 description
 "Use to restrict which changes trigger an update.
 For example, if modify is excluded, only creation and
 deletion of objects is reported.";
 }
 }
 }
 }

 grouping hints {
 description
 "Parameters associated with some error for a subscription
 made upon a datastore.";
 leaf period-hint {
 type yang:timeticks;
 description
 "Returned when the requested time period is too short. This
 hint can assert a viable period for either a periodic push
 cadence or an on-change dampening interval.";
 }
 leaf filter-failure-hint {
 type string;
 description
 "Information describing where and/or why a provided filter
 was unsupportable for a subscription.";
 }
 leaf object-count-estimate {
 type uint32;
 description
 "If there are too many objects which could potentially be
 returned by the selection filter, this identifies the
 estimate of the number of objects which the filter would
 potentially pass.";
 }
 leaf object-count-limit {

Clemm, et al. Expires April 25, 2019 [Page 40]

Internet-Draft YANG-Push October 2018

 type uint32;
 description
 "If there are too many objects which could be returned by
 the selection filter, this identifies the upper limit of
 the publisher’s ability to service for this subscription.";
 }
 leaf kilobytes-estimate {
 type uint32;
 description
 "If the returned information could be beyond the capacity
 of the publisher, this would identify the data size which
 could result from this selection filter.";
 }
 leaf kilobytes-limit {
 type uint32;
 description
 "If the returned information would be beyond the capacity
 of the publisher, this identifies the upper limit of the
 publisher’s ability to service for this subscription.";
 }
 }

 /*
 * RPCs
 */

 rpc resync-subscription {
 if-feature "on-change";
 description
 "This RPC allows a subscriber of an active on-change
 subscription to request a full push of objects.
 A successful invocation results in a push-update of all
 datastore nodes that the subscriber is permitted to access.
 This RPC can only be invoked on the same session on which the
 subscription is currently active. In case of an error, a
 resync-subscription-error is sent as part of an error
 response.";
 input {
 leaf id {
 type sn:subscription-id;
 mandatory true;
 description
 "Identifier of the subscription that is to be resynced.";
 }
 }
 }

Clemm, et al. Expires April 25, 2019 [Page 41]

Internet-Draft YANG-Push October 2018

 rc:yang-data resync-subscription-error {
 container resync-subscription-error {
 description
 "If a ’resync-subscription’ RPC fails, the subscription is
 not resynced and the RPC error response MUST indicate the
 reason for this failure. This yang-data MAY be inserted as
 structured data within a subscription’s RPC error response
 to indicate the failure reason.";
 leaf reason {
 type identityref {
 base resync-subscription-error;
 }
 mandatory true;
 description
 "Indicates the reason why the publisher has declined a
 request for subscription resynchronization.";
 }
 uses hints;
 }
 }

 augment "/sn:establish-subscription/sn:input" {
 when "sn:target/yp:datastore";
 description
 "This augmentation adds additional subscription parameters
 that apply specifically to datastore updates to RPC input.";
 uses update-policy;
 }

 augment "/sn:establish-subscription/sn:input/sn:target" {
 description
 "This augmentation adds the datastore as a valid target
 for the subscription to RPC input.";
 case datastore {
 description
 "Information specifying the parameters of an request for a
 datastore subscription.";
 uses datastore-criteria;
 }
 }

 rc:yang-data establish-subscription-datastore-error-info {
 container establish-subscription-datastore-error-info {
 description
 "If any ’establish-subscription’ RPC parameters are
 unsupportable against the datastore, a subscription is not
 created and the RPC error response MUST indicate the reason
 why the subscription failed to be created. This yang-data

Clemm, et al. Expires April 25, 2019 [Page 42]

Internet-Draft YANG-Push October 2018

 MAY be inserted as structured data within a subscription’s
 RPC error response to indicate the failure reason. This
 yang-data MUST be inserted if hints are to be provided back
 to the subscriber.";
 leaf reason {
 type identityref {
 base sn:establish-subscription-error;
 }
 description
 "Indicates the reason why the subscription has failed to
 be created to a targeted datastore.";
 }
 uses hints;
 }
 }

 augment "/sn:modify-subscription/sn:input" {
 when "sn:target/yp:datastore";
 description
 "This augmentation adds additional subscription parameters
 specific to datastore updates.";
 uses update-policy-modifiable;
 }

 augment "/sn:modify-subscription/sn:input/sn:target" {
 description
 "This augmentation adds the datastore as a valid target
 for the subscription to RPC input.";
 case datastore {
 description
 "Information specifying the parameters of an request for a
 datastore subscription.";
 uses selection-filter-objects;
 }
 }

 rc:yang-data modify-subscription-datastore-error-info {
 container modify-subscription-datastore-error-info {
 description
 "This yang-data MAY be provided as part of a subscription’s
 RPC error response when there is a failure of a
 ’modify-subscription’ RPC which has been made against a
 datastore. This yang-data MUST be used if hints are to be
 provides back to the subscriber.";
 leaf reason {
 type identityref {
 base sn:modify-subscription-error;
 }

Clemm, et al. Expires April 25, 2019 [Page 43]

Internet-Draft YANG-Push October 2018

 description
 "Indicates the reason why the subscription has failed to
 be modified.";
 }
 uses hints;
 }
 }

 /*
 * NOTIFICATIONS
 */

 notification push-update {
 description
 "This notification contains a push update, containing data
 subscribed to via a subscription. This notification is sent
 for periodic updates, for a periodic subscription. It can
 also be used for synchronization updates of an on-change
 subscription. This notification shall only be sent to
 receivers of a subscription. It does not constitute a
 general-purpose notification that would be subscribable as
 part of the NETCONF event stream by any receiver.";
 leaf id {
 type sn:subscription-id;
 description
 "This references the subscription which drove the
 notification to be sent.";
 }
 anydata datastore-contents {
 description
 "This contains the updated data. It constitutes a snapshot
 at the time-of-update of the set of data that has been
 subscribed to. The snapshot corresponds to the same
 snapshot that would be returned in a corresponding get
 operation with the same selection filter parameters
 applied.";
 }
 leaf incomplete-update {
 type empty;
 description
 "This is a flag which indicates that not all datastore
 nodes subscribed to are included with this update. In
 other words, the publisher has failed to fulfill its full
 subscription obligations, and despite its best efforts is
 providing an incomplete set of objects.";
 }
 }

