
Randomness Improvements for Security Protocols

draft-irtf-cfrg-randomness-improvements

Cas Cremers (cremers@cispa.saarland)
Luke Garratt (lgarratt@cisco.com)

Stanislav Smyshlyaev (svs@cryptopro.ru)
Nick Sullivan (nick@cloud�are.com)

Christopher A. Wood (cawood@apple.com)

CFRG
IETF 103, October 2018, Bangkok

draft-irtf-cfrg-re-keying (CFRG) 1 / 19



Overview

1 Overview

2 Changes in -03 version

3 Security proofs

4 Current state and plans

draft-irtf-cfrg-re-keying (CFRG) 2 / 19



Overview

Brief overview

Motivation

Most security mechanisms completely depend on randomness quality.
But PRNGs can break or contain design �aws.

Bugs: Debian bug, Android's JCA PRNG �aw.

Backdoors: Dual_EC_DRBG.

Any hardware RNG can degrade over time.

Vulnerable joint system entropy pools.

⇒ it's better to have a safety net to avoid system compromise.

draft-irtf-cfrg-re-keying (CFRG) 3 / 19



Overview

Brief overview

Rationale

�NAXOS trick� (LaMacchia, Brian et al., �Stronger Security of
Authenticated Key Exchange�).

Direct access to private keys is not always possible, no APIs.

Reusing signature keys outside of intended scope is not a good
practice in general. So a very careful analysis is needed.

Provide a ready-to-use solution, not requiring further deep analysis.

⇒ provide a solution such that any call for entropy would better be
improved in a described way.

draft-irtf-cfrg-re-keying (CFRG) 4 / 19



Overview

The construction

Let G(·) � the output of some CSPRNG. When randomness is needed,
instead of G(n) use

G′(n) = Expand(Extract(G(L),H(Sig(sk, tag1))), tag2, n),

Intermediate values (including G(L) and Sig(sk, tag1)) must be kept
secret.

tag1: Constant string bound to a speci�c device and protocol in
use (e.g. a MAC address).

tag2: Non-constant string that includes a timestamp or counter.

draft-irtf-cfrg-re-keying (CFRG) 5 / 19



Changes in -03 version

1 Overview

2 Changes in -03 version

3 Security proofs

4 Current state and plans

draft-irtf-cfrg-re-keying (CFRG) 6 / 19



Changes in -03 version

The virtual machines issue

McGrew, Anderson, Fluhrer, Shenefeil, ½PRNG Failures and TLS
Vulnerabilities in the Wild�.
Ristenpart, Yilek, ½When Good Randomness Goes Bad: Virtual
Machine Reset Vulnerabilities and Hedging Deployed
Cryptography�.

To provide security in the cases of usage of CSPRNGs in virtual
environments, it is RECOMMENDED to incorporate all available
information speci�c to the process that would ensure the uniqueness of
each tag1 value among di�erent instances of VMs (including ones that
were cloned or recovered from snapshots). [. . .]

The proposed construction cannot provide any guarantees of security if
the CSPRNG state is cloned due to the VM snapshots or process
forking. Thus tag1 SHOULD incorporate all available information about
the environment, such as process attributes, VM user information, etc.
draft-irtf-cfrg-re-keying (CFRG) 7 / 19



Changes in -03 version

The virtual machines issue

McGrew, Anderson, Fluhrer, Shenefeil, ½PRNG Failures and TLS
Vulnerabilities in the Wild�.
Ristenpart, Yilek, ½When Good Randomness Goes Bad: Virtual
Machine Reset Vulnerabilities and Hedging Deployed
Cryptography�.

To provide security in the cases of usage of CSPRNGs in virtual
environments, it is RECOMMENDED to incorporate all available
information speci�c to the process that would ensure the uniqueness of
each tag1 value among di�erent instances of VMs (including ones that
were cloned or recovered from snapshots). [. . .]

The proposed construction cannot provide any guarantees of security if
the CSPRNG state is cloned due to the VM snapshots or process
forking. Thus tag1 SHOULD incorporate all available information about
the environment, such as process attributes, VM user information, etc.
draft-irtf-cfrg-re-keying (CFRG) 7 / 19



Changes in -03 version

Additional clari�cations

Weak initial entropy source as additional motivation

Initial entropy sources can also be weak or broken, and that would lead
to insecurity of all CSPRNG instances seeded with them.

