
Network Working Group R. Wilton
Internet-Draft Cisco Systems, Inc.
Intended status: Informational October 22, 2018
Expires: April 25, 2019

 YANG Versioning Potential Solutions
 draft-verdt-netmod-yang-solutions-00

Abstract

 This ’work in progress’ document describes and evaluates potential
 solutions to the requirements stated in section 5 of the YANG
 versioning requirements draft. The aim of this draft is to only
 provide a progress update to the Netmod WG concerning the YANG
 versioning design team discussions on potential solutions, and to
 hopefully provide minimally sufficient information to allow the wider
 Netmod community to provide input into the direction of the YANG
 versioning design team.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Wilton Expires April 25, 2019 [Page 1]

Internet-Draft YANG Versioning Potential Solutions October 2018

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Terminology and Conventions 2
 2. Introduction . 3
 3. Background . 3
 4. Summary of requirements 4
 5. Potential solutions to core YANG versioning requirements . . 5
 5.1. Module level ’major.minor.patch’ semantic versioning . . 6
 5.2. Module level ’major.minor.patch(x)’ modified semantic
 versioning . 7
 5.3. Module level ’release.major.minor.patch’ partial semantic
 versioning . 9
 5.4. A tool based approach comparing YANG schema modules/trees 10
 5.5. Follow existing RFC 7950 rules 11
 6. Solutions to related YANG versioning issues 12
 7. Open Questions . 12
 7.1. Is YANG module revision date preserved? 13
 7.2. Do YANG update rules allow for bug fixes? 13
 7.3. Does one size fit all? 13
 7.4. Should vendors we allowed to version YANG modules as part
 of a release train? 13
 7.5. How should versioning apply to submodules? 14
 7.6. Is having a patch version number useful for YANG modules? 14
 8. Contributors . 14
 9. Security Considerations 15
 10. IANA Considerations . 15
 11. References . 15
 11.1. Normative References 15
 11.2. Informative References 15
 Author’s Address . 15

1. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document also makes use of the terminology introduced in the
 YANG versioning requirements draft (REF REQUIRED). In addition, this
 document introduces the following terminology:

 o bc: Used as an abbreviation for a backwards-compatible change.

Wilton Expires April 25, 2019 [Page 2]

Internet-Draft YANG Versioning Potential Solutions October 2018

 o nbc: Used as an abbreviation for a non-backwards-compatible
 change.

 o editorial change: A backwards-compatible change that does not
 change the YANG module semantics in any way.

2. Introduction

 This draft represents transient work in progress, and should be read
 as such. In particular, the descriptions of the solutions are not
 intended to be complete, nor necessarily consider all scenarios, but
 instead are intended to explore the broad approach and key aspects of
 the particular solution. The solution descriptions do not address
 all requirements at this time, instead they focus on the requirements
 that have the most significance on the final direction of the
 solution. Nor does this draft recommend any particular solution or
 solutions at this time. It is anticipated that once a final solution
 approach has been decided upon, that a separate draft shall be
 produced that will supersede this temporary draft.

 The remainder of this document is split into the following sections:

 Chapter Section 4 provides a condensed summary of the requirements,
 taken from [I-D.verdt-netmod-yang-versioning-reqs]. This section
 also lists where in the document these requirements are considered,
 if at all.

 A significant part of this document is aimed at discussing the
 potential ’core’ solutions, which are focussed on solving
 requirements: R1.1, R1.2, R1.4, R2.1, R2.2 and R4.4, and described in
 chapter Section 5.

 Possible solutions for some of the secondary requirements, such as
 datanode lifecycle management, are considered in chapter Section 6.
 In particular, possible solutions for requirements R1.3, R4.1, R4.2
 and R4.3 are considered.

 Finally, chapter Section 7 lists some of the open issues that the
 YANG versioning design team are considering and working through. For
 some questions, a tentative design team direction of the answer is
 also given.