Clemm, et al. Expires April 25, 2019 [Page 44]

Internet-Draft YANG-Push October 2018

 notification push-change-update {
 if-feature "on-change";
 description
 "This notification contains an on-change push update. This
 notification shall only be sent to the receivers of a
 subscription; it does not constitute a general-purpose
 notification.";
 leaf id {
 type sn:subscription-id;
 description
 "This references the subscription which drove the
 notification to be sent.";
 }
 container datastore-changes {
 description
 "This contains the set of datastore changes of the
 target datastore starting at the time of the
 previous update, per the terms of the subscription.
 The datastore changes are encoded per RFC 8027
 (YANG Patch).";
 uses ypatch:yang-patch;
 }
 leaf incomplete-update {
 type empty;
 description
 "The presence of this object indicates not all changes which
 have occurred since the last update are included with this
 update. In other words, the publisher has failed to
 fulfill its full subscription obligations, for example in
 cases where it was not able to keep up with a change
 burst.";
 }
 }

 augment "/sn:subscription-started" {
 description
 "This augmentation adds datastore-specific objects to
 the notification that a subscription has started.";
 uses update-policy;
 }

 augment "/sn:subscription-started/sn:target" {
 description
 "This augmentation allows the datastore to be included as
 part of the notification that a subscription has started.";
 case datastore {
 uses datastore-criteria {
 refine "selection-filter/within-subscription" {

Clemm, et al. Expires April 25, 2019 [Page 45]

Internet-Draft YANG-Push October 2018

 description
 "Specifies the selection filter and where it
 originated from. If the ’selection-filter-ref’ is
 populated, the filter within the subscription came
 from the ’filters’ container. Otherwise it is
 populated in-line as part of the subscription itself.";
 }
 }
 }
 }

 augment "/sn:subscription-modified" {
 description
 "This augmentation adds datastore-specific objects to
 the notification that a subscription has been modified.";
 uses update-policy;
 }

 augment "/sn:subscription-modified/sn:target" {
 description
 "This augmentation allows the datastore to be included as
 part of the notification that a subscription has been
 modified.";
 case datastore {
 uses datastore-criteria {
 refine "selection-filter/within-subscription" {
 description
 "Specifies where the selection filter, and where it
 came from within the subscription and then populated
 within this notification. If the
 ’selection-filter-ref’ is populated, the filter within
 the subscription came from the ’filters’ container.
 Otherwise it is populated in-line as part of the
 subscription itself.";
 }
 }
 }
 }

 /*
 * DATA NODES
 */

 augment "/sn:filters" {
 description
 "This augmentation allows the datastore to be included as part
 of the selection filtering criteria for a subscription.";
 list selection-filter {

Clemm, et al. Expires April 25, 2019 [Page 46]

Internet-Draft YANG-Push October 2018

 key "filter-id";
 description
 "A list of pre-configured filters that can be applied
 to datastore subscriptions.";
 leaf filter-id {
 type string;
 description
 "An identifier to differentiate between selection
 filters.";
 }
 uses selection-filter-types;
 }
 }

 augment "/sn:subscriptions/sn:subscription" {
 when "sn:target/yp:datastore";
 description
 "This augmentation adds many datastore specific objects to a
 subscription.";
 uses update-policy;
 }
 augment "/sn:subscriptions/sn:subscription/sn:target" {
 description
 "This augmentation allows the datastore to be included as
 part of the selection filtering criteria for a subscription.";
 case datastore {
 uses datastore-criteria;
 }
 }
 }

 <CODE ENDS>

6. IANA Considerations

 This document registers the following namespace URI in the "IETF XML
 Registry" [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-push
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

 This document registers the following YANG module in the "YANG Module
 Names" registry [RFC6020]:

 Name: ietf-yang-push
 Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-push

Clemm, et al. Expires April 25, 2019 [Page 47]

Internet-Draft YANG-Push October 2018

 Prefix: yp
 Reference: draft-ietf-netconf-yang-push-20.txt (RFC form)

7. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC5246].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability. (It should be noted that the
 YANG module augments the YANG module from
 [I-D.draft-ietf-netconf-subscribed-notifications]. All security
 considerations that are listed there are relevant also for datastore
 subscriptions. In the following, we focus on the data nodes that are
 newly introduced here.)

 o Subtree "selection-filter" under container "filters": This subtree
 allows to specify which objects or subtrees to include in a
 datastore subscription. An attacker could attempt to modify the
 filter. For example, the filter might be modified to result in
 very few objects being filtered in order to attempt to overwhelm
 the receiver. Alternatively, the filter might be modified to
 result in certain objects to be excluded from updates, in order to
 have certain changes go unnoticed.

 o Subtree "datastore" in choice "target" in list "subscription":
 Analogous to "selection filter", an attacker might attempt to
 modify the objects being filtered in order to overwhelm a receiver
 with a larger volume of object updates than expected, or to have
 certain changes go unnoticed.

 o Choice "update-trigger" in list "subscription": By modifying the
 update trigger, an attacker might alter the updates that are being

Clemm, et al. Expires April 25, 2019 [Page 48]

Internet-Draft YANG-Push October 2018

 sent in order to confuse a receiver, to withhold certain updates
 to be sent to the receiver, and/or to overwhelm a receiver. For
 example, an attacker might modify the period with which updates
 are reported for a periodic subscription, or it might modify the
 dampening period for an on-change subscription, resulting in
 greater delay of successive updates (potentially affecting
 responsiveness of applications that depend on the updates) or in a
 high volume of updates (to exhaust receiver resources).

 o RPC "resync-subscription": This RPC allows a subscriber of an on-
 change subscription to request a full push of objects in the
 subscription’s scope. This can result in a large volume of data.
 An attacker could attempt to use this RPC to exhaust resources on
 the server to generate the data, and attempt to overwhelm a
 receiver with the resulting data volume.

