RFC 6775 Extension

P.Thubert, E. Nordmark, S. Chakrabarti, C. Perkins

IETF 103

Bangkok
Unmet expectations

• Solicited node multicast requires highly scalable L2 multicast
 IEEE does not provide it ⇒ turns everything into broadcast
 IPv6 ND appears to work with broadcast on 802.1 fabrics up to some scale ~10K nodes

• IPv6 ND requires reliable and cheap broadcast
 Radios do not provide that ⇒ conserving 802.1 properties over wireless is illusory
 RFC 4862 cannot operate as designed on wireless
 Address uniqueness is an unguaranteed side effect of entropy

• 802.11 expects proxy operation and broadcast domain separation
 802.11 provides a registration and proxy bridging at L2
 Requires the same at L3, which does not exist
 Implementations provide proprietary techniques based on snooping ⇒ widely imperfect

⇒ RFC 6775 solves the problem for DAD in one LL
⇒ This update enable establishing proxy services directly (ND for now), over a LLN, across multiple LLNs
What are the 6LoWPAN ND extensions?

Provide for draft-thubert-6lo-rfc6775-update-reqs

- **draft-ietf-6lo-rfc6775-update**
 - Simplifies the protocol (no DAR/DAC for LL, no secondary NC)
 - Enables proxy registration
- **draft-ietf-6lo-ap-nd**
 - Protects addresses against theft (Crypto ID in registration)
- **draft-ietf-6lo-backbone-router**
 - Federates 6lo meshes over a high speed backbone
 - ND proxy that mimics 802.11 association but at Layer 3
RFC 6775 Update

P. Thubert, E. Nordmark, S. Chakrabarti, C. Perkins
LP Node → 6LR → 6LBR → 6BBR

- **Radio 1 Hop**
 - RFC 6775 update
 - RS (mcast)
 - SLLA 6CIO
 - RA (unicast)

- **Radio Mesh**
 - RFC 6775 update
 - RA (m|ccast)

- **Ethernet**
 - PIO
 - MTU
 - SLLA
 - CONTEXT
 - ABRO
 - 6CIO

- **Classical ND**
 - RA (m|ccast)
 - PIO
 - MTU

- **RFC 6775 update**
 - RA (m|ccast)

- **Remote Server**
Radio 1 Hop

RFC 6775 update

Radio Mesh

RFC 6775 update

Ethernet

RFC 6775 update

Ethernet

Classical ND

DAD time out

NA (O) *

SRC = 6BBR II **
DST = NS SRC
TLLA = L6BR
TGT = LPN
UID = LPN
TID included

* Omitted in general
** link local

LP Node

6LR

6LBR

6BBR

Router/Server

路由器/服务
Current status

RFC 6775 Update

Draft-…-21
Past IESG review (based on -21)

• IANA steps
 https://www.iana.org/assignments/icmpv6-parameters/icmpv6-parameters.xhtml#icmpv6-parameters-codes-type-157-code-suffix

• Done RFC Editor disambiguations

• RFC Editor state: **RFC-EDITOR** *

 * Awaiting final RFC Editor review before AUTH48
draft-ietf-6lo-ap-nd

P.Thubert, B. Sarikaya, M Sethi, R. Struik
Unmet expectations

• First come first Serve address registration
 First registration for an address owns that address till it releases it
 The network prevents hijacking

• Source address validation
 Address must be topologically correct
 Source of the packet owns the source address

• First Hop Security only?
 Proxy ownership and routing advertisements not protected yet
Radio 1 Hop

6LN

Radio Mesh

6LR

RFC 6775 update

6LBR

AP-ND

NS (EARO(ROVR=Crypto-ID))

NA (EARO(status=Validation Requested), Nonce)

NS (EARO, CIPO*, Nonce and NDPSO**)

NA (EARO(status=0))

EDAR

* Crypto-ID Parameters Option
** NDP Signature Option
Recent changes

• Published -08

• René Struik joined as contributing author

• Updated the computation of the Crypto-ID
 Crypto-Id in EARO is a truncated hash of the node's public-key
 Digital signature (SHA-256/NIST P-256 or SHA-512/EdDSA) in
 NDPSO is executed on additional material (nonces, etc…. see
 updated section 6.2) for proof of ownership of the private key
 Uses both nonces from the 6LN and 6LR

• Removed SHA-256 for EdCSA to comply with RFC 8032.
Security properties

• We made the size of the ROVR tunable so we can get high security. 64 bits seems inappropriate.

• At the moment a joining 6LN is challenged from the 6LR
 The 6LBR MUST trust the 6LR
 A rogue 6LR may pretend that it represents a 6LN that passed the challenge
 Should we challenge all the way from the 6LBR?
 Can the Crypto-ID be used in routing protocols, how?
Questions to the group

• Should we RECOMMEND larger than 64 bits ROVR?

• Should we allow RFC 8032 divergence for SHA 256?
 This allows smaller foot print in an implementation that does both
 Shall we face resistance?

• What’s missing before WGLC?
draft-ietf-6lo-backbone-router

P. Thubert
Unmet expectations

- Scale an IOT subnet to the tens of thousands
 With device mobility (no renumbering)
 Controlled Latency and higher Reliability using a backbone

- Deterministic Address presence
 Route towards the latest location of an address
 Remove stale addresses
Recent changes

- Published -08
- Charlie Perkins joined as contributing author
- Clean up and reorg by Charlie
- Readable, ready for WGLC
Radio 1 Hop

NS (ARO)

SRC = LPNagnosis (II)
DST = 6LRagnosis (II)
TGT = LPN
SLLA = LPN
UID = LPN
TID included

RPL DAO

SRC = 6LR
DST = Parent * or Root
TGT = LPN
ROVR missing : (TID included

RPL cannot DAD for lack of ROVR

* Parent in storing mode

NS (ARO)

SRC = 6LBR
DST = 6BBR
TGT = LPN
SLLA = L6BR
UID = LPN *
TID included

* From binding state

NS lookup

NA (~O)

SRC = 6BBR
DST = NS SRC
TGT = LPN
TLLA = 6LBR
6BBR Status

• Quite Stable, no recent change
• WGLC is needed to make final progress