
BIER-TE-ARCH
IETF103 Bangkok

draft-ietf-bier-te-arch-01

Toerless Eckert (tte@cs.fau.de)

Gregory Cauchie (GCAUCHIE@bouyguestelecom.fr)

Wolfgang Braun (wolfgang.braun@uni-tuebingen.de)

Michael Menth (menth@uni-tuebingen.de)

1

mailto:tte@cs.fau.de)
mailto:GCAUCHIE@bouyguestelecom.fr)
mailto:wolfgang.braun@uni-tuebingen.de)
mailto:menth@uni-tuebingen.de

Since IETF101
• draft-ietf-bier-te-arch-00.txt – 01.txt

• Reworked details about forwarding plane, comparison thereof with BIER
• Goal is make it clear what if any differences there are to BIER to encourage HW forwarding

support for BIER-TE.
• Differences hopefully so small that all BIER capable HW can also do BIER-TE

• Document still intends to target experimental because BIER-TE requires control plane
• Explicit, non-standardized establishment of TE BIFT entries fine for experiments but likely insufficient for

standard deployments

• Emphasized that RFC8926 can be used unchanged (from feedback in IEF101)
• Just requires configuration, e.g.: per subdomain whether BIFT is operating BIER or BIER-TE

• Additional drafts for encap (not currently refreshed) should be considered as optional
enhancements to be vetted independently (not required by BIER-TE)

• Indicate in header (bit) whether BIER/BIER-TE is expected (diagnostics)

• Add packet sequence number field for DetNet and similar. Independent of BIER/BIER-TE

2

3.6 Requirements
• New section with MUST/SHOULD against forwarding plane to comply

• Similarily to BIER architecture where ECMP is optional, mandate with MUST the most core BIER-TE forwarding
functions, SHOULD/MAY the others

• MUST
• Configure subdomain for BIER-TE forwarding
• Bits indicating no or one adjacency: forward connected, forward routed or local_decap

• Forward_routed could be degraded, but for scalability we think its very important

• Aka: adjacency is encap into another label to send to remote BIER-TE router

• SHOULD
• DNR (Do Not Reset) flag on adjacencies. To support L3 rings with just one bit per direction.

• MAY
• ECMP adjacencies.

• Only MAY (less important than in BIER), because feeling is that with TE you want to manage amount of
traffic on paths more explicit, and doing that with ECMP is more difficult than explicit, non-ECMP paths.

• More than one adjacency on a bit. Flood from hub to multiple spoke adjacencies. Good for
broadcast TV style traffic, also sounds like on the bottom of the priority list.

3

3.6 Pseudocode

• Same pseudocode than BIER
• Just commented out [1]

• Doing [1] and [2] together in BIER-
TE does not work

• You want to reset the bit B you are
forwarding on in [2], so

• F-BM = ~ (2 << B)

• But then [1] would reset all the
bits.

• Simple solution: Just do not do [1]
when BIFT uses BIER-TE mode

4

BIER pseudocode adopted to BIER-TE:

void ForwardBitMaskPacket_withTE (Packet)

{

 SI=GetPacketSI(Packet);

 Offset=SI*BitStringLength;

 for (Index = GetFirstBitPosition(Packet->BitString); Index ;

 Index = GetNextBitPosition(Packet->BitString, Index)) {

 F-BM = BIFT[Index+Offset]->F-BM;

 if (!F-BM) continue;

 BFR-NBR = BIFT[Index+Offset]->BFR-NBR;

 PacketCopy = Copy(Packet);

 PacketCopy->BitString &= F-BM; [2]

 PacketSend(PacketCopy, BFR-NBR);

 // The following must not be done for BIER-TE:

 // Packet->BitString &= ~F-BM; [1]

 }

}

3.6 Pseudocode

• Simplified original pseudocode from
-00 version

• Removes use of FBM
• Implementations do not need to

provide FBM for BIER-TE, that’s just a
choice if commin HW for BIER/BIER-TE
makes that beneficial

• Only need to reset bit of adjacency
itself (unless DNR set) [1]

• Also shows handling of the different
adjacency types

• No equivalent level of detail in BIER
arch RFC pseudocode, but hopefully
useful.

5

void ForwardBitMaskPacket_withTE (Packet) {

 SI=GetPacketSI(Packet);

 Offset=SI*BitStringLength;

 AdjacentBitstring = Packet->BitString &= ~AdjacentBits[SI];

 Packet->BitString &= AdjacentBits[SI];

 for (Index = GetFirstBitPosition(AdjacentBits); Index ;

 Index = GetNextBitPosition(AdjacentBits, Index)) {

 foreach adjacency BIFT[Index+Offset] {

 if(adjacency == ECMP(ListOfAdjacencies, seed)) {

 I = ECMP_hash(sizeof(ListOfAdjacencies),

 Packet->Entropy, seed);

 adjacency = ListOfAdjacencies[I]; }

 PacketCopy = Copy(Packet);

 switch(adjacency) {

 case forward_connected(interface,neighbor,DNR):

 if(DNR)

 PacketCopy->BitString |= 2<<(Index-1); [1]

 SendToL2Unicast(PacketCopy,interface,neighbor);

 case forward_routed([VRF],neighbor):

 SendToL3(PacketCopy,[VRF,]l3-neighbor);

 case local_decap([VRF],neighbor):

 DecapBierHeader(PacketCopy);

 PassTo(PacketCopy,[VRF,]Packet->NextProto); }

} } }

What else ?

• Added node how BIER/BIER-TE might best be understood by someone
coming from SR

• BIER are 1 bit equivalent of destination/Node SIDs
• BIER-TE could be seen as doing for multicast what an SR SID-stack would do to

do explicit routing. Every hop SID is just a bit.

• Purely opportunistic text
• Hope it is helpfull for people coming from SR looking at BIER
• If not, will just remove (1 paragraph).

6

THE END
Credit rolls…

Oh wait, one more thing...

And now for something completely different

7

While trying to figure out BIFT for BIER-
TE

• Independent of BIER-TE, but BIER thought

• Do BIER BIFT implementations have to accept arbitrary
F-BM values ?

• Not currently ? There is no API from IETF (YANG,..) that
allows to program BIFT/F-BM directly ?!

• BIFT/F-BM only programmed internally from BIRT ?!

• Arbitrary F-BM (not derived from BIRT) might not be
possible/desirable to support in optimized BIFT

• Could easily create “funny” FBM that stretch platforms
• E.g.: BIRT derived BIFT can be parallelized

• Egres linecards would only need to look/examine bits with NBRs
on the interface

• Funny F-BMs would not allow to do this. ”Last” linecard may
need to still evaluate impact of all preceding bits.

• Define in any BIER rev constraints on required F-BM to
ensure platform optimizations can be done without
running into future surprises ?

• When BIFT ae exposed directly to programming 8

BFER1

BFER2

BFER3

BFR1

GEEKOMETER

buzzwords
inch2

linecard1

linecard2

BFR2

BFR3

BFER1,2,3 are bit 1,2,3.
On BFR1:
 BIFT[1]->F-BM = 011 BIFT[1]->BFR-NBR = 2
 BIFT[2]->F-BM = 110 BIFT[2]->BFR-NBR = 3
 BIFT[3]->F-BM = 100 BIFT[3]->BFR-NBR = 3

	Slide 1
	Since IETF101
	3.6 Requirements
	3.6 Pseudocode
	3.6 Pseudocode
	What else ?
	THE END
	While trying to figure out BIFT for BIER-TE

