draft-ietf-bess-secure-00.txt

A. Sajassi (Cisco), A. Banerjee (Cisco), S. Thoria (Cisco), D. Carrel (Cisco), B. Weis (Cisco)

IETF 103, November 2018 Bangkok

Problem Statement

- EVPN has become prevalent solution in DC, SP, and Enterprise networks
- For DC and Enterprise applications, specially for DC Interconnect (DCI) and Enterprise connectivity over WAN, customers want secure connectivity with EVPN

Requirements

- Protection of Tenant's Layer-2 and Layer-3 data & control traffic by IPsec
- 2. Protection of Tenant's unicast and multicast data traffic by IPsec
- Using of BGP P2MP signaling for setting up P2P IPsec SAs – reducing # of message exchanges from O(N²) to O(N)
- Supporting following levels of granularity for IPsec SAs
- 5. Supporting single policy and DH group as well as multiple policies and DH groups

Requirements (2)

- Supporting following levels of granularity of IPsec SAs
 - a) Per PE: A single IPsec tunnel between a pair of PEs to be used for all tenants' traffic supported by the pair of PEs.
 - b) Per tenant: A single IPsec tunnel per tenant per pair of PEs.
 - c) Per subnet: A single IPsec tunnel per subnet (e.g., per VLAN) of a tenant on a pair of PEs.
 - d) Per IP address: A single IPsec tunnel per pair of IP addresses of a tenant on a pair of PEs.
 - e) Per MAC address: A single IPsec tunnel per pair of MAC addresses of a tenant on a pair of PEs

Solution Overview

- Secure control channel between each PE and the RR (e.g., using existing scheme such as IKv2)
 - Setup BGP session over this secure tunnel
- Use this secured BGP channel for P2MP signaling to establish P2P IPsec SAs
 - No need for P2P signaling to establish P2P SA
 - Reducing # of msg exchanges from O(N^2) to O(N)
 - Each PE advertises to other PEs the info needed for establishing P2P SAs

Solution Overview (2)

- When a PE device first comes up and wants to setup an IPsec SA between itself and each of the interested remote PEs, it generates a DH pair for each of its intended IPsec SA using an algorithm defined in the IKEv2 Diffie-Hellman Group Transform IDs [IKEv2-IANA].
- The originating PE distributes DH public value along with a nonce (using IPsec Tunnel TLV in Tunnel Encapsulation Attribute) to other remote PEs via the RR.
- Each receiving PE uses this DH public number and the corresponding nonce in creation of IPsec SA pair to the originating PE

Encapsulations

- Two types of IPSec encapsulations for our applications
 - 1. IPsec encap in transport mode without outer UDP header
 - 2. IPsec encap in transport mode with outer UDP header per [RFC3948]
 - Needed to NAT traversal or per flow LB using UDP header

VxLAN Encap with ESP

MAC Header -+-+-+-+-+-+-+-+-+-+ Eth Type = IPv4/IPv6IP Header Protocol = UDPUDP Header Dest Port = VxLAN VxLAN Header Inner MAC Header Inner Eth Payload CRC

MAC Header | Eth Type = IPv4/IPv6 IP Header Protocol = ESPESP Header UDP Header Dest Port = VxLAN VxLAN Header Inner MAC Header Inner Eth Payload ESP Trailer (NP=UDP) CRC

Figure 3: VxLAN Encapsulation within ESP

VxLAN Encap with ESP within UDP

MAC Header Eth Type = IPv4/IPv6IP Header Protocol = UDP UDP Header Dest Port = VxLAN VxLAN Header Inner MAC Header Inner Eth Payload CRC

MAC Header | Eth Type = IPv4/IPv6IP Header Protocol = UDP UDP Header Dest Port = 4500(ESP)ESP Header UDP Header | Dest Port = VxLAN VxLAN Header Inner MAC Header Inner Eth Payload ESP Trailer (NP=UDP) CRC

Figure 4: VxLAN Encapsulation within ESP Within UDP

+-+-+-+-+-+-+-+-+-+-+		IP-VPN	MVPN	VPLS
per PE	IPv4/v6 route	IPv4/v6 route	IPv4/v6 rte	IPv4/v6
per tenant	IMET (or new)	lpbk (or new)	I-PMSI	N/A
per subnet	IMET	N/A	N/A	VPLS AD
	EVPN RT2/RT5	VPN IP rt	*,G or S,G	N/A
	EVPN RT2	N/A	N/A	N/A

Min set

Minimum Set

ID, [N(INITIAL_CONTACT),] KE, Ni; where

ID payload is defined in section 3.5 of [RFC7296] N (Notify) Payload in section 3.10 of [RFC7296] KE (Key Exchange) payload in section 3.4 of [RFC7296] Ni (Nonce) payload in section 3.9 of [RFC7296]