3. Background

 Some members of the design team are authors of a potential solution
 draft to the YANG versioning requirements. The purpose of this
 document is to ensure that all reasonable solutions to the YANG

Wilton Expires April 25, 2019 [Page 3]

Internet-Draft YANG Versioning Potential Solutions October 2018

 versioning problem have been properly considered before converging on
 a single chosen solution.

4. Summary of requirements

 The requirement themselves are documented in section 5 of XXX. A
 shortened, non normative, summary of each of the requirements (using
 the same requirement numbers) is provided below to aid evaluation of
 the potential solutions.

 Req 1.1 - MUST support nbc updates without breaking imports.

 Req 1.2 - MUST support nbc updates without breaking existing
 client code.

 Req 1.3 - MUST support import stmt restricted to only some
 revisions.

 Req 1.4 - MUST support modules to be versioned by software
 release.

 Req 2.1 - MUST be able to determine if two arbitrary versions of
 any MODULE are unchanged, bc, or nbc.

 Req 2.2 - SHOULD be able to determine if two arbitrary versions of
 any DATA NODE are unchanged, bc, or nbc.

 Req 3.1 - MUST allow servers to support existing clients.

 Req 3.2 - MUST allow for simultaneously support of clients using
 different (perhaps restricted) revisions.

 Req 4.1 - MUST provide way to indicate if deprecated nodes are
 implemented.

 Req 4.2 - MUST be able to document reason for lifecycle changes,
 and possible alternative data nodes.

 Req 4.3 - MUST be able to forewarn of future lifecycle changes.

 Req 4.4 - SHOULD allow fixes to older revision of a module.

 Req 5.1 - MUST provide guidance on how to use the new scheme.

 Req 5.2 - MUST provide, and document, an upgrade path from
 existing YANG/protocols.

 Req 5.3 - MUST consider versioning impact on instance data.

Wilton Expires April 25, 2019 [Page 4]

Internet-Draft YANG Versioning Potential Solutions October 2018

 The following list indicates where solutions for particular
 requirements are considered in this draft.

 Req 1.1 - Section 5, core solutions

 Req 1.2 - Section 5, core solutions

 Req 1.3 - Section 6, extra solutions

 Req 1.4 - Section 5, core solutions

 Req 2.1 - Section 5, core solutions

 Req 2.2 - Section 5, core solutions

 Req 3.1 - Deferred until main solution direction is chosen.

 Req 3.2 - Deferred until main solution direction is chosen.

 Req 4.1 - Section 6, extra solutions

 Req 4.2 - Section 6, extra solutions

 Req 4.3 - Section 6, extra solutions

 Req 4.4 - Section 5, core solutions

 Req 5.1 - Deferred until main solution direction is chosen.

 Req 5.2 - Deferred untli main solution direction is chosen.

 Req 5.3 - Deferred until main solution direction is chosen.

5. Potential solutions to core YANG versioning requirements

 This section considers solutions that are aimed at solving the main
 YANG versioning requirements. In particular, the solutions described
 here are aimed at solving the following requirements: R1.1, R1.2,
 R1.4, R2.1, R2.2 and R4.4.

 The solutions being considered are:

 1. Module level ’major.minor.patch’ semantic versioning

 2. Module level ’major.minor.patch(x)’ modified semantic versioning

 3. Module level ’release.major.minor.patch’ versioning

Wilton Expires April 25, 2019 [Page 5]

Internet-Draft YANG Versioning Potential Solutions October 2018

 4. A tool based approach comparing YANG schema modules/trees

 5. Follow existing RFC 7950 rules

5.1. Module level ’major.minor.patch’ semantic versioning

 This solution introduces a module level version number that adopts a
 subset of the semantic versioning rules published at semver.org.

 The key part of this solution is a version number that comprises
 three fields, ’major.minor.patch’:

 1. major - updated only when a non-backwards-compatible change is
 made

 2. minor - updated only when a backwards-compatible change is made

 3. patch - updated only for ’editorial’ changes that do not change
 the API semantics in any way

 When a field in the version number is incremented, all following
 fields are reset back to 0. Major version number 0 indicates that
 the module is not yet stable and allows non-backwards-compatible
 changes without requiring the major version number to be incremented
 (e.g., this could be used in IETF drafts before they become RFCs).

