Autoconfiguration of NOC services in ACP networks via GRASP and more

draft-eckert-anima-noc-autoconfig-00
draft-eckert-anima-grasp-dnssd-01

Toerless Eckert tte+ietf@cs.fau.de (Huawei USA)

v1.0
Summary / Status

• No update to drafts
 • Seeking feedback from DNS experts in IETF
 • Unfortunately ANIMA conflicts with DNSOP @ IETF103

• Re-summarizing idea / scope:
 • Goal: key pieces to create minimum version of RFC8368

• draft-eckert-anima-noc-autoconfig-00
 • Use-case draft: candidate normative document to build standardized, autoconfiguring model for RFC8368
 • ANI/ACP network that automatically uses NOC services
 • E.g.: for full automatic workflow ANI + SDN-controller configuring data-plane

• draft-eckert-anima-grasp-dnssd-01
 • Underlying technology to enable NOC autoconfig (and more)
 • Use GRASP as transport for DNS-SD (and some subset of other DNS)
 • More use-cases: any ASA announcing/discovering services
 • Goal: Do not reinvent DNS-SD service for ANIMA, but map it over GRASP
Problem and resolution

• ANI Pledge gets enrolled with BRSKI zero-touch
• Now what?

• We wanted to create more zero-touch “autonomic” nodes
• This draft proposes the smallest possible incremental step
 • For ANI nodes used in conjunction with existing, centrally managed network
 • Minimum standards work to make RFC8368 work better
 • RFC8366 = ANIMA stable connectivity draft: Use ACP for management from NOC
 • RFC8366 is informational, deals with all possible migration scenarios, etc. pp.
 • Does not specify any of the really good, simple automations possible
 • Those automations need standards work

• This draft is extending ANI standard framework to support RFC8366 networks
So, what do we need?

• A1: TIME
 • Node needs accurate time. Find NTP server, sync time from it.

• A2: Logging
 • Node needs to automatically syslog, so NOC knows what is going on
 • Including “I am new Pledge, enrolled but unconfigured”

• A3a: secure access of SDN-controller/operator to nodes
 • SSH, Netconf (Netconf typically on top of SSH – or TLS)
 • Automatically discover Radius/Diameter server, enable SSH/Netconf servers, allow access to node SH/Netconf VIA ACP ONLY

• A3b: Alternative or additional option (not in current draft release)
 • “Call-home” – server announces itself (e.g.: “NetConf Call Home Server”) and ACP nodes connect to it
 • Model was built for cases/networks where A3a would not work
 • Q: How does SDN controller discover nodes?
 • A: some discover of nodes needed, but this could come from Topology-discovery of ACP-nodes on RPL root – open

• Good minimum? Open to expand/change the minimum set of automated service
 • Also want to use this document as showcase for vendors to understand how to easily automatey any more services (standards based or not)
Great! How does it work?

- **draft-eckert-anima-grasp-dnssd**
 - DNS-SD service discovery across ACP via GRASP
 - GRASP allows to flood objective, this draft proposed a standard to announce/disc over DNS-SD services

- **draft-eckert-anima-noc-autoconfig**
 - Defines required services that ACP nodes (supporting this document) must support, and what to do then:
 - Syslog -> log
 - ntp -> sync time
 - Radius/Diameter -> enable SSH/Netconf
 - Call-home-server

```
[M_FLOOD, 12340815,
 h'fd89b714f3db00002000006400001', 210000,
 ["SRV.syslog", 4, 255,
  { rfcXXXX: {
   &(sender-loop-count:1) => 255,
   &(srv-element:2) => {
     &(msg-type:1) => &(describe: 0),
     &(service:2) => "syslog",
     &(instance:3) => "east-coast-primary",
     &(priority:5) => 0,
     &(weight:6) => 65535,
     &(kvpairs:7) => { "replicate" => 2 },
     &(range:8) => 2,
   }
  }
]
[O_IPv6_LOCATOR,
 h'fd89b714f3db00002000006400001', TLS12,
 514]
```
How does it compare to “normal” DNS-SD?

- Multi-hop flooding of DNS-SD has no good solution?!
 - Proxy solutions for more constrained network
- Ability to flood allows to measure hop-distance, select nearest server
 - Part of spec draft-eckert-anima-grasp-dnssd
- DNS-SD for GRASP allows kvpairs like unicast/mDNS encoding
 - Added one kvpair “replication” to indicate #servers to connect to simultaneously
 - For redundancy in services: Eg: send syslog messages to 3 best found servers
 - In other services it does not make sense:
 - Connect to always only one Radius server, switch over quickly when the server is unresponsive.
More: How about more autonomic networks?

• Most ASA will need to auto-discover each other

• Model of service-providing ASA and service-consuming ASA quite generic
 • In this model it makes a lot of sense to utilize the DNS-SD data-mode
 • Service-Name, Service-Parameters
 • Allows to build AF / ASA that are not constrained to run ONLY in ANI
 • Could equally run across other networks
 • Just need some working DNS-SD system

• Aka: ANI components are build re-useable
 • ACP, GRASP, BRSKI can be reused individually

• Relying on DNS-SD for announce/discover make ASA also more independent from ANI
 • Just DNS-SD model for discovery
 • Via GRASP when using ANI, otherwise via mDNS or unicast-DNS/other)
 • GRASP for following p2p negotiations
 • works across any infra, not only ANI
Summary:

• **draft-eckert-anima-noc-autoconfig-00**
 - Make ACP/ANI network automatically use NOC services
 - NOC services announce themselves via DNS-SD
 - ACP/ANI nodes discovery serves, autoconfigure themselves accordingly

• GRASP/ACP as flooding transport, DNS-SD message encoding.

• NTP ssh/Netconf, syslog, call-home-server? most key core services?
 - If not, happy to modify list of key services

• Should be easy to individually add more and more services specs

• **draft-eckert-anima-grasp-dnssd-01**
 - Enables NOC autoconfig
 - Enables to build ANI independent AF / ASA when relying only on DNS-SD data-model for mutual discovery of ASA (client/server) model
 - (not only option for ASA, but an interesting one!)
Thank You!