2017-01-09: CBOR WG

* Concise Binary Object Representation
Maintenance and Extensions

1. Formal process: Take RFC 7049 to [ETF STD level
(October 2018 milestone)

2. Standardize CDDL as a data definition language
(May 2018 milestone)

3. (Maybe define a few more CBOR tags, as needed.)

CDDL

Henk Birkholz, Christoph Vigano, ...
draft-ietf-cbor-cddl

Changes since IETF102

e (Ob:

* Move Appendix H (Examples) to Appendix A (fill
remaining gap)

* Align some terminology
* g/can produce/matches/g

* Explain the non-deterministic order of the map
matching rules (3.5.3)

* Other editorial (some clarifications), fix typos

Comments after WGLC

* Kevin Braun: Representation Variants not covered
(2018-08-30) — CDDL anticipates CBORDbis a bit
-> address with more technical clarification to
2.2.3. Representation Types”

* Kevin Braun: (Question about map matching), asks
about matching algorithm
But that is In 3.5.3. Non-deterministic order
-> ? (maybe just clarify more)

|ANA guestions

* (There is one IANA registry: control operators)
Clearly a new registry page.
New category, or under “Concise Binary Object
Representation (CBOR)™?

e Should the registry be ordered by name, alphabetically?

 Pro: easier to find whether name Is taken
(search functions in browsers are hard to use)

* Con: Can’t have grouping of related operators, e.g., .ne .eg
.ge .It .le .gt, which would naturally result from
chronological order

* Bikeshed!

SECDIR review

Chris Lonvick:

* Reference RFC 3552 while talking about security
considerations of protocols using CDDL in their
specifications

* Do that as a normative reference (does not hurt)

 Add a normative reference to COSE because
COSE references CDDL (?, the present presenter
thinks that would be wrong)

GENART review

* Ines Robles: (many good editorial comments,
including one quite embarrassing one, and:)

* (3) Should 10..0 have a meaning (maybe 0..10)?

1.0 Plan

Submit -06 on 2018-11-13
IESG Telechat on 2018-11-21

React to IESG comments over Thanksgiving

Declare it's "May 2018".

Peeking post-1.0

* SUIT people tell us they’d now really like:
* Import function (here: for COSE)
 Namespace control (related to import)
* At some point, a module registry may make sense

* (For more ideas, see also IETF102 slides)

CBOR (RFC 7049) bis

Concise Binary Object Representation
Carsten Bormann, 2018-07-17

10

Take CBOR to STD

Do not: futz around

Do.

Document interoperability

Make needed improvements in specification quality
* At least fix the errata :-)

Check: Are all tags implemented interoperably?

11

Take CBOR to STD

Process as defined by RFC 6410:

* Independent interoperable implementations v/
* NO errata (oops) ¢ In draft

* NO unused features |_|

* (if patented: licensing process) [N/A]

12

Implementations

e Parsing/generating CBOR
easier than interfacing with
application

* Minimal implementation:
822 bytes of ARM code

* Different integration models,
different languages

* > 50 iImplementations

JavaScript

JavaScript implementations are becoming
available both for in-browser use and for
node.js.

Browser

A CBOR obiect can be installed via

bower install cbor and used asan
AMD module or global object in the browser
e.g. in combination with Websockets...

View details »

node.js

... and the server side for that might be
written usina node.is: install via:

npm install cbor

View details »

PHP

API:
\CBOR\CBOREncoder: : encode($target)

Lua

Lua-cbor is a pure Lua implementation of
CBOR for Lua 5.1—5.3, which utilizes struct
packing and bitwise operations if available:

View details »

Python

Install a hiah-speed implementation via pypi:
pip install cbor

View details »
Flynn's' simple API is inspired by existing
Python serialisation modules like json and
pickle:

View details »

Perl

Install a comprehensive implementation
tailored to Perl's many features via:
cpan CBOR: :XS

You'll like the performance data...

and
\CBOR\CBOREncoder: :decode($encoded_d View details »

View details »

Go

An early Go implementation that feels like the
JSON library:

View details »
Another, more full-grown Go implementation:
View details »

Most recently, a comprehensive, high-
performance implementation has become
available as part of a larger set of data
representation format en- and decoders:

View details »

Rust

A Rust implementation is available that works
with Cargo and is on crates.io:

View details »

Another Rust implementation has also
become available recently on crates.io:

View details »

. http://cbor.io

Ruby

A high-speed implementation has been
derived from the MessagePack
implementation for Ruby. Installation:
gem install cbor

View details »

Ruby bindinas for libcbor are now available.
Installation: gem install libcbor

View details »

Erlang, Elixir

cbor-erlang is a recent implementation in
Erlang:

View details »

An older Elixir implementation is also
available:

expm spec excbor --format scm | sh

Or look at the source:

View details »

Haskell

Now on hackage:

View details »

C#, Java

A rather comprehensive implementation that
addresses arbitrary precision arithmetic is
available in both a C# and a Java version.

