
Internet Engineering Task Force A. Malhotra

Internet-Draft Boston University

Intended status: Informational K. Teichel

Expires: April 25, 2019 PTB

 M. Hoffmann

 W. Toorop

 NLnet Labs

 October 22, 2018

 On Implementing Time

 draft-aanchal-time-implementation-guidance-01

Abstract

 This document describes the properties of different types of clocks

 available on digital systems. It provides implementors of

 applications with guidance on choices they have to make when working

 with time to provide basic functionality and security guarantees.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

Malhotra, et al. Expires April 25, 2019 [Page 1]

Internet-Draft On Implementing Time October 2018

 include Simplified BSD License text as described in Section 4.e of

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

1. Introduction

 It is hard to understate the importance of time in modern digital

 systems. The functionality and security of applications (distributed

 or local to one system) and that of network protocols generally hinge

 on some notion of time. For implementation, these applications and

 protocols have to choose one of the types of clocks available on

 their system, each of which has its own specific properties.

 However, currently many of these applications seem to be oblivious to

 the implications of choosing one or the other clock for

 implementation. This behavior can be attributed to: a) the lack of

 clear understanding of the distinct properties of these clocks, b)

 trade-offs of using one or the other for an application, and c)

 availability and compatibility of these clocks on different systems.

 This document discusses a) and b).

 More specifically, in this document we first define different methods

 used by protocols and applications to express time. We then define

 properties of clocks maintained by modern digital systems. Next we

 describe how systems obtain these values from these clocks and the

 security considerations of using these values to implement protocols

 and applications that use time. Finally we discuss trade-offs

 between security and precision of choosing a clock. The document

 aims to provide guidance to the implementors make an informed choice

 with an example of POSIX system.

2. Scope of the document

 This document aims to provide software developers implementing

 protocols and applications that have to deal with time with the

 knowledge and understanding to make informed decisions regarding the

 available clocks and their respective trade-offs.

 It does not describe functionality that is specific to the

 architecture of a PC, or other devices such as phones, IoT devices,

 switches, routers, base stations, or synchrophasors. Nor is the

 document applicable to a specific operating system. Throughout the

 document we assume that one or the other clock is available on most

 devices. How these clocks are available on different PCs or other

 devices is out of scope of this document.

 We do not exactly recommend which clock should be used. We discuss

 the available options and trade-offs. The final decision would vary

Malhotra, et al. Expires April 25, 2019 [Page 2]

Internet-Draft On Implementing Time October 2018

 depending on the availability of clocks and the security requirements

 of the specific application under implementation.

 Note: Since there is a lack of standards on terminology related to

 time, we define some terms in the following section. Also,

 throughout the document, we define the terms as they become relevant.

 Different systems, depending on their OS, may use different terms for

 the same types of clocks. A survey on this is not in the scope of

 this document. We provide a discussion on how to access these values

 on POSIX and Windows systems. On other systems, implementors will

 have to determine themselves which of these values are available.

3. Expressing Time

 Protocols and applications can express time in several forms,

 depending on whether they need to express a point in time or a time

 interval.

3.1. Absolute Time

 Absolute time expresses a universally agreed upon reference to a

 specific point in time. Such a reference can be expressed in

 different ways. For instance, Unix Time refers to the number of

 seconds since midnight UTC, January 1st, 1970, while in everyday

 life, we reference such a point through year, month, day, and so on.

 Because absolute time expresses a shared view of time, a system needs

 to synchronize its clock with a common reference clock, for instance

 one based on UTC.

 Absolute time is often used to express the start or end of the

 validity of objects with a limited lifetime that are shared over the

 network.

3.2. Relative Time

 Relative time measures the time interval that has elapsed from some

 well-defined reference point (e.g., 20 minutes from the time of your

 query).

 Since relative time does not express a point in time, it does not

 rely on synchronized clocks between systems but only on a shared rate

 of passage of this time.

 Relative time is commonly used in network protocols, for instance to

 determine when a packet should be considered dropped or to express

 Time To Live (TTL) values that govern the length of time for which an

 object is valid or usable.

Malhotra, et al. Expires April 25, 2019 [Page 3]

Internet-Draft On Implementing Time October 2018

4. Keeping Time: Different Clocks

 Because time is relative to an observer, there cannot be a

 universally agreed upon time. At best we can achieve an

 approximation by constantly updating our own clocks against a common

 reference clock. Remaining close to this reference clock is a

 complex process that comes with its own set of difficulties.