8. Acknowledgments

 For their valuable comments, discussions, and feedback, we wish to
 acknowledge Tim Jenkins, Martin Bjorklund, Kent Watsen, Susan Hares,
 Yang Geng, Peipei Guo, Michael Scharf, Guangying Zheng, Tom Petch,
 Henk Birkholz, Reshad Rahman, Qin Wu, Rohit Ranade, and Rob Wilton.

9. References

9.1. Normative References

 [I-D.draft-ietf-netconf-subscribed-notifications]
 Voit, E., Clemm, A., Gonzalez Prieto, A., Tripathy, A.,
 and E. Nilsen-Nygaard, "Custom Subscription to Event
 Streams", draft-ietf-netconf-subscribed-notifications-13
 (work in progress), August 2018.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6470] Bierman, A., "Network Configuration Protocol (NETCONF)
 Base Notifications", RFC 6470, DOI 10.17487/RFC6470,
 February 2012, <https://www.rfc-editor.org/info/rfc6470>.

Clemm, et al. Expires April 25, 2019 [Page 49]

Internet-Draft YANG-Push October 2018

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7895] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, DOI 10.17487/RFC7895, June 2016,
 <https://www.rfc-editor.org/info/rfc7895>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8072] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Patch
 Media Type", RFC 8072, DOI 10.17487/RFC8072, February
 2017, <https://www.rfc-editor.org/info/rfc8072>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

9.2. Informative References

 [I-D.draft-ietf-netconf-netconf-event-notifications]
 Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "NETCONF Support for Event
 Notifications", August 2018.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, DOI 10.17487/RFC5277, July 2008,
 <https://www.rfc-editor.org/info/rfc5277>.

Clemm, et al. Expires April 25, 2019 [Page 50]

Internet-Draft YANG-Push October 2018

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7923] Voit, E., Clemm, A., and A. Gonzalez Prieto, "Requirements
 for Subscription to YANG Datastores", RFC 7923,
 DOI 10.17487/RFC7923, June 2016,
 <https://www.rfc-editor.org/info/rfc7923>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

Appendix A. Appendix A: Subscription Errors

A.1. RPC Failures

 Rejection of an RPC for any reason is indicated by via RPC error
 response from the publisher. Valid RPC errors returned include both
 existing transport layer RPC error codes, such as those seen with
 NETCONF in [RFC6241], as well as subscription specific errors such as
 those defined within the YANG model. As a result, how subscription
 errors are encoded within an RPC error response is transport
 dependent.

 References to specific identities within the either the subscribed-
 notifications YANG model or the yang-push YANG model may be returned
 as part of the error responses resulting from failed attempts at
 datastore subscription. Following are valid errors per RPC (note:
 throughout this section the prefix ’sn’ indicates an item imported
 from the subscribed-notifications.yang model):

Clemm, et al. Expires April 25, 2019 [Page 51]

Internet-Draft YANG-Push October 2018

 establish-subscription modify-subscription
 ---------------------- -------------------
 cant-exclude sn:filter-unsupported
 datastore-not-subscribable sn:insufficient-resources
 sn:dscp-unavailable sn:no-such-subscription
 sn:filter-unsupported period-unsupported
 sn:insufficient-resources update-too-big
 on-change-unsupported sync-too-big
 on-change-sync-unsupported unchanging-selection
 period-unsupported
 update-too-big resync-subscription
 sync-too-big --------------------
 unchanging-selection no-such-subscription-resync
 sync-too-big

 delete-subscription kill-subscription
 ---------------------- -----------------
 sn:no-such-subscription sn:no-such-subscription

 There is one final set of transport independent RPC error elements
 included in the YANG model. These are the following four yang-data
 structures for failed datastore subscriptions:

 1. yang-data establish-subscription-error-datastore
 This MUST be returned if information identifying the reason for an
 RPC error has not been placed elsewhere within the transport
 portion of a failed "establish-subscription" RPC response. This
 MUST be sent if hints are included.

 2. yang-data modify-subscription-error-datastore
 This MUST be returned if information identifying the reason for an
 RPC error has not been placed elsewhere within the transport
 portion of a failed "modifiy-subscription" RPC response. This
 MUST be sent if hints are included.

 3. yang-data sn:delete-subscription-error
 This MUST be returned if information identifying the reason for an
 RPC error has not been placed elsewhere within the transport
 portion of a failed "delete-subscription" or "kill-subscription"
 RPC response.

 4. yang-data resync-subscription-error
 This MUST be returned if information identifying the reason for an
 RPC error has not been placed elsewhere within the transport
 portion of a failed "resync-subscription" RPC response.

Clemm, et al. Expires April 25, 2019 [Page 52]

Internet-Draft YANG-Push October 2018

A.2. Notifications of Failure

 A subscription may be unexpectedly terminated or suspended
 independent of any RPC or configuration operation. In such cases,
 indications of such a failure MUST be provided. To accomplish this,
 the following types of error identities may be returned within the
 corresponding subscription state change notification:

 subscription-terminated subscription-suspended
 ----------------------- ----------------------
 datastore-not-subscribable sn:insufficient-resources
 sn:filter-unavailable period-unsupported
 sn:no-such-subscription update-too-big
 sn:suspension-timeout synchronization-size
 unchanging-selection

Appendix B. Changes Between Revisions

 (To be removed by RFC editor prior to publication)

 v19 - v20

 o Minor updates per WGLC comments.

 v18 - v19

 o Minor updates per WGLC comments.

 v17 - v18

 o Minor updates per WGLC comments.

 v16 - v17

 o Minor updates to YANG module, incorporating comments from Tom
 Petch.

 o Updated references.

 v15 - v16

 o Updated security considerations.

 o Updated references.

 o Addressed comments from last call review, specifically comments
 received from Martin Bjorklund.