 If this solution is adopted, it is assumed that vendors would need to
 manage versioning of vendor YANG models independently of software
 release trains, and even then they would be limited in the scope of
 what changes are possible in an already shipped release, which is
 anticipated to not meet the business requirements of some vendors.

 Solution advantages:

 1. Follows widely known semantic versioning rules.

 2. Version number alone indicates whether 2 module revisions are
 backwards-compatible.

 3. Sufficient for most (but not necessarily all) YANG models
 developed by SDOs.

 4. Matches the scheme being used by OpenConfig YANG models.

 Solution disadvantages:

 1. Does not fully support long lived vendor software release trains.
 In particular:

Wilton Expires April 25, 2019 [Page 6]

Internet-Draft YANG Versioning Potential Solutions October 2018

 Does not necessarily allow for backwards-compatible changes
 (enhancements or fixes) in older releases.

 Does not allow for non-backwards-compatible changes
 (enhancements or fixes) in older releases.

 2. The ’patch’ field is not as useful for YANG modules (which act
 like an API), since ’editorial’ changes are likely to be less
 common that backwards-compatible enhancements and fixes.

5.2. Module level ’major.minor.patch(x)’ modified semantic versioning

 This solution modifies the semantic versioning solution described
 previously, with the principal aim of allow fixes to released code.

 The change to the semantic versioning solution is a modification to
 how the ’patch’ field is used. In addition to ’editorial’ changes
 that do not change the YANG module semantics, the patch field can
 also be used in a limited way to indicate major and minor version
 changes as well. If the patch field is incremented for a minor
 version change that it is appended with the suffix ’(m)’, if the
 patch field is incremented for a major version change then it is
 appended with the suffix ’(M)’, replacing ’(m)’, if present. Once a
 given ’major.minor’ version has a patch field value with ’(m)’ or
 ’(M)’ then all subsequent patch revisions on the same ’major.minor’
 version retain the letter ’(m)’ or ’(M)’ regardless of whether the
 subsequent changes are backwards-compatible, non-backwards-
 compatible, or editorial changes.

 The updated semantic versioning rules for updating the
 ’major.minor.patch’ version number is as follows:

 1. if a non-backwards-compatible change is made then either the
 major version number MUST be updated (resetting the minor and
 patch version numbers to 0) or only the patch version number MUST
 be updated and appended with ’(M)’, replacing ’(m)’ if present.

 2. if a backwards-compatible change is made then either the minor
 version number MUST be updated (resetting the patch version
 numbers to 0) or only the patch version number MUST be updated
 and appended with ’(m)’ unless the previous patch version number
 already had ’(M)’ appended, in which case the ’(M)’ suffix is
 retained for the new patch version.

 3. if an editorial change is made then the patch version number MUST
 be updated. If the previous patch version number already had
 either an ’(m’) or ’(M)’ suffix then it is retained for the new
 patch version.

Wilton Expires April 25, 2019 [Page 7]

Internet-Draft YANG Versioning Potential Solutions October 2018

 When a field in the version number is incremented, all following
 fields are reset back to 0. Major version number 0 indicates that
 the module is not yet stable and allows non-backwards-compatible
 changes without requiring the major version number to be incremented
 (e.g., this could be used in IETF drafts before they become RFCs).

 If this solution is adopted, it is assumed that vendors would need to
 manage versioning of vendor YANG models independently of software
 release trains, but that they are able to release fixes to bugs in
 YANG module versions that are present in long lived software
 releases.

 Where possible, the version number should be updated using the
 standard semantic versioning rules, relying on the ’(m)’ and ’(M)’
 suffixes only used where strictly necessary.

 Solution advantages:

 1. Allows fixes to released YANG modules, whilst still preserving
 semver like semantics.

 2. Aims to be sufficient for SDO and vendor YANG modules.

 3. Modules can choose to just use semver rules if they wish. E.g.
 the scheme is compatible with the scheme being used by OpenConfig
 YANG models.