KE payload contains the DH public number and also identifies which DH

Single Policy

ID, [N(INITIAL_CONTACT), SA, KE, Ni

SA (Security Association) payload in section 3.3 of [RFC7296]

Policy List and DH group List

ID, [N(INITIAL_CONTACT), [SA], [KE], [Ni]

[SA] list of IPsec policies (i.e., list of SA payloads)
[KE] list of KE payloads

ESP Notify Sub-TLV

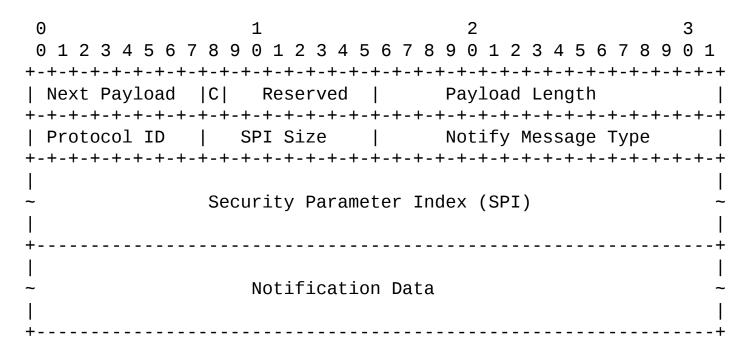


Figure 5: Notify Payload Format

ESP Key Exchange Sub-TLV

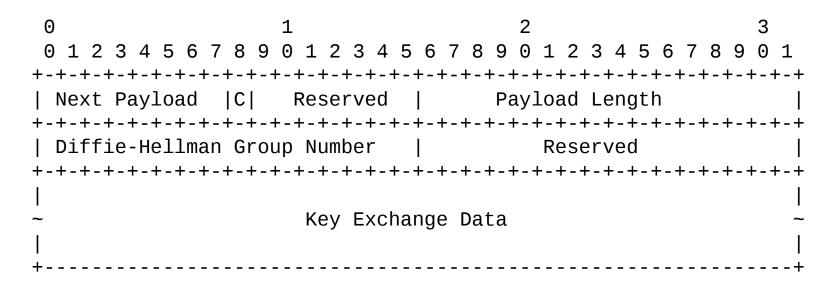


Figure 6: Key Exchange Payload Format

ESP Nonce Sub-TLV

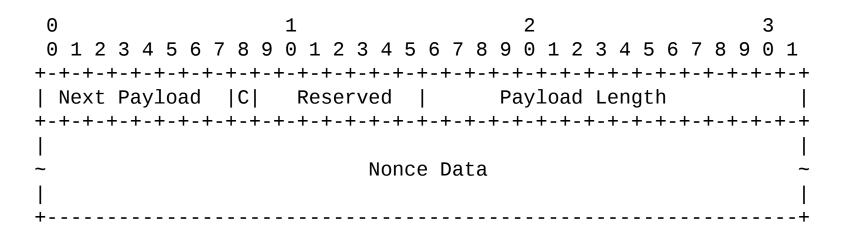


Figure 7: Nonce Payload Format

ESP Proposal Sub-TLV



Figure 8: Security Association Payload

ESP Proposal Variables

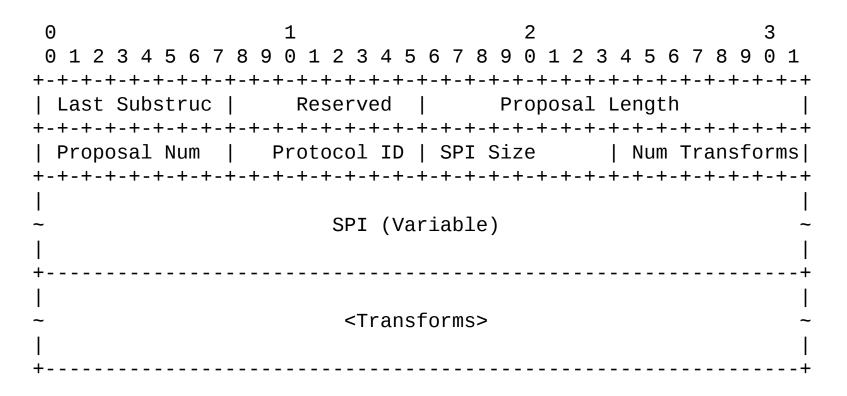


Figure 9: Proposal Substructure

Next Step

- Solicit input
- Request for WG adoption @ next IETF

THANK YOU!