Clemm, et al. Expires April 25, 2019 [Page 53]

Internet-Draft YANG-Push October 2018

 v14 - v15

 o Minor text fixes. Includes a fix to on-change update calculation
 to cover churn when an object changes to and from a value during a
 dampening period.

 v13 - v14

 o Minor text fixes.

 v12 - v13

 o Hint negotiation models now show error examples.

 o yang-data structures for rpc errors.

 v11 - v12

 o Included Martin’s review clarifications.

 o QoS moved to subscribed-notifications

 o time-of-update removed as it is redundant with RFC5277’s
 eventTime, and other times from notification-messages.

 o Error model moved to match existing implementations

 o On-change notifiable removed, how to do this is implementation
 specific.

 o NMDA model supported. Non NMDA version at https://github.com/
 netconf-wg/yang-push/

 v10 - v11

 o Promise model reference added.

 o Error added for no-such-datastore

 o Inherited changes from subscribed notifications (such as optional
 feature definitions).

 o scrubbed the examples for proper encodings

 v09 - v10

 o Returned to the explicit filter subtyping of v00-v05

Clemm, et al. Expires April 25, 2019 [Page 54]

Internet-Draft YANG-Push October 2018

 o identityref to ds:datastore made explicit

 o Returned ability to modify a selection filter via RPC.

 v08 - v09

 o Minor tweaks cleaning up text, removing appendicies, and making
 reference to revised-datastores.

 o Subscription-id (now:id) optional in push updates, except when
 encoded in RFC5277, Section 4 one-way notification.

 o Finished adding the text descibing the resync subscription RPC.

 o Removed relationships to other drafts and future technology
 appendicies as this work is being explored elsewhere.

 o Deferred the multi-line card issue to new drafts

 o Simplified the NACM interactions.

 v07 - v08

 o Updated YANG models with minor tweaks to accommodate changes of
 ietf-subscribed-notifications.

 v06 - v07

 o Clarifying text tweaks.

 o Clarification that filters act as selectors for subscribed
 datastore nodes; support for value filters not included but
 possible as a future extension

 o Filters don’t have to be matched to existing YANG objects

 v05 - v06

 o Security considerations updated.

 o Base YANG model in [subscribe] updated as part of move to
 identities, YANG augmentations in this doc matched up

 o Terms refined and text updates throughout

 o Appendix talking about relationship to other drafts added.

 o Datastore replaces stream

Clemm, et al. Expires April 25, 2019 [Page 55]

Internet-Draft YANG-Push October 2018

 o Definitions of filters improved

 v04 to v05

 o Referenced based subscription document changed to Subscribed
 Notifications from 5277bis.

 o Getting operational data from filters

 o Extension notifiable-on-change added

 o New appendix on potential futures. Moved text into there from
 several drafts.

 o Subscription configuration section now just includes changed
 parameters from Subscribed Notifications

 o Subscription monitoring moved into Subscribed Notifications

 o New error and hint mechanisms included in text and in the yang
 model.

 o Updated examples based on the error definitions

 o Groupings updated for consistency

 o Text updates throughout

 v03 to v04

 o Updates-not-sent flag added

 o Not notifiable extension added

 o Dampening period is for whole subscription, not single objects

 o Moved start/stop into rfc5277bis

 o Client and Server changed to subscriber, publisher, and receiver

 o Anchor time for periodic

 o Message format for synchronization (i.e. sync-on-start)

 o Material moved into 5277bis

 o QoS parameters supported, by not allowed to be modified by RPC

Clemm, et al. Expires April 25, 2019 [Page 56]

Internet-Draft YANG-Push October 2018

 o Text updates throughout

Authors’ Addresses

 Alexander Clemm
 Huawei

 Email: ludwig@clemm.org

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Alberto Gonzalez Prieto
 VMware

 Email: agonzalezpri@vmware.com

 Ambika Prasad Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Andy Bierman
 YumaWorks

 Email: andy@yumaworks.com

 Balazs Lengyel
 Ericsson

 Email: balazs.lengyel@ericsson.com

Clemm, et al. Expires April 25, 2019 [Page 57]

NETCONF Working Group W. Zheng
Internet-Draft Q. Wu
Intended status: Standards Track Huawei
Expires: January 2, 2019 July 1, 2018

 Inline Action Capability for NETCONF
 draft-zheng-netconf-inline-action-capability-01

Abstract

 This document defines capability based extension to NETCONF protocol
 that enables modification of <edit-config> operation and <edit-data>
 operation to accept action parameters and attributes and allows
 multiple sub-operations with inline action operation that apply to
 either different or the same conceptual node in the underlying data
 model in one transaction.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 2, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Zheng & Wu Expires January 2, 2019 [Page 1]

Internet-Draft Inline Action Capability July 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. Inline-Action Capability 3
 2.1. Description . 3
 2.2. Dependencies . 3
 2.3. Capability Identifier 3
 2.4. New Operations . 3
 2.5. Modifications to Existing Operations 3
 2.5.1. <edit-config> and <edit-data> 3
 3. Security Considerations 5
 4. IANA Considerations . 6
 4.1. NETCONF Capability URN 6
 5. Normative References . 6
 Authors’ Addresses . 7

1. Introduction

 YANG 1.1 define the syntax and semantics of version 1.1 of the YANG
 language, which can be used to model configuration data, state data,
 Remote Procedure Calls, and notifications for network management
 protocols. One key Difference from YANG 1.0, is a new statement
 "action", is added to YANG 1.1 to define operations connected to a
 specific container or list data node in a datastore. However which
 data node is applied to which configuration datastore is not
 specified under "action".

 The <edit-data> operation defined in [I-D.ietf-netconf-nmda-netconf]
 and the <edit-config> operation defined in [RFC6241], are used to
 changes the contents of a writable Datastore. Containers and List
 entries can be created, deleted, replaced, and modified through
 <edit-config> by using the "operation" attribute in the container’s
 and List’s XML element. However the action is not part of <config>
 element in either <edit- data> operation or <edit-config> operation.
 Therefore the action operation and <edit-data> operation or <edit-
 config> operation connected to the same data node can not
 automatically handled in sequence in one transaction.

