Updates for the Back-to-back Frame Benchmark

draft-morton-bmwg-b2b-frame-03 Al Morton

Background

- RFC 2544 specifies the method to measure the Back-to-Back Frame Benchmark
- Defined in RFC 1242 Longest burst of frames a DUT can process without loss
 - "Tests of this parameter are intended to determine the extent of data buffering in the device."
- 2544: Very concise Objective, Procedure, and Reporting
- OPNFV Tests (2017) indicated areas for refinement

Benchmark Calculations

For each Frame size, calculate the following summary statistics for Back-to-back Frame values over the N tests:

- o Average (Benchmark) o Minimum
- o Maximum o Standard Deviation

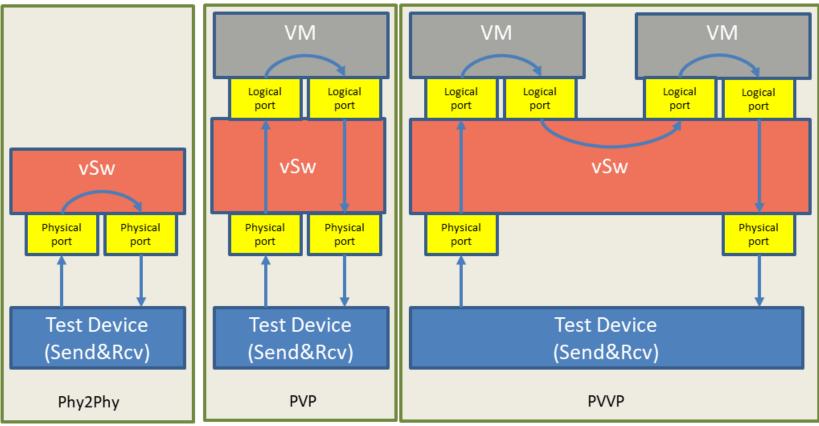
Further, calculate the Implied DUT Buffer Time and the Corrected DUT Buffer Time in seconds, as follows:

Implied DUT Buffer Time =

Average num of Back-to-back Frames / Max Theoretical Frame Rate

Corrected DUT Buffer Time =

Measured Throughput Implied DUT Buffer Time * -----


Max Theoretical Frame Rate

Improvements in 03

- Search Algorithms
 - Resolved Several Open Discussion Points
- Reference to the OPNFV VSPERF results presented at IETF-102
 - Buffers are key to absorbing Transient Interrupts
 without Loss
- Reference to ETSI GS NFV-TST 009
 - Binary Search and Binary Search with Loss Verification
 - MUST use one of the Algorithms above

Previous Tests with OVS vSwitch

No Transients | Observed Transients in Scenarios w/VM

Tests with SR IOV

Testpmd

vNIC

) / D	4	Iter	Date	Time	Rate	rx_fps	lost	loss %ge	Duration	
VM		1	10/4/2018	00:39.8	100	19681502	57919685	14.827	17	
		2	10/4/2018	00:56.6	100	19621327	61427257	15.725	17	
NIC	vNIC	3	10/4/2018	01:06.7	50	19495074	10706	0.005	10	
TT		4	10/4/2018	01:16.9	50	19490325	0	0	10	
		5	10/4/2018	01:28.4	75	19639161	67184396	22.931	12	
		6	10/4/2018	01:41.3	75	19641298	43835848	14.961	13	
bypass	bypass	7	10/4/2018	01:51.8	62.5	19699001	38454729	15.75	10	
		8	10/4/2018	02:02.1	62.5	19615272	46021999	18.851	11	
Physical port	Physical	9	10/4/2018	02:12.2	56.25	19671347	22516545	10.247	10	
	port	10	10/4/2018	02:22.4	56.25	19697345	22528836	10.252	10	
		11	10/4/2018	02:32.5	53.125	19611975	10401037	5.012	10	
		12	10/4/2018	02:42.6	53.125	19682392	10302749	4.964	10	
Test Device (Send&Rcv)		13	10/4/2018	02:52.8	51.562	19697436	4318670	2.144	10	
		14	10/4/2018	03:02.9	51.562	19707651	4212109	2.091	10	
		15	10/4/2018	03:13.0	50.781	19701824	1147274	0.578	11	
Bypass		16	10/4/2018	03:23.1	50.781	19620899	1206844	0.608	10	
		17	10/4/2018	03:33.3	50.391	19636419	0	0	10	THPT