 Solution disadvantages:

 1. Slightly more complex than standard semver.org rules. The (m|M)
 suffix may be confusing, and their significance misinterpreted.

 2. Within a ’major.minor’ version branch it is not possible to
 determine whether a specific change is backwards-compatible or
 not.

 3. If on a version with the (m) suffix, e.g. ’A.B.C(m)’, it is not
 possible to determine whether an update to ’A.D.E’, where D > B
 is a backwards-compatible change.

 Variants:

 Rather than using ’(m)’ or ’(M)’, it could instead use separate
 counters for bc and nbc changes, facilitating meaningful semantic
 versioning comparison between different patch versions on
 ’major.minor’ branch.

Wilton Expires April 25, 2019 [Page 8]

Internet-Draft YANG Versioning Potential Solutions October 2018

 Rather than overloading the patch version number, separate
 semantic version numbers could be used on branches. E.g. if a bc
 fix was required to version ’1.2.3’ this could be presented as
 ’1.2.3/1.1.0’, if there was a further nbc fix then the next branch
 version would be ’1.2.3/2.0.0’.

5.3. Module level ’release.major.minor.patch’ partial semantic
 versioning

 This solution extends the semver ’major.minor.patch’ version number
 scheme, by prefixing it with an explicit software release positive
 integer field.

 The key part of this solution is a version number comprising four
 fields (release.major.minor.patch):

 1. release - may be updated at any time (e.g. for a new major
 software release)

 2. major - updated only when a non-backwards-compatible change is
 made

 3. minor - updated only when a backwards-compatible change is made

 4. patch - updated only only for changes that do not change the API
 semantics in any way

 When a field in the version number is incremented, all following
 fields are reset back to 0, except for major that resets to 1.
 Release version number 0 indicates that the version is not yet stable
 and non-backwards-compatible changes are allowed without incrementing
 the major version number.

 The assumption for this scheme is that the release number is always
 incremented for every major release, i.e. at any point where nbc
 changes may potentially be required in an older release.

 Solution advantages:

 1. Supports long lived vendor software release trains.

 2. Completely allows bc and nbc changes (enhancements or fixes) in
 older independent releases.

 3. Probably sufficient for YANG models developed by both vendors and
 SDOs.

 Solution disadvantages:

Wilton Expires April 25, 2019 [Page 9]

Internet-Draft YANG Versioning Potential Solutions October 2018

 1. Release version field must be incremented regardless of changes.

 2. Version number is no longer an indicator of changes between 2
 module revisions. I.e. the main benefit of semantic versioning
 is lost.

 3. Differs from the scheme used by OpenConfig YANG model.

 Similar variants:

 The ’release’ field could be regarded as optional, and if omitted,
 the version interpreted in exactly the same way as the module
 level ’major.minor.patch’ semantic versioning solution.

5.4. A tool based approach comparing YANG schema modules/trees

 This solution relies on using tooling to compare either two YANG
 modules, or two YANG schema trees to identify any changes between the
 two modules that do not conform to RFC 7950 section 11 backwards-
 compatibility rules.

 Not all differences between two YANG statements in different module
 versions can easily be identified as backwards-compatible or not (for
 example changes in description, pattern statements, must or when
 statements may be hard to check). If a tool is unable to check then
 it would have to flag the change as potentially being non-backwards-
 compatible, potentially reporting many false positives.

 To mitigate this, it is proposed that this solution also introduces a
 new YANG extension statement to indicate that a change is backwards-
 compatible.

 When comparing a module schema, a tool would also be able to take
 into account enabled features, deviations, and the subset of the
 schema being used by the client. This would allow a tooling based
 approach to give a more accurate answer as to whether a client would
 be affected when upgrading between two software versions.

 Solution advantages:

 1. Gives the most accurate answer that works in all cases.

 Solution disadvantages:

 1. Cannot easily check whether two modules are compatible just by
 looking at them. Probably needs to be used in conjunction with a
 module level versioning scheme.