 This document defines capability based extension to NETCONF protocol
 that enables modification of <edit-config> operation and <edit-data>
 operation to accept action parameters and allows multiple sub-
 operations with inline action operation that apply to different or
 same conceptual node in the underlying data model in one transaction.

Zheng & Wu Expires January 2, 2019 [Page 2]

Internet-Draft Inline Action Capability July 2018

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Inline-Action Capability

2.1. Description

 The :inline-action capability indicates that the device supports
 Inline-action operation within <edit-config> and <edit-data>
 operation on writable configuration datastore. In other words, the
 device supports <inline-action> operation is included in <edit-
 config> and <edit-data> operations.

2.2. Dependencies

 None.

2.3. Capability Identifier

 The :inline-action capability is identified by the following
 capability string:

 urn:ietf:params:netconf:capability:inline-action:1.1

2.4. New Operations

 None.

2.5. Modifications to Existing Operations

2.5.1. <edit-config> and <edit-data>

 The :inline-action:1.1 capability modifies the <edit-config> <edit-
 data>operation to accept the <action> parameter and <action>
 attribute value within operation attribute.

 As described in [RFC6241], "operation" attribute is defined in a
 element within <config> subtree and identify the point in the
 configuration to perform the operation and MAY appear on multiple
 elements throughout the <config> subtree. In this document, a new
 "operation" attribute value is added as follows:

Zheng & Wu Expires January 2, 2019 [Page 3]

Internet-Draft Inline Action Capability July 2018

 inline-action: The configuration data identified by the element
 containing this attribute is accompanied with action operation
 applied to a subset of configuration within <config> subtree
 before edit operation is applied to the same configuration at the
 corresponding level in the configuration datastore identified by
 the <target> parameter.

 In addition,the inline-action operation attribute and other
 "operation" attributes can apply to the same conceptual nodes in the
 underlying data model. The assumption is the inline-action operation
 attribute and other "operation" attributes applied to the same
 conceptual nodes will not cause unexpected operation results.

 As described in [RFC6241], the config subtree is expressed as A
 hierarchy of configuration data as defined by one of the device’s
 data models. The contents MUST follow the constraints of that data
 model, as defined by its capability definition. If inline action
 capability is supported, the config subtree may contain a schema node
 with the name "input" and a schema node with the name "output"
 connected to a specific container or list data node containing action
 element in a datastore.

 Example:
 container interfaces {
 list interface {
 key "name";
 config true;

 leaf name {
 type string;
 }

 leaf mtu {
 type uint32;
 }
 }
 action ifstatenable {
 input {
 leaf enable {
 type boolean;
 mandatory true;
 }
 }
 }
 }

 Enable ifstatistics on 1000 interfaces from the running configuration
 before setting the MTU to 1500 on an interface named "Ethernet0/0"

Zheng & Wu Expires January 2, 2019 [Page 4]

Internet-Draft Inline Action Capability July 2018

 and 1000 on an interface named "Ethernet0/1" in the running
 configuration:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.1">
 <edit-config>
 <target>
 <running/>
 </target>
 <default-operation>none</default-operation>
 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.1">
 <top xmlns="http://example.com/schema/1.2/config">
 <interfaces>
 <interface xc:operation="merge">
 <name>Ethernet0/0</name>
 <mtu>1500</mtu>
 </interface>
 <interface>
 <name>Ethernet0/1</name>
 <mtu>1000</mtu>
 </interface>
 <action xmlns="http://example.com/schema/1.2/config">
 <ifstatenable xc:operation="action">
 <input>
 <enable>true</enable>
 </input>
 </ifstatenable>
 </action>
 </interfaces>
 </top>
 </config>
 </edit-config>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.1">
 <ok/>
 </rpc-reply>

3. Security Considerations

 This document does not introduce any security vulnerability besides
 on defined in [RFC6241].

Zheng & Wu Expires January 2, 2019 [Page 5]

Internet-Draft Inline Action Capability July 2018

4. IANA Considerations

4.1. NETCONF Capability URN

 IANA has created and now maintains a registry "Network Configuration
 Protocol (NETCONF) Capability URNs" that allocates NETCONF capability
 identifiers. Additions to the registry require IETF Standards
 Action.

 IANA has added the following capabilities to the registry:

 Index
 Capability Identifier

 :inline-action:1.1
 urn:ietf:params:netconf:capability:inline-action:1.1

5. Normative References

 [I-D.ietf-netconf-nmda-netconf]
 Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "NETCONF Extensions to Support the Network
 Management Datastore Architecture", draft-ietf-netconf-
 nmda-netconf-06 (work in progress), May 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6021] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6021, DOI 10.17487/RFC6021, October 2010,
 <https://www.rfc-editor.org/info/rfc6021>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

Zheng & Wu Expires January 2, 2019 [Page 6]

Internet-Draft Inline Action Capability July 2018

 [RFC6470] Bierman, A., "Network Configuration Protocol (NETCONF)
 Base Notifications", RFC 6470, DOI 10.17487/RFC6470,
 February 2012, <https://www.rfc-editor.org/info/rfc6470>.

Authors’ Addresses

 Walker Zheng
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing, Jiangsu 210012
 China

 Email: zhengguangying@huawei.com

 Qin Wu
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing, Jiangsu 210012
 China

 Email: bill.wu@huawei.com

Zheng & Wu Expires January 2, 2019 [Page 7]

NETCONF T. Zhou
Internet-Draft G. Zheng
Intended status: Standards Track Huawei
Expires: April 21, 2019 E. Voit
 Cisco Systems
 A. Clemm
 Huawei
 A. Bierman
 YumaWorks
 October 18, 2018

 Subscription to Multiple Stream Originators
 draft-zhou-netconf-multi-stream-originators-03

Abstract

 This document describes the distributed data collection mechanism
 that allows multiple data streams to be managed using a single
 subscription. Specifically, multiple data streams are pushed
 directly to the collector without passing through a broker for
 internal consolidation.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2019.