Greatly Transient Frequency (this is the only one, above)

Discussion of SR IOV Test

- Conjecture about the VM processes attracting transients/losses seems to be wrong!
- However, the SR-IOV test config:
 - Testpmd configured with large Tx and Rx Buffers!
 - removes the ovs-dpdk vswitch processes
 - removes the logical interfaces between the VM and ovs-dpdk
 - replaces os.path.join(RTE_TARGET, 'kmod/igb_uio.ko') with 'vfio-pci' in 02_vswitch.conf

Next Steps

• Proposal/ASK:

- WG Adoption of this draft

• Please Read and send your Review to the list

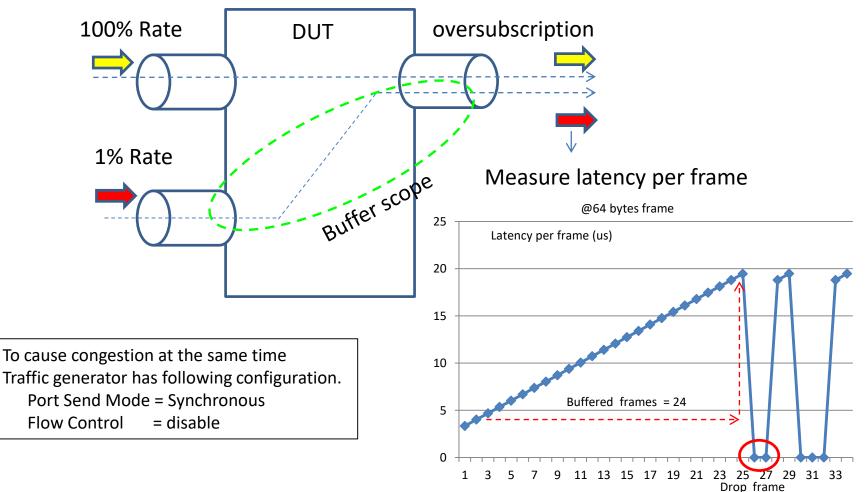
BACKUP

Improvements in 02

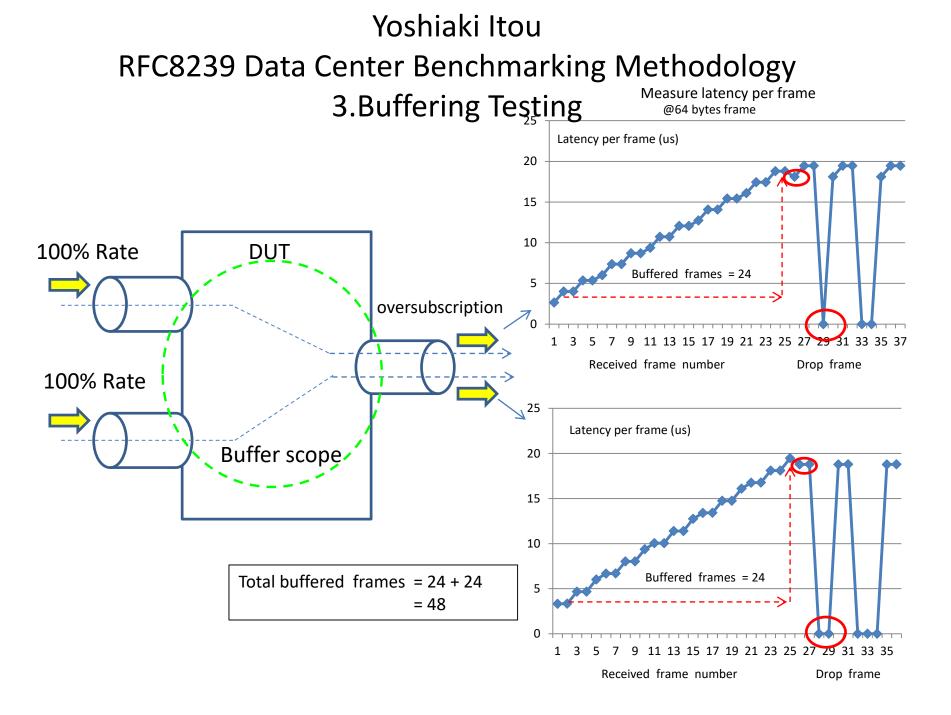
- Discussion with Yoshiaki Itou
- Clarified text describing *what* quantities are calculated:
 - Explain "Implied DUT buffer time"
 - Describe what phenomenon the correction factor accounts for
- Potential Benefit of using the Correction factor.
- Clarified Scope: does not apply to RFC 8239

