Multicast/BIER As A Service

IETF 103, Bangkok

Zhaohui (Jeffrey) Zhang, Juniper
Eric Rosen, Juniper
Liang Geng, China Mobile
Current Multicast Use Cases

• Enterprise Applications
 • FSI Financial Data Distribution
• Service Provider
 • Live TV/video distribution inside a provider itself
 • Customer Multicast/BUM for VPN/EVPN
 • Internet Multicast is minimum
 • Mbone is mostly in Internet2, w/o much real usage
Multicast As A Service?

• Only in the form of MVPN or EVPN BUM
• Other multicast transport by SPs virtually non-existent
 • E.g., can an SP provide multicast transport for a non-VPN 3rd party?
 • E.g. for a content provider who does not have its own all-reach network?
 • Lack of confidence/interest on service provider side
 • Complexity and scalability concerns – signaling and per-flow state
 • Profitability concerns
 • Lots of multicast flows are low volume
 • For high volume (e.g. video) traffic, how to bill?
• Lack of interest on customer side
 • Lack of provider support
 • Content providers resorted to p2p/p2sp (peer to peer or peer to server/peer)
• Chicken & Egg problem
BIER Enables MaaS

• BIER Removes per-flow state
 • Significantly simplifies multicast control plane
 • Significantly improves scalabilities

• BIER can help break the chicken & egg vicious circle
 • It can encourage service providers to provide multicast transport services
 • In addition to using BIER for its own MVPN/EVPN services
 • It can encourage content providers to use multicast for delivery

• Potential use cases for MaaS
 • CDN (large scale high definition live broadcast or content pushing)
 • Any large scale high rate data distribution
Current Common BIER Use Cases

• Current use cases have entire BIER sub-domain (BFERs and BFRs) under the same operator
 • BIER as provider/underlay tunnels for MVPN/EVPN-BUM
 • End-to-end multicast flow in overlay
 • BIER sub-domain as part of end-to-end multicast tree
 • E.g. PIM signaling as “BIER Multicast Flow Overlay”
 • Similar to “mLDP Inband Signaling”
 • An end-to-end multicast tree could have multiple unrelated BIER sub-domains

• Most likely IGP is the BIER signaling protocol
BIER Enabled MaaS

• BFERs/BFRs may be under separate operators
 • BFERs owned by a customer
 • Service providers don’t have to worry about per-flow state at all
 • BFRs do need to know how to route to customer BFERs

• An operator may provide BIER based transport for many customers
 • Independently for each customer

• Mainly BGP signaling
 • OTT tunneling very common
 • IGP signaling may be used in an area/AS where most devices support BIER
A Simple Example

- Single Operator (e.g. a content provider’s own all-reach network)
- BFERs all over the places
 - Starting w/o BFRs
 - Essentially Ingress Replication
 - Gradually add BFRs at strategic points
 - E.g. Turn on BIER on ASBR23 & ASBR24
- BGP based BIER signaling
 - draft-ietf-bier-idr-extensions
- Multi-AS but (initially) no segmentation
 - Either have fewer than 256 BFERs or multiple sets are used
A Couple of Details

- In the previous slide, BFER11’s shortest path to BFER21 is through ASBR21, which does not support BIER, while BFER23 does
 - For AS100 to send BIER traffic to ASBR23:
 - Only ASBR23 should re-advertise BFER21’s BIER info
 - Incongruent unicast/multicast path

- Preventing tunneling to BFERs directly
 - Tunnel Encap Attribute: attached by an BFER, updated by each BFR that changes BGP Next Hop, and used as the BIER neighbor to replicate traffic to
 - BFER42 uses its own BIER prefix as tunnel destination address
 - ASBR24 changes it to its own BIER prefix; ASBR23 changes again
 - For BFER11 to reach BFER42, it tunnels to ASBR23, who then tunnels to ASBR24, who then tunnels to BFER42
Turn on BIER inside an AS/Area

• In the previous slide, BIER traffic are tunneled between a few strategically placed BFRs
 • BFER11 tunnels (Ingress Replicates) to BFER12/BFER13/ASBR1
• If enough routers in AS100 supports BIER, AS100 can run BIER internally
 • The entire network (across ASes) is still a single sub-domain
 • With mixed IGP and BGP signaling for BIER
 • https://tools.ietf.org/html/draft-zwzw-bier-prefix-redistribute used to redistribute BIER info between IGP and BGP
 • BFER11/BFER12/BFER13’s BIER Prefixes and BFR-IDs are re-advertised into BGP by ASBR1
 • Other BFERs' BIER prefixes and BFR-IDs are re-advertised into IGP by ASBR1
 • This does require redistribute BFER prefixes into IGP
Segmentation

• If the number of BFERs is very large, segmentation can be used
 • E.g. each AS/area is an independent BIER sub-domain
 • A segmentation point maintains xPMSI (or PIM) state, decapsulate BIER header in the upstream sub-domain and forward to a downstream sub-domain (label switch or PIM based forwarding) with a new BIER header
 • Use Route Targets or policy to restrict BIER info to each sub-domain

• This is reasonable for this single operator case

• If a deployment started with fewer PEs w/o segmentation, segmentation can be introduced incrementally
 • Add a BFR as or convert an existing BFR to a segmentation point
 • Make sure it does not re-advertise BIER information between two sub-domains
 • Make sure BFRs/BFERs in a sub-domain only exchange BIER information among themselves (including the segmentation points)
Multi-Operator Case

• What if AS200 in the earlier simpler example does not belong to the content provider that owns the BFERs?
• With BGP based signaling, it still works
• AS200 is now providing MaaS
 • BIER as a Service (BaaS) to be more accurate
BIER as a Service

• Provided by AS200
• BIER level; no BFER, hence no customer (s,g) state
 • What if segmentation is needed?
 • xPMSI state maintained on segmentation points
 • Inclusive or some (s/*/g) Selective PMSI
 • Optionally, a customer equipment (physical or virtual) can be tethered as segmentation point

• What if different customers have conflicts in subdomain-id and BFR-id?
 • Use per-customer RD with BIER Prefix
 • BIFT is now per <RD, subdomain-id, bsl, set>; or a sub-domain is now per <RD, subdomain-id>
 • What if we need to redistribute BIER info between BGP and IGP?
 • In IGP signaling, use a BIER Domain sub-TLV to encode the RD and BIER Info

• A BFR needs to scale on number of BIFTs
 • E.g., 256 BIFTs, each with 256 entries (64k routes in total)
MaaS Control & Billing

• A provider can have policies to control:
 • Whether/how it re-advertises certain BIER prefixes, e.g. to certain peers only
 • Whether it advertises its own BIER prefixes (with a certain RD)
 • i.e. whether it becomes a BFR for a particular customer
 • This controls the number of BIFTs that it instantiates

• A provider can count traffic and bill accordingly:
 • At an entry point: incoming BIER packets for each BIER label that it advertises
 • At an exit point: outgoing packets for each BIER label that it imposes
Summary

• Scalable MaaS enabled by BIER
• “BIER Transport Service” to be more accurate
 • Leave BFER (and customer specific state) to customers
 • Existing MVPN/EVPN with BIER can provide traditional multicast service
• Incrementally expandable
• With policy control and billing