Zhou, et al. Expires April 21, 2019 [Page 1]

Internet-Draft Multiple Steam Originators October 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Use Cases . 3
 2.1. Use Case 1: Data Collection from Devices with Main-board
 and Line-cards . 3
 2.2. Use Case 2: IoT Data Collection 4
 3. Terminologies . 5
 4. Solution Overview . 6
 5. Subscription Decomposition 8
 6. Publication Composition 9
 7. Subscription State Change Notifications 10
 8. IANA Considerations . 10
 9. Security Considerations 10
 10. Acknowledgements . 10
 11. References . 10
 11.1. Normative References 11
 11.2. Informative References 11
 Appendix A. Change Log . 12
 Authors’ Addresses . 12

1. Introduction

 Streaming telemetry refers to sending a continuous stream of
 operational data from a device to a remote receiver. This provides
 an ability to monitor a network from remote and to provide network
 analytics. Devices generate telemetry data and push that data to a
 collector for further analysis. By streaming the data, much better
 performance, finer-grained sampling, monitoring accuracy, and
 bandwidth utilization can be achieved than with polling-based
 alternatives.

Zhou, et al. Expires April 21, 2019 [Page 2]

Internet-Draft Multiple Steam Originators October 2018

 YANG-Push [I-D.ietf-netconf-yang-push] defines a transport-
 independent subscription mechanism for datastore updates, in which a
 subscriber can subscribe to a stream of datastore updates from a
 server, or update provider. The current design involves subscription
 to a single push server. This conceptually centralized model
 encounters efficiency limitations in cases where the data sources are
 themselves distributed, such as line cards in a piece of network
 equipment. In such cases, it will be a lot more efficient to have
 each data source (e.g., each line card) originate its own stream of
 updates, rather than requiring updates to be tunneled through a
 central server where they are combined. What is needed is a
 distributed mechanism that allows to directly push multiple
 individual data substreams, without needing to first pass them
 through an additional processing stage for internal consolidation,
 but still allowing those substreams to be managed and controlled via
 a single subscription.

 This document will describe such distributed data collection
 mechanism and how it can work by extending existing YANG-Push
 mechanism. The proposal is general enough to fit many scenarios.

2. Use Cases

2.1. Use Case 1: Data Collection from Devices with Main-board and Line-
 cards

 For data collection from devices with main-board and line-cards,
 existing YANG-Push solutions consider only one push server typically
 reside in the main board. As shown in the following figure, data are
 collected from line cards and aggregate to the main board as one
 consolidated stream. So the main board can easily become the
 performance bottle-neck. The optimization is to apply the
 distributed data collection mechanism which can directly push data
 from line cards to a collector. On one hand, this will reduce the
 cost of scarce compute and memory resources on the main board for
 data processing and assembling. On the other hand, distributed data
 push can off-load the streaming traffic to multiple interfaces.

Zhou, et al. Expires April 21, 2019 [Page 3]

Internet-Draft Multiple Steam Originators October 2018

 +-------------------------------------+
 | collector |
 +------^-----------^-----------^------+
 | | |
 | | |
 +-------------------------------------+
 | | | | | |
 | | +-----+------+ | |
 | | | main board | | |
 | | +--^-----^---+ | |
 | | | | | |
 | | +---+ +---+ | |
 | | | | | |
 | +----+----+---+ +---+----+----+ |
 | | line card 1 | | line card 2 | |
 | +-------------+ +-------------+ |
 | device |
 +-------------------------------------+

 Fig. 1 Data Collection from Devices with Main-board and Line-cards

2.2. Use Case 2: IoT Data Collection

 In the IoT data collection scenario, as shown in the following
 figure, collector usually cannot access to IoT nodes directly, but is
 isolated by the border router. So the collector subscribes data from
 the border router, and let the border router to disassemble the
 subscription to corresponding IoT nodes. The border router is
 typically the traffic convergence point. It’s intuitive to treat the
 border router as a broker assembling the data collected from the IoT
 nodes and forwarding to the collector[I-D.ietf-core-coap-pubsub].
 However, the border router is not so powerful on data assembling as a
 network device. It’s more efficient for the collector, which may be
 a server or even a cluster, to assemble the subscribed data if
 possible. In this case, push servers that reside in IoT nodes can
 stream data to the collector directly while traffic only passes
 through the border router.

Zhou, et al. Expires April 21, 2019 [Page 4]

Internet-Draft Multiple Steam Originators October 2018

 +-------------------------------+
 | collector |
 +---^-----------^------------^--+
 | | |
 | | |
 | | |
 | +-------+--------+ |
 | | border router | |
 | +----^------^----+ |
 | | | |
 | | | |
 | +---+ +---+ |
 | | | |
 +---+----+---+ +---+----+---+
 | IoT node 1 | | IoT node 2 |
 +------------+ +------------+

 Fig. 2 IoT Data Collection

3. Terminologies

 Subscriber: generates the subscription instructions to express what
 and how the collector want to receive the data

 Receiver: is the target for the data publication.

 Publisher: pushes data to the receiver according to the subscription
 information.

 Subscription Server: which manages capabilities that it can provide
 to the subscriber.

 Global Subscription: the subscription requested by the subscriber.
 It may be decomposed into multiple Component Subscriptions.

 Component Subscription: is the subscription that defines the data
 from each individual telemetry source which is managed and controlled
 by a single Subscription Server.

 Global Capability: is the overall subscription capability that the
 group of Publishers can expose to the Subscriber.

 Component Capability: is the subscription capability that each
 Publisher can expose to the Subscriber.

 Master Publication Channel: the session between the Master Publisher
 and the Receiver.

Zhou, et al. Expires April 21, 2019 [Page 5]

Internet-Draft Multiple Steam Originators October 2018

 Agent Publication Channel: the session between the Agent Publisher
 and the Receiver.

4. Solution Overview

 All the use cases described in the previous section are very similar
 on the data subscription and publication mode, hence can be
 abstracted to the following generic distributed data collection
 framework, as shown in the following figure.