Wilton Expires April 25, 2019 [Page 10]

Internet-Draft YANG Versioning Potential Solutions October 2018

 2. Differs from the scheme used by OpenConfig YANG models.

5.5. Follow existing RFC 7950 rules

 The final choice is to decide that the existing mechanism described
 in RFC 7950, that disallows any non-backwards-compatible changes in a
 given model, is the best way forward. Instead of making a nbc
 chagne, the modeller can introduce new parallel nodes, and deprecate
 the existing nodes within the same module. Alternatively an entirely
 new module, with a separate name and namespace can be introduced.

 As a solution, this cannot meet all of the requirements stated in the
 requirements draft.

 If this solution was sufficient, then the YANG versioning design team
 would not have been formed. However, some vendors are pragmatically
 ignoring the strict YANG module update rules (e.g. for vendor
 modules).

 Solution advantages:

 1. No significant change in YANG language semantics required.
 Changes, or perhaps extensions, could be made to the YANG
 language to address some of other requirements that have
 independent solutions.

 Solution disadvantages:

 1. If an nbc has to be made (even for a minor feature) then there is
 a high impact to all clients using the module, servers
 implementing the module, and other YANG modules that import from
 the module. This impact would be particularly acute for a core
 YANG module that is being updated in an nbc way, that is imported
 by many other YANG modules. Hence, choosing this solution really
 means that there can be no nbc changes to a module unless the
 module is being restructured in a major way when a separate name
 for the module makes sense regardless.

 2. Seems to make standardization slow because participants are
 seemingly try harder to get the perfect model first because the
 cost of having to change it seems so high.

 3. Old, dead definitions can potentially never be removed from a
 module.

 4. Does not work well for vendor generated YANG models, since they
 cannot easily have the level or control and stability required
 for it to never change.

Wilton Expires April 25, 2019 [Page 11]

Internet-Draft YANG Versioning Potential Solutions October 2018

 5. Does not solve the problem where deviations are used to introduce
 nbc changes.

 6. Introduces a problem where a single underlying property is
 represented by two (or more) independent data nodes in the same
 schema. There does not appear to be a clean solution on how to
 manage the relationship between these two nodes (e.g. if both an
 old and new client are interacting with a server). Other
 solutions have the potential of handling this better.

 Variants:

 One variant of this solution is to agree on the rules for making
 fixes to published YANG modules, and determine whether that
 requires any changes to the section 11 text in RFC 950.

6. Solutions to related YANG versioning issues

 These partial solutions address particular point requirements. The
 partial solutions are:

 1. Deprecated flag - Add a flag to YANG library to indicate whether
 deprecated nodes are implemented or not. This is a potential
 solution to Req 4.1.

 2. Redefine deprecated stmt - Change the definition of the YANG
 deprecated statement to indicate that deprecated data nodes must
 be implemented, or otherwise deviated. This is a potential
 solution to Req 4.1.

 3. Status description - Allow the "description" statement under the
 YANG "status" statement to document data node lifecycle, and
 allow for forward guidance. This is a potential solution to Reqs
 4.2 and 4.3.

 4. Alternative node path - Introduce a new YANG statement to provide
 an alternative path for a deprecated, or obsolete, data node.
 This is a potential additional solution to Req 4.2 and perhaps
 also Req 4.3.

7. Open Questions

 This section lists some of the open questions that the design team is
 still grappling with.

Wilton Expires April 25, 2019 [Page 12]

Internet-Draft YANG Versioning Potential Solutions October 2018

7.1. Is YANG module revision date preserved?

 With the introduction of the new versioning scheme, should every YANG
 module still have a revision statement, or is that entirely
 superseded by a new version statement? Is it required that YANG
 modules revision dates MUST be unique for different versions of a
 module?

