Overview

Goal
Define algorithms to efficiently map from a string to a point on a curve for use in various high-level constructions (such as VRF, OPAQUE, VOPRF, etc.). Support injective and random oracle encodings.

Current Draft
draft-irtf-cfrg-hash-to-curve-02

Recent progress
● Explicit HashToBase
● Explicit recommended ciphers

Open issues
● Test vectors
● Explicit recommended ciphers
Progress - HashToBase

Explicit formula defined

- One-way hash from a string to an element of a base field of a curve
- Deterministic and constant time

Reduction of bias

- HashToBase algorithm greedily takes as many bits as possible before reducing mod p
- Reduces bias to trivial amount when appropriate hash size used
Overview

- Destination Group (e.g. P256 or Curve25519)
- HashToBase algorithm
- HashToCurve algorithm (e.g. SSWU, Icart)
- (Optional) Transformation (e.g. FFSTV, cofactor clearing)

Defined

- NIST Curves (RO)
- CFRG Curves
 - Injective with cofactor clearing
 - RO with FFSTV
Open Issues

Pairing-friendly Curves

- Construction from Fouque and Tibouchi
- Ciphersuite: H2C-BN256-SHA512-FT-FFSTV
- PR under review: https://github.com/chris-wood/draft-sullivan-cfrg-hash-to-curve/pull/20

Test Vectors

- Test vectors to be defined for all ciphersuites
Open Issues

Constant-time considerations, edge cases

- SWU with $p = 1 \pmod{4}$
- Incomplete addition law for Curve448
- $A=0$ case for SWU
Next steps

Complete test vectors
Independent results to be validated using Sage, Go and C implementations.

Review pairing-friendly curve algorithm
Volunteers?

Review other open issues
Constant-time considerations, edge cases.
Questions/ Discussion