
draft-tiloca-6tisch-robust-scheduling-00
Authors: Marco Tiloca

Simon Duquennoy

Gianluca Dini

6TiSCH - IETF103 - Bangkok 1

Motivation

• Cell utilization patterns are predictable in TSCH
• Even if security is used at the link layer

• An external adversary can easily:
• Derive the communication pattern of a victim node

• Selectively jam the exact cells of the victim’s schedule

• The attack is:
• Easy and efficient to perform

• Highly effective and with very low exposure

6TiSCH - IETF103 - Bangkok 2

What makes the attack easy?

• Periodicity property --- Every cell re-uses the same sequence of channels, with period (N_C x N_S)

• Usage property --- Within each period, all cells use all channels, once each

• Offset property --- All cells follow the same sequence of channels, with a certain offset

• Predictability property --- The sequence of channel is predictable, given a pair (timeslot, channel)
• Timeslots repeat periodically on a same channel
• One can compute the remaining channel hopping sub-sequence

• Attack rationale
• ASN = (s + T x N_S) ; a cell uses channel f and timeslot s on slotframe T

• Solve f = [(s + T x N_S + c) mod N_C] in c (Equation 1)

• Find the channels used by the cell in the next slotframes

• The exact ASN is not needed! One can re-number slotframes from an arbitrary one

6TiSCH - IETF103 - Bangkok 3

Attack outline

• Start the attack at a starting-slotframe t = 0

• Determine the timeslots in which the victim transmits
• Pick a channel f* at random
• Listen on f* for N_C consecutive slotframes

• Find the channels used by the victim in the next slotframes
• Solve Equation 1 in c for each found timeslot
• Now f can be computed for any t > 0 and every timeslot s

• The adversary knows the full victim schedule
• Selective jamming against the victim cells only
• Staying quiet otherwise

6TiSCH - IETF103 - Bangkok 4

Attack example

• Starting-slotframe t = 0 is slotframe T = 1

• Listen to f* = 1 for 4 slotframes

• Used in s = 1 and s= 2 of t = 0

• Used in s = 0 of t = 1

• All used timeslot are found

• Solve Equation 1 in c for each s found

• Able to derive future f from s and t

• At each slotframe t > 3, i.e. T > 4

• Derive f for each timeslot s

• Jam traffic during s over f

6TiSCH - IETF103 - Bangkok 5

Equation 1: f = [(s + t x 3 + c) mod 4]

Solution – Overview

• Prevent the attack by construction
• Alter the communication pattern of nodes at every slotframe
• The resulting used pattern must be unpredictable for the adversary

• At each slotframe T:
• All nodes pseudo-randomly permute the original schedule for T + 1

• Separate permutation of timeslot usage (optional) and channel offset usage

• All nodes locally compute the same permutation
• The resulting schedule is consistent and collision-free

• Pseudo-random number generator
• val = random(K, z) = E(K, z) - Encrypt a fresh value z with a key K

• AES-CCM-16-64-128 must be supported

6TiSCH - IETF103 - Bangkok 6

Solution – Key material

• Permutation key K_s
• Used to permute the timeslot utilization pattern
• Provided upon joining, e.g. using the 6TiSCH Join Protocol (CoJP)

• Permutation key K_c
• Used to permute the channelOffset utilization pattern
• Provided upon joining, e.g. using the 6TiSCH Join Protocol (CoJP)

• Counter z_s
• Used to permute the timeslot utilization pattern
• At the beginning of T, z_s is equal to the ASN of the first timeslot of T

• Counter z_c
• Used to permute the channelOffset utilization pattern
• At the beginning of T, z_c is computed from the ASN of the first timeslot of T

6TiSCH - IETF103 - Bangkok 7

Solution steps

• At the beginning of each slotframe, each node:
• Takes the original schedule for the next slotframe
• Performs the steps below to permute the schedule using the Fisher-Yates algorithm
• Provides the permuted schedule to TSCH, to send/receive traffic in the next slotframe

• Step 1 – Permute the timeslot utilization pattern (optional)
• N_s invocations of random(K, z)
• K = K_s ; z = z_s ;
• z_s incremented after each invocation

• Step 2 – Permute the channelOffset utilization pattern
• N_c invocations of random(K, z)
• K = K_c ; z = z_c ;
• z_c incremented after each invocation

6TiSCH - IETF103 - Bangkok 8

Key provisioning

• K_s and K_c MAY be provisioned with the minimal security framework
• The JRC provides the pledge with K_s and K_c upon joining

• Additional COSE_KeySet in the Join Response
• If two keys are present, the first key is K_s and the second key is K_c

• If one key is present, it is K_c (permute only channelOffset utilization patterns)

• Details need to be updated to the latest Join Response format
• A dedicated COSE_KeySet seems still the best option

6TiSCH - IETF103 - Bangkok 9

Summary and next steps

• Preventive approach against selective jamming
• Agnostic of the specific scheduling algorithm

• Preserve collision-free and consistent schedules

• Efficient pseudo-random shuffling of cells

• No communication overhead

• Next steps
• Get comments and feedback

• Align the text on key provisioning with the latest draft-ietf-6tisch-minimal-
security

6TiSCH - IETF103 - Bangkok 10

Thank you!

Comments/questions?

https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling

https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-scheduling