 A Collector usually includes two components,

 o the Subscriber generates the subscription instructions to express
 what and how the collector want to receive the data;

 o the Receiver is the target for the data publication.

 For one subscription, there may be one to many receivers. And the
 subscriber does not necessarily share the same address with the
 receivers.

 In this framework, the Publisher pushes data to the receiver
 according to the subscription information. The Publisher has the
 Master role and the Agent role. Both the Master and the Agent
 include the Subscription Server which actually manages capabilities
 that it can provide to the subscriber.

 The Master knows all the capabilities that the attached Agents and
 itself can provide, and exposes the Global Capability to the
 Collector. The Collector cannot see the Agents directly, so it will
 only send the Global Subscription information to the Master. The
 Master disassembles the Global Subscription to multiple Component
 Subscriptions, each involving data from a separate telemetry source.
 The Component Subscriptions are then distributed to the corresponding
 Agents.

 When data streaming, the Publisher collects and encapsulates the
 packets per the Component Subscription, and pushes the piece of data
 which can serve directly to the designated data Collector. The
 Collector is able to assemble many pieces of data associated with one
 Global Subscription, and can also deduce the missing pieces of data.

Zhou, et al. Expires April 21, 2019 [Page 6]

Internet-Draft Multiple Steam Originators October 2018

 +-------------------------------------+
 | Collector |-------------+ | | | |
 | +------------+ | |
 | +------------+ || Receiver | | |
 | | Subscriber | |--------------+ |
 | +-^----+-----+ +---^--------^ |
 | | | | | |
 +-------------------------------------+
 Global | |Global |Push |
 Capability | |Subscription | |
 +------------------------+-----+ |
 | | | Publisher(Master) | |
 | +--+----v------+ | |
 | | Subscription | | |
 | | Server | | |
 | +--^----+------+ | |
 | | | | |
 +------------------------------+ |
 Component | | Component |Push
 Capability | | Subscription |
 +------------------------------+ |
 | | | Publisher(Agent) | |
 | +--+----v------+ | |
 | | Component | | |
 | | Subscription | +--+
 | | Server | |
 | +--------------+ |
 +------------------------------+

 Fig. 3 The Generic Distributed Data Collection Framework

 Master and Agents may interact with each other in several ways:

 o Agents need to have a registration or announcement handshake with
 the Master, so the Master is aware of them and of life-cycle
 events (such as Agent appearing and disappearing).

 o Contracts are needed between the Master and each Agent on the
 Component Capability, and the format for streaming data structure.

 o The Master relays the component subscriptions to the Agents.

 o The Agents indicate status of Component Subscriptions to the
 Master. The status of the overall subscription is maintained by
 the Master. The Master is also responsible for notifying the
 subscriber in case of any problems of Component Subscriptions.

Zhou, et al. Expires April 21, 2019 [Page 7]

Internet-Draft Multiple Steam Originators October 2018

 Any technical mechanisms or protocols used for the coordination of
 operational information between Master and Agent is out-of-scope of
 the solution. We will need to instrument the results of this
 coordination on the Master Node.

5. Subscription Decomposition

 Since Agents are invisible to the Collector, the Collector can only
 subscribe to the Master. This requires the Master to:

 1. expose the Global Capability that can be served by multiple
 Publishers;

 2. disassemble the Global Subscription to multiple Component
 Subscriptions, and distribute them to the corresponding telemetry
 sources;

 3. notify on changes when portions of a subscription moving between
 different Agents over time.

 To achieve the above requirements, the Master need a Global
 Capability description which is typically the YANG [RFC7950] data
 model. This global YANG model is provided as the contract between
 the Master and the Collector. Each Agent associating with the Master
 owns a local YANG model to describe the Component Capabilities which
 it can serve as part of the Global Capability. All the Agents need
 to know the namespace associated with the Master.

 The Master also need a data structure, typically a Resource-Location
 Table, to keep track of the mapping between the resource and the
 corresponding location of the Subscription Server which commits to
 serve the data. When a Global Subscription request arrives, the
 Master will firstly extract the filter information from the request.
 Consequently, according to the Resource-Location Table, the Global
 Subscription can be disassembled into multiple Component
 Subscriptions, and the corresponding location can be associated.

 The decision whether to decompose a Global Subscription into multiple
 Component Subscriptions rests with the Resource-Location Table. A
 Master can decide to not decompose a Global Subscription at all and
 push a single stream to the receiver, because the location
 information indicates the Global Subscription can be served locally
 by the Master. Similarly, it can decide to entirely decompose a
 Global Subscription into multiple Component Subscriptions that each
 push their own streams, but not from the Master. It can also decide
 to decompose the Global Subscription into several Component
 Subscriptions and retain some aspects of the Global Subscription
 itself, also pushing its own stream.

Zhou, et al. Expires April 21, 2019 [Page 8]

Internet-Draft Multiple Steam Originators October 2018

 Component Subscriptions belonging to the same Global Subscription
 MUST NOT overlap. The combination of all Component Subscriptions
 MUST cover the same range of nodes as the Global Subscription. Also,
 the same subscription settings apply to each Component Subscription,
 i.e., the same receivers, the same time periods, the same encodings
 are applied to each Component Subscription per the settings of the
 Global Subscription.

 Each Component Subscription in effect constitutes a full-fledged
 subscription, with the following constraints:

 o Component subscriptions are system-controlled, i.e. managed by the
 Master, not by the subscriber.

 o Component subscription settings such as time periods, dampening
 periods, encodings, receivers adopt the settings of their Global
 Subscription.

 o The life-cycle of the Component Subscription is tied to the life-
 cycle of the Global Subscription. Specifically, terminating/
 removing the Global Subscription results in termination/removal of
 Component Subscriptions.

 o The Component Subscriptions share the same Subscription ID as the
 Global Subscription.