 In this section, we will have a look at the different clocks a system

 uses and how it maintains these clocks.

4.1. Native Clock

 Each system has its own perception of time. It gains access to it

 via its native clock. Typcially, this clock counts cycles of an

 oscillator but some systems use process CPU times or thread CPU

 timers (via timers provided by the CPU). The quality of the native

 clock therefore dependends on either the stability of the oscillator

 or the CPU timer.

 The timescale of the native clock is purely subjective -- no general

 meaning can be attached to any specific clock value. One can only

 obtain relative time by comparing two values. Because the value of

 the native clock always grows at a steady pace, never decreases,

 never make unexpected jumps, and never skips, the difference between

 two clock values provides the time interval between the two

 measurements.

 The independence of the native clock from any external time sources

 renders it resistant to any manipulation but in return there is no

 guarantee that its clock rate is similar to that of any other system.

 This difference in rate, especially when compared to a reference

 clock, is called clock drift.

 Clock drift depends on the quality of the clock itself but also on

 factors such as system load or ambient temperatur which makes it hard

 to predict.

4.2. World Clock

 The native clock only provides means to measure relative time. In

 order to be able to also process absolute time, the system needs to

 be synchronized with a global reference clock. Since this clock

 strives to be the same on all systems, we call it the world clock.

 There are a number of ways to maintain the world clock based on the

 system’s native clock.

Malhotra, et al. Expires April 25, 2019 [Page 4]

Internet-Draft On Implementing Time October 2018

 The first is to manually maintain an offset between values of the

 native clock and the reference world clock. Because of the clock

 drift of the native clock, this offset needs to be updated from time

 to time if a minimal divergence from the reference clock is to be

 maintained.

 Secondly, a hardware clock provided by the system and set to be

 equivalent to the reference time can be used, allowing the system to

 retain the offset across reboots.

 Finally, the reference clock can be obtained from an external time

 source. Typically, the Internet is used through a variety of timing

 protocols including the Network Time Protocol (NTP) [RFC5905],

 Chrony, SNTP, OpenNTP and others.

 Each of these approaches has own problems attached to it.

 Manual configurations can be subject to errors and misconfiguration.

 Also, for mobile devices, when moving between time zones, the offset

 must be corrected manually.

 Accessing the hardware clock requires an I/O operation which is

 resource intensive, therefore many systems use the hardware clock

 only upon reboot, to initialize the clock offset; subsequent updates

 are made either manually or through timing protocols.

 Further, on many systems the quality of the hardware clock isn’t very

 high, leading to a large clock drift if solely relying on it. Worse,

 systems like microcontrollers that operate within embedded systems

 (e.g., Raspberry Pi, Arduino, etc.) often lack hardware clocks

 altogether. These systems rely on external time sources upon reboot

 and have no means to process absolute time until synchronization with

 these sources has completed.

 Relying on Internet timing protocols opens up the system time to

 attack. Recent papers show vulnerabilities in NTP [SECNTP], [MCBG]

 and SNTP that allow attackers to maliciously alter system’s world

 clock -- pushing it into the past or even into the future. Moreover,

 many of these time-shifting attacks can be performed by off-path

 attackers, who do not occupy a privileged position on the network

 between the victim system and its time sources on the Internet.

 Researchers have also demonstrated off-path denial of service attacks

 on timing protocols that prevent systems from synchronizing their

 clocks.

 In other words, the process of obtaining the offset necessary to

 provide a world clock creates dependencies that can be exploited.

Malhotra, et al. Expires April 25, 2019 [Page 5]

Internet-Draft On Implementing Time October 2018

5. Implementation Approaches

 Because absolute time relies on a shared interpretation of a value

 expressing time, the world clock is necessary when processing such

 values.

 For relative time, however, where only the rate of passage of time

 needs to be close enough to that of the other systems involved, there

 is no need to rely on the world clock when determining whether an

 interval has passed.

 Instead, by obtaining a value from the native clock when the interval

 has started only the native clock is necessary to determine when this

 interval ends. As the native clock does not rely on any external

 time sources, the implementation becomes resistant to the

 difficulties of coordinating with these sources.