Usage with HSMs: what happens where

If a private key sk is stored and used inside an HSM, then the signature
calculation is implemented inside it, while all other operations
(including calculation of a hash function, Extract and Expand
functions) can be implemented either inside or outside the HSM.

draft-irtf-cfrg-re-keying (CFRG) 8 / 19



Changes in -03 version

Additional recommendations

Precomputation can be kept

In systems where signature computations are expensive, G'(n) may be
precomputed and pooled. This is possible since the construction
depends solely upon the CSPRNG output and private key.

Requirements for tag1: desired secrecy of Sig(sk, tag1)

tag1 may have the format that is not supported (or explicitly
forbidden) by other applications using sk.

Requirements for tag2

tag2 MUST be implemented such that its values never repeat. This
means, in particular, that timestamp is guaranteed to change between
two requests to CSPRNG (otherwise counters should be used).

draft-irtf-cfrg-re-keying (CFRG) 9 / 19



Changes in -03 version

Minor changes

A slightly di�erent viewpoint for a whole document: de�ning the
construction as a new CSPRNG G'.

Cleaning up use of ½RNG�, ½PRNG�, ½CSPRNG�, ½randomness�,
½entropy� etc.

draft-irtf-cfrg-re-keying (CFRG) 10 / 19



Security proofs

1 Overview

2 Changes in -03 version

3 Security proofs

4 Current state and plans

draft-irtf-cfrg-re-keying (CFRG) 11 / 19



Security proofs

Security proofs

Desired security properties

1 If the CSPRNG works �ne, that is, in a certain adversary model
the CSPRNG output is indistinguishable from a truly random
sequence, then the output of the proposed construction is also
indistinguishable from a truly random sequence in that adversary
model.

2 An adversary Adv with full control of a (potentially broken)
CSPRNG and able to observe all outputs of the proposed
construction, does not obtain any non-negligible advantage in
leaking the private key, modulo side channel attacks.

3 If the CSPRNG is broken or controlled by adversary Adv, the
output of the proposed construction remains indistinguishable from
random provided the private key remains unknown to Adv.

draft-irtf-cfrg-re-keying (CFRG) 12 / 19



Security proofs

The paper

L. Akhmetzyanova, C. Cremers, L. Garratt, S. Smyshlyaev.
½Security Analysis for an Improved Randomness Wrapper�.
Cryptology ePrint Archive: Report 2018/1057,
https://eprint.iacr.org/2018/1057

Summary

The property #2 (security of the private key) is trivial assuming
that requirements for implementations (enumerated in the I-D) are
met.

Complete game-hopping proofs for (even stronger versions of) the
properties #1 and #3, assuming rather basic properties of the
used primitives.

But something in the assumptions can still be improved.

draft-irtf-cfrg-re-keying (CFRG) 13 / 19



Security proofs

The paper

L. Akhmetzyanova, C. Cremers, L. Garratt, S. Smyshlyaev.
½Security Analysis for an Improved Randomness Wrapper�.
Cryptology ePrint Archive: Report 2018/1057,
https://eprint.iacr.org/2018/1057

Summary

The property #2 (security of the private key) is trivial assuming
that requirements for implementations (enumerated in the I-D) are
met.

Complete game-hopping proofs for (even stronger versions of) the
properties #1 and #3, assuming rather basic properties of the
used primitives.

But something in the assumptions can still be improved.

draft-irtf-cfrg-re-keying (CFRG) 13 / 19



Security proofs

Adversary model

The adversary wants to:

distinguish a certain output of the construction from random.

The adversary can

choose tag1 and tag2 from the sets T1 and T2 for all queries;
learn values generated by the inner CSPRNG or even select its
values;

select any output of the construction (not necessarily the �nal one)
for attack;

ask to reveal either the values generated by the inner CSPRNG or
the private key sk (but not both) for attacked output

� we believe that the model perfectly re�ects practice (and is much
stronger than in practice in fact).

draft-irtf-cfrg-re-keying (CFRG) 14 / 19



Security proofs

Assumptions

No problems in the random oracle model for KDF. But we can do
better.
. . . with several additional assumptions:

Extract(x, y) is indistinguishable from random function for known
x and unknown y, and vice versa.