View details »

Java

A Java implementation as part of the popular
Jackson JSON library is at:

View Details »

A Java 7 implementation focusing on test
coverage and a clean separation of model,
encoder and decoder is at:

View Details »

JACOB, a small CBOR encoder and decoder
implemented in plain Java is at:

View Details »

C,C++

A CBOR implementation in C is part of the
RIOT operating system for constrained
nodes:

View Details »

A C implementation for highly constrained
nodes, which achieves a full CBOR decoder
in 880 bytes of ARM code (and now also
includes an encoder), has recently become
available.

View Details »
A basic C++ implementation is also available:
View Details »

libcbor provides a fully-fledged C99
implementation, including streaming and
incremental processing functionality:

View details »

TinyCBOR is Intel's industrial strength C/C++
implementation of CBOR, as used in the
loTivity framework:

View details »

D

A compact D implementation with a Dub
package:

View Details »

Changes in -03

o Editorial: Use "argument” for the value resulting
from additional information + 1, 2, 4, 8 bytes

* (Many other editorial, e.g., remove “data model”
duplication)

« MUST NOT rely on ordering of items in map

14

Changes in -04 (1)

Explain Ob/0Ox notation for byte strings some more
Reference |[EEE 754 (duuh)

Remove UBJSON from Appendix E
(has completely changed, no need to track this here, and
it likely will change again)

Explain that representation variants are not visible at data
model level

Be more specific for Tag 1 (Thanks, Laurence),
but there is still continuing discussion on issue #35

Specity preterred serialization, specifically for floating point

15

—04: map key equivalence

 Make it clear that map key equivalence is up to the
application

* Define a base equivalence at the basic generic data
model level

e Application definitions can only be more restrictive,
not less!

 Minimal restrictive definition mostly obvious, excepit:
0.0 and -0.0 are equivalent
(while NaN and -NaN depend on significand)

16

#37: Section 4 vs.
MUST NOT

e Section 4 is intended as explanatory: How do you
write protocol specifications that employ CBOR

 Map ordering MUST NOT doesn’t quite fit in

* Move where”? Could do it right in definition of MTS

17

IANA considerations

« RFC 7049: Very friendly to Specification required,
friendly to FCFS

* May want to place some more conservation on
1+1-byte spaces (Simple, Tags) —
Specification Required + some good reason?
IETF review?

Standards Action”

 May want to put 1+2 (Tags) under Specification
Required

18

CBOR tag definitions

Carsten Bormann, 2018-07-17

Batteries includeo

» RFC 7049 predefines 18 Tags

* Time, big numbers (bigint, float, decimal),
various converter helpers, URI, MIME message

* Easy to register your own CBOR Tags

* > 20 more tags: 6 for COSE;
UUIDs, Sets, binary MIME, Perl support,
language tagged string, compression

20

Status of Tags drafts

OID: On charter, kitchen sink, expired.
Needs work.

Array: On charter, recently adopted

Time: Off charter; solved for now by FCFS registration
(3-byte tag 1001); move spec to RFC how?

Template: Oft charter
(will likely be done with SCHC anyway)

“Useful tags”: Maybe document some of the more useful
registered tags in an RFC on its own (could include Time)?

21

draft-ietf-cbor-array-tags-00
(was draft-jroatch-cbor-tags)

* Provide tags for homogeneous arrays represented in
byte strings

* Inspired by JavaScript uint8 | sint8 | binaryl6

uintl6 sintl6 binary32
uint32 sint32 binary64

e 12x2: Both LSB and MSB first | uinté4 | sint64 | binary128

O —— O —— e +

* Reserves 24 contiguous tags
* Provides a tag for other homogeneous arrays

* Provides a tag for multidimensional arrays

22

Array tags: 1+1-byte space”?

 1+1-byte Tags: Tags 24 to 255

e 2017: ~ 20 taken of 232, 2018: ~ 22;
be careful with the space

* This is taking out 24 more — would this be a waste of
2-byte space?

* Yes; arrays can be large; fine with 1+2-byte tags

 No; arrays can also be small (e.g., RGB)
* Could partition 1+1 vs. 1+2 by size of basic type; ugly
e |etf...—00 does not take a position

23

Another proposal for
array tags

* There is a registration request pending at IANA for
what is pretty much the same thing (a bit less well-
cooked)

* Used (1+2)-byte tags for ease of registration

* [rying to contact author — maybe he wants to
collaborate on finishing this?

* (Go through with the registration very soon now!

24

Are we ready for
1+1-byte tags yet”