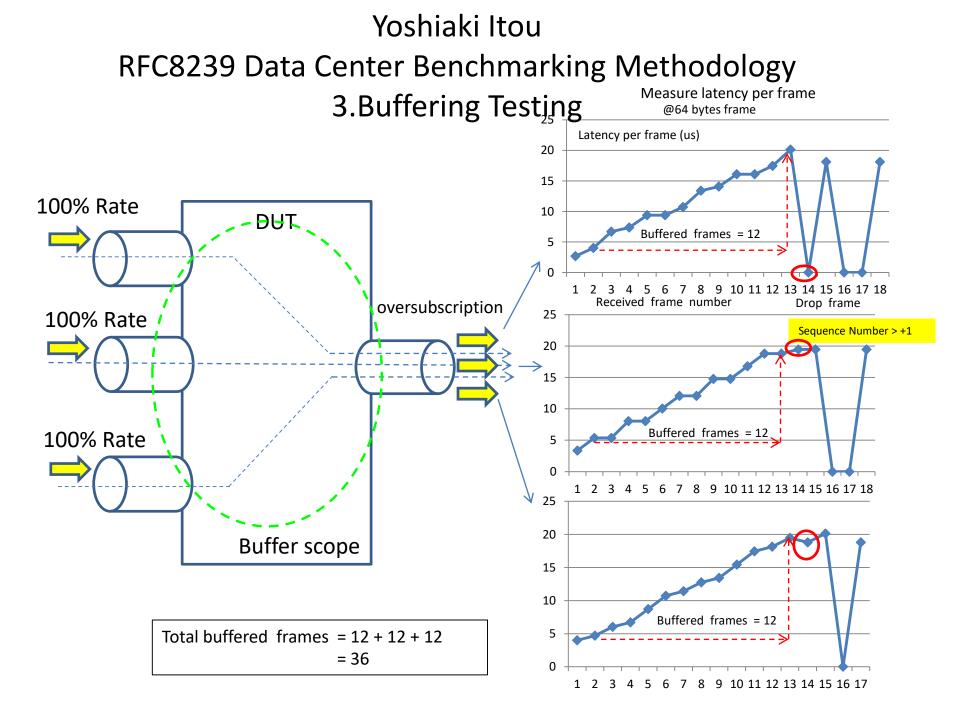
Questions for BMWG Discussion

@@@@ Should a particular search algorithm be included?


