Discovering PREF64 in Router Advertisements

draft-prefé4folks-6man-ra-pref64-02

L. Colitti, E. Kline, J. Linkova


https://tools.ietf.org/html/draft-pref64folks-6man-ra-pref64

Use Case

How to discover NAT64 prefix for address
synthesis

e Validating stub resolvers
e IPv4 literals
o 464XLAT



Why RA Option?

All L3 Network stack config on a host in a single packet
Atomic: no state when config is incomplete

Network *is* the authoritative source of information
No additional services required

Secured by RA guard

No "trust DNS response to be able to use DNSSEC"
paradox



Option Format

8 bits 8 bits 16 bits

r——

96
—Dbits




Multiple Prefixes



Multiple Prefixes

One option specifies one prefix only

An RA might contain multiple Pref64 options

Use Case: migrating from one Pref64 to another



Multiple Prefixes Scenarios

1: Different prefixes learnt via different mechanisms
2: Multiple prefixes received in a single RA

3: Multiple prefixes received in multiple RAs (on one or
multiple interfaces)



Scenarios #1 & #2

Different prefixes learnt via different mechanisms

Recommended order

1. RFC7225 (if supported)
2. RA Option
3. RFC7050 (DNS-based discovery; widely supported)

Multiple prefixes received in a single RAs

SHOULD follow guidance in RFC7050 (use all prefixes)



Scenario #3: Multihoming

Multiple prefixes received in multiple RAs (on one or
multiple interfaces)

Prefé4 is specific to the network it's received on
Multihomed hosts need to be mPVD-aware

This is already true today



Limitations



One Prefix for All Destinations

e Workaround: use more-specific routes in network
o 10.0.0.0/8 -> 64:ff9b::10.0.0.0/104

e Support would increase implementation complexity, risk
of bugs

e Not supported by RFC7050 either



No Ability to Exclude Prefixes from Synthesis

e Not useful on an IPv6-only network
o If host gets an A record, it can't do much with it
o If app knows prefé64 and really cares about the A,
it can trivially reverse address synthesis
o Private IPv4 MUST NOT be translated with WKP
e Not supported by RFC7050 or RFC7225* either

* Theoretically you could do 0.0.0.0/1, 128.0.0.0/2, 160.0.0.0/4, ... until you hit packet size limits. Should you?



Only Supports /96 prefé4

e Other prefix lengths not [widely? at all?] implemented

e Supporting other prefix lengths would use an additional
8 bytes in RA

e Can always define another option in the future



Call for Adoption?