 However, using the native clock in this way comes with a caveat.

 Since the native clock is not subject to any adjustments by timing

 protocols, it is not adjusted for the error introduced by clock

 drift. While this is likely of little consequence for short

 intervals, it may become significant for intervals that span long

 periods of time.

 Consequently, the choice of clock to be used is application-specific.

 If applications can tolerate a certain amount of clock drift or if

 the time intervals are short, implementers may prefer using the

 native clock. If the application relies on precise timing over long

 periods one has no choice but to fall back to the world clock.

6. Accessing the Native Clock on Selected Operating Systems

 In most operating systems, the standard functions to access time use

 the world clock since that is normally what users would expect. This

 section provides an overview how the native clock can be accesses on

 some common operating systems.

6.1. POSIX

 POSIX defines a system C API function which may provide native time:

 clock_gettime(), when used with a clock_id of CLOCK_MONOTONIC (when

 supported by the system). POSIX does not make a distinction between

 raw time and adjusted raw time in the definition of this function.

 Beware that, with some systems, CLOCK_MONOTONIC deliveres adjusted

 raw time and that CLOCK_MONOTONIC_RAW needs to be used as clock_id to

 get unadjusted raw time. Non-POSIX systems may provide different

 APIs.

Malhotra, et al. Expires April 25, 2019 [Page 6]

Internet-Draft On Implementing Time October 2018

6.2. Microsoft Windows

 In the Microsoft Windows operating system, native time is called

 ’Windows Time’ and can be accessed through the GetTickCount and

 GetTickCount64 API functions. The returned value is normally the

 number of milliseconds since system start. GetTickCount will return

 a 32 bit value while GetTickCount64 returns a value 64 bits wide that

 will wrap around less often.

7. Acknowledgements

 We are thankful to Sharon Goldberg and Benno Overreinder for useful

 discussions.

8. IANA Considerations

 This memo includes no request to IANA.

9. Security Considerations

 Time is a fundamental component for the security guarantees claimed

 by various applications. A system that uses a time distribution

 protocol may be affected by the security aspects of the time

 protocol. The security considerations of time protocols in general

 are discussed in [RFC7384]. This document discusses the security

 considerations with respect to implementing time values in

 applications in various sections.

10. Informative References

 [CLOCKDRIFT]

 Marouani, H. and M. Dagenais, "Internal clock drift

 estimation in computer clusters", 2008,

 <http://downloads.hindawi.com/journals/

 jcnc/2008/583162.pdf>.

 [MCBG] Malhotra, A., Cohen, I., Brakke, E., and S. Goldberg,

 "Attacking the Network Time Protocol", 2015,

 <https://eprint.iacr.org/2015/1020>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

 Housley, R., and W. Polk, "Internet X.509 Public Key

 Infrastructure Certificate and Certificate Revocation List

 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,

 <https://www.rfc-editor.org/info/rfc5280>.

Malhotra, et al. Expires April 25, 2019 [Page 7]

Internet-Draft On Implementing Time October 2018

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,

 "Network Time Protocol Version 4: Protocol and Algorithms

 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,

 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in

 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,

 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [SECNTP] Malhotra, A., Gundy, M., Varia, M., Kennedy, H., Gardner,

 J., and S. Goldberg, "The Security of NTP’s Datagram

 Protocol", 2016, <http://eprint.iacr.org/2016/1006>.

Authors’ Addresses

 Aanchal Malhotra

 Boston University

 111 Cummington Mall

 Boston 02215

 USA

 Email: aanchal4@bu.edu

 Kristof Teichel

 Physikalisch-Technische Bundesanstalt

 Bundesallee 100

 Braunschweig D-38116

 Germany

 Email: kristof.teichel@ptb.de

 Martin Hoffmann

 NLnet Labs

 Science Park 400

 Amsterdam 1098 XH

 Netherlands

 Email: martin@nlnetlabs.nl

Malhotra, et al. Expires April 25, 2019 [Page 8]

Internet-Draft On Implementing Time October 2018

 Willem Toorop

 NLnet Labs

 Science Park 400

 Amsterdam 1098 XH

 Netherlands

 Email: willem@nlnetlabs.nl

Malhotra, et al. Expires April 25, 2019 [Page 9]