 The position that the DT is tending towards is:

 All revision dates for YANG modules must be unique. The slight
 complexity of requiring this should minimize the impact to
 existing tooling.

 it is acceptable to break the existing monotonically increasing
 property of the current module revision date, but within a given
 ’stream’ of YANG modules the monotonically increasing property
 should be preserved.

7.2. Do YANG update rules allow for bug fixes?

 Does YANG (RFC 7950) section 11 allow nbc fixes to existing models,
 and if so, are there any limits as to what form those fixes can take,
 or are these strictly prohibited by the module update rules?

7.3. Does one size fit all?

 Potentially different types of YANG modules may want to follow
 different versioning semantics.

 E.g. it may be right that standardized YANG modules are very slow
 changing and conservative in their backwards compatibility

 Conversely, it is potentially more pragmatic that vendor YANG modules
 need to change in more significant ways mirroring changes in
 underlying implementations or hardware.

7.4. Should vendors we allowed to version YANG modules as part of a
 release train?

 Some of the solutions described in this document probably require
 vendors to version vendor YANG modules outside of release trains,
 which is likely to be different to how some vendors are managing this
 today. Is it a reasonable constraint to put on vendors that they
 MUST version YANG modules outside of a release train to provide a
 cleaner version history?

Wilton Expires April 25, 2019 [Page 13]

Internet-Draft YANG Versioning Potential Solutions October 2018

7.5. How should versioning apply to submodules?

 Submodules can have different revision dates from the including
 parent module. Does this mean that submodules should be versioned
 independently of their parent module? Or should the version number
 apply only at the module level?

 Need to consider the upgrade rules allow definitions to be moved
 between submodules.

7.6. Is having a patch version number useful for YANG modules?

 The semantic versioning solution on semver.org is designed to version
 both APIs and implementations. In this scenario, the patch level
 versioning number is particularly useful to indicate a fix in the
 implementation, where the API has not changed. The versioning for
 YANG modules is primarily concerned with the API semantics rather
 than implementation, and hence the patch level version number is not
 so directly useful, where its purpose is limited to changes that do
 not affect semantics of the YANG module (e.g. fixes to typos for
 example).

8. Contributors

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The following people are members of that
 design team and have contributed to defining the problem and
 specifying the requirements:

 o Balazs Lengyel

 o Benoit Claise

 o Ebben Aries

 o Jason Sterne

 o Joe Clarke

 o Juergen Schoenwaelder

 o Mahesh Jethanandani

 o Michael (Wangzitao)

 o Qin Wu

 o Reshad Rahman

Wilton Expires April 25, 2019 [Page 14]

Internet-Draft YANG Versioning Potential Solutions October 2018

 o Rob Wilton

 o Susan Hares

9. Security Considerations

 The document does not define any new protocol or data model. There
 is no security impact.

10. IANA Considerations

 None

11. References

11.1. Normative References

 [I-D.verdt-netmod-yang-versioning-reqs]
 Clarke, J., "YANG Module Versioning Requirements", draft-
 verdt-netmod-yang-versioning-reqs-01 (work in progress),
 October 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

11.2. Informative References

 [RFC8049] Litkowski, S., Tomotaki, L., and K. Ogaki, "YANG Data
 Model for L3VPN Service Delivery", RFC 8049,
 DOI 10.17487/RFC8049, February 2017,
 <https://www.rfc-editor.org/info/rfc8049>.

 [RFC8199] Bogdanovic, D., Claise, B., and C. Moberg, "YANG Module
 Classification", RFC 8199, DOI 10.17487/RFC8199, July
 2017, <https://www.rfc-editor.org/info/rfc8199>.

 [RFC8299] Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki,
 "YANG Data Model for L3VPN Service Delivery", RFC 8299,
 DOI 10.17487/RFC8299, January 2018,
 <https://www.rfc-editor.org/info/rfc8299>.

Author’s Address

Wilton Expires April 25, 2019 [Page 15]

Internet-Draft YANG Versioning Potential Solutions October 2018

 Robert Wilton
 Cisco Systems, Inc.

Wilton Expires April 25, 2019 [Page 16]