– Yes

- @@@@ Should the search include trial repetition whenever frame loss is observed, to avoid the effects of background loss (unrelated to buffer overflow)?
 - Yes, see OPNFV Hackfest Plugfest results (2018)


Procedure*


- List of Frame Sizes selected from TPUT tests
- Tests are composed of Repeated Trials
- For Each Frame size, a Trial requires sending a burst length counting forwarded frames
- Trials seek the longest burst length with 0 loss
- Test outcome is the burst length
- Tests are Repeated (N times), burst lengths are Averaged
- Average length is the Benchmark

Yoshiaki Itou RFC8239 Data Center Benchmarking Methodology 3.Buffering Testing

Received frame number

Reporting

If the tester operates using a maximum burst length in frames, then this maximum length SHOULD be reported.

+	+	+	+	-
Frame Size,	Ave B2B	Min,Max,StdDev	Corrected Buff	
octets	Length, frames		Time, Sec	
' 64 +	26000	' 25500,27000,20 +	0.00004	F

Back-to-Back Frame Results

Static and configuration parameters:

Number of test repetitions, N

Minimum Step Size (during searches), in frames.

A small area for clarification

RFC 2544 Section 26.4 says:

The back-to-back value is the number of frames in the longest burst that the DUT will handle without the loss of any frames. The trial length MUST be at least 2 seconds and <u>SHOULD be repeated at least 50</u> times with the average of the recorded values being reported.

@@@@ What should be repeated? Trial outcomes are loss or no-loss for a given burst length. Repeating the search for longest burst makes more sense...

BACKUP

Updates in 01

- Clarified text describing *what* is measured
 - Knowledge of approximate buffer storage size (in time or bytes) may be useful to estimate whether frame losses will occur if DUT forwarding is temporarily suspended in a production deployment, due to an unexpected interruption of frame processing (an interruption of duration greater than the estimated buffer would certainly cause lost frames).
- Potential Benefit of using the Correction factor.

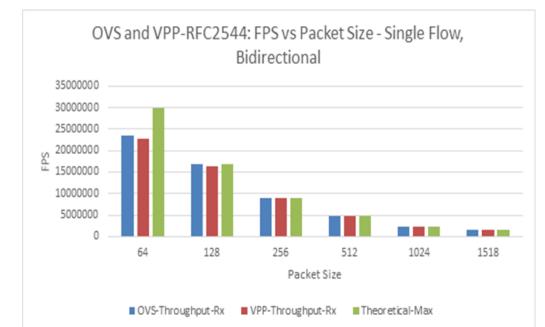
Recent Tests @VSPERF

- Presented at IETF-99
- [OPNFV-2017]

https://wiki.opnfv.org/download/attachments/10 293193/VSPERF-Dataplane-Perf-Cap-Bench.pptx?api=v2

• [VSPERF-b2b]

<u>https://wiki.opnfv.org/display/vsperf/Traffic+Gen</u> <u>erator+Testing#TrafficGeneratorTesting-</u> <u>AppendixB:Back2BackTestingTimeSeries(fromCI)</u>


Several Notable Aspects of the results:

- 1. Back-to-back Frame <u>Benchmark was very consistent</u> for some fixed frame sizes, and somewhat variable for others.
- 2. The Back-to-back Frame length reported for large frame sizes was <u>unexpectedly long</u>, and no explanation or measurement limit condition was indicated.
- 3. Calculation of the extent of buffer time in the DUT helped <u>explain the results with all frame sizes</u> (some frame sizes cannot exceed the frame header processing rate of the DUT, and therefore no buffering occurs).
- 4. It was observed that the <u>actual buffer time in the DUT could be</u> <u>estimated</u> using results from the Throughput tests conducted according to Section 26.1 of [RFC2544].

Throughput test results from [RFC2544] can be <u>used to reduce</u> the number of Frame Sizes tested.

Expanding the B2B Frames Method

- Pre-requisite Tests: RFC 2544 Throughput
 - Test setup and configuration must MATCH
 - Recommended Frame Sizes; MUST be zero-loss
 - Reduce Frame size set for B2B (e.g., 64 and 128)

[OPNFV-2017]

Title

(continued)