6. Publication Composition

 The Publisher collects data and encapsulates the packets per the
 Component Subscription. There are several potential encodings,
 including XML, JSON, CBOR and GPB. The format and structure of the
 data records are defined by the YANG schema, so that the composition
 at the Receiver can benefit from the structured and hierarchical data
 instance.

 The Receiver is able to assemble many pieces of data associated with
 one subscription, and can also deduce the missing pieces of data.
 The Receiver recognizes data records associated with one subscription
 according the Subscription ID. Data records generated per one
 subscription are assigned with the same Subscription ID.

 For the time series data stream, records are produced periodically
 from each stream originator. The message arrival time varies because
 of the distributed nature of the publication. The Receiver assembles
 data generated at the same time period based on the recording time
 consisted in each data record. In this case, time synchronization is
 required for all the Publishers.

Zhou, et al. Expires April 21, 2019 [Page 9]

Internet-Draft Multiple Steam Originators October 2018

 To check the integrity of the data generated from different
 Publishers at the same time period, the Message Generator ID
 [I-D.ietf-netconf-notification-messages]is helpful. This requires
 the Subscriber to know the number of Component Subscriptions which
 the Global Subscription is decomposed to. For the dynamic
 subscription, the reponse of the "establish-subscription" and
 "modify-subscription" RPC defined in
 [I-D.ietf-netconf-subscribed-notifications] can include a list of
 Message Generator IDs to indicate how the Global Subscription is
 decomposed into several Component Subscriptions. The "subscription-
 started" and "subscription-modified" notification defined in
 [I-D.ietf-netconf-subscribed-notifications] can also include a list
 of Message Generator IDs to notify the current Publishers for the
 corresponding Global Subscription.

7. Subscription State Change Notifications

 In addition to sending event records to receivers, the Master MUST
 also send subscription state change
 notifications[I-D.ietf-netconf-subscribed-notifications] when events
 related to subscription management have occurred. All the
 subscription state change notifications MUST be delivered by the
 Master Publication Channel which is the session between the Master
 Publisher and the Receiver.

 When the subscription decomposition result changed, the
 "subscription-modified" notification will be sent to indicate the new
 a list of Publishers.

8. IANA Considerations

 TBD

9. Security Considerations

 It’s expected to reuse the existing secure transport layer protocols,
 such as TLS [RFC5246] and DTLS [RFC6347], to secure the telemetry
 stream.

10. Acknowledgements

 TBD

11. References

Zhou, et al. Expires April 21, 2019 [Page 10]

Internet-Draft Multiple Steam Originators October 2018

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

11.2. Informative References

 [I-D.ietf-core-coap-pubsub]
 Koster, M., Keranen, A., and J. Jimenez, "Publish-
 Subscribe Broker for the Constrained Application Protocol
 (CoAP)", draft-ietf-core-coap-pubsub-05 (work in
 progress), July 2018.

 [I-D.ietf-netconf-notification-messages]
 Voit, E., Birkholz, H., Bierman, A., Clemm, A., and T.
 Jenkins, "Notification Message Headers and Bundles",
 draft-ietf-netconf-notification-messages-04 (work in
 progress), August 2018.

 [I-D.ietf-netconf-subscribed-notifications]
 Voit, E., Clemm, A., Prieto, A., Nilsen-Nygaard, E., and
 A. Tripathy, "Customized Subscriptions to a Publisher’s
 Event Streams", draft-ietf-netconf-subscribed-
 notifications-17 (work in progress), September 2018.

 [I-D.ietf-netconf-yang-push]
 Clemm, A., Voit, E., Prieto, A., Tripathy, A., Nilsen-
 Nygaard, E., Bierman, A., and B. Lengyel, "YANG Datastore
 Subscription", draft-ietf-netconf-yang-push-19 (work in
 progress), September 2018.

Zhou, et al. Expires April 21, 2019 [Page 11]

Internet-Draft Multiple Steam Originators October 2018

Appendix A. Change Log

 (To be removed by RFC editor prior to publication)

 v01

 o Minor revision on Subscription Decomposition

 o Revised terminologies

 o Removed most implementation related text

 o Place holder of two sections: Subscription Management, and
 Notifications on Subscription State Changes

 v02

 o Revised section 4 and 5. Moved them from apendix to the main
 text.

 v03

 o Added a section for Terminologies.

 o Added a section for Subscription State Change Notifications.

 o Improved the Publication Composition section by adding a methed to
 check the integrity of the data generated from different
 Publishers at the same time period.

 o Revised the solution overview for a more clear description.

Authors’ Addresses

 Tianran Zhou
 Huawei
 156 Beiqing Rd., Haidian District
 Beijing
 China

 Email: zhoutianran@huawei.com

Zhou, et al. Expires April 21, 2019 [Page 12]

Internet-Draft Multiple Steam Originators October 2018

 Guangying Zheng
 Huawei
 101 Yu-Hua-Tai Software Road
 Nanjing, Jiangsu
 China

 Email: zhengguangying@huawei.com

 Eric Voit
 Cisco Systems
 United States of America

 Email: evoit@cisco.com

 Alexander Clemm
 Huawei
 2330 Central Expressway
 Santa Clara, California
 United States of America

 Email: alexander.clemm@huawei.com

 Andy Bierman
 YumaWorks
 United States of America

 Email: andy@yumaworks.com

Zhou, et al. Expires April 21, 2019 [Page 13]

	draft-ietf-netconf-crypto-types-02
	draft-ietf-netconf-keystore-07
	draft-ietf-netconf-netconf-client-server-08
	draft-ietf-netconf-netconf-event-notifications-14
	draft-ietf-netconf-restconf-client-server-08
	draft-ietf-netconf-restconf-notif-09
	draft-ietf-netconf-ssh-client-server-08
	draft-ietf-netconf-subscribed-notifications-18
	draft-ietf-netconf-tls-client-server-08
	draft-ietf-netconf-trust-anchors-02
	draft-ietf-netconf-udp-pub-channel-04
	draft-ietf-netconf-yang-push-20
	draft-zheng-netconf-inline-action-capability-01
	draft-zhou-netconf-multi-stream-originators-03