There is no proof of such a property for HKDF-extract(salt, IKM),
though it's reasonable to expect such a property.
Will try to prove it or make minor changes to the construction.

Intermediate values of Sig(sk, tag1) are kept secret during the
computations (I-D requires that implementations do this).

sk is never used to sign values from T1 outside of the construction,
limits on T1 (I-D requires that implementations do this).

draft-irtf-cfrg-re-keying (CFRG) 15 / 19



Security proofs

Assumptions

No problems in the random oracle model for KDF. But we can do
better.
. . . with several additional assumptions:

Extract(x, y) is indistinguishable from random function for known
x and unknown y, and vice versa.

There is no proof of such a property for HKDF-extract(salt, IKM),
though it's reasonable to expect such a property.
Will try to prove it or make minor changes to the construction.

Intermediate values of Sig(sk, tag1) are kept secret during the
computations (I-D requires that implementations do this).

sk is never used to sign values from T1 outside of the construction,
limits on T1 (I-D requires that implementations do this).

draft-irtf-cfrg-re-keying (CFRG) 15 / 19



Current state and plans

1 Overview

2 Changes in -03 version

3 Security proofs

4 Current state and plans

draft-irtf-cfrg-re-keying (CFRG) 16 / 19



Current state and plans

Objective: fully speci�ed secure end construction

Complete security proofs in a very strong adversary model.

No unreasonable assumptions.

The construction is very speci�c in the -03 version of the I-D.

The question is: are there additional improvements needed?

Complete security proof for a KDF with certain security
properties, for HKDF we have one additional property to prove.
Performance issues with HKDF (it is unlikely that it can become a
bottleneck, but it must be taken into account).

Obtained results for HKDF

16 bytes: ≈ 5.3x reduction in performance.

256 bytes: ≈ 9.9x reduction in performance.

8192 bytes: ≈ 8.1x reduction in performance.

draft-irtf-cfrg-re-keying (CFRG) 17 / 19



Current state and plans

Objective: fully speci�ed secure end construction

Complete security proofs in a very strong adversary model.

No unreasonable assumptions.

The construction is very speci�c in the -03 version of the I-D.

The question is: are there additional improvements needed?

Complete security proof for a KDF with certain security
properties, for HKDF we have one additional property to prove.
Performance issues with HKDF (it is unlikely that it can become a
bottleneck, but it must be taken into account).

Obtained results for HKDF

16 bytes: ≈ 5.3x reduction in performance.

256 bytes: ≈ 9.9x reduction in performance.

8192 bytes: ≈ 8.1x reduction in performance.

draft-irtf-cfrg-re-keying (CFRG) 17 / 19



Current state and plans

Current state and plans

draft-irtf-cfrg-randomness-improvements
�Randomness Improvements for Security Protocols�

The structure, principles and major recommendations seem to be
negotiated and do not tend to be changed.

New experiments.

Recommendations for speci�c protocols.

Improving the proof to weaken limitations on T1.
Re�ning security proof for using HKDF (or making changes to
KDF in the end construction).

Plan: to get a version addressing these issues until IETF 104.

draft-irtf-cfrg-re-keying (CFRG) 18 / 19



Current state and plans

Thank you for your attention!

Questions?

Materials, questions, comments:

cremers@cispa.saarland
lgarratt@cisco.com
svs@cryptopro.ru
nick@cloud�are.com
cawood@apple.com

draft-irtf-cfrg-re-keying (CFRG) 19 / 19



Changes

Wrapper generalization

Let G(·) � the output of some CSPRNG. When randomness is needed,
instead of x = G(n) use

x = Expand(Extract(G(L),H(Sig(sk, tag1))), tag2, n),

Moving in -01 from KDF-PRF (-00) to Extract-Expand (e.g., HKDF)
to deal with the limit on extracted randomness per invocation.

Tags prevent collisions across private key operations:

tag1: Constant string bound to a speci�c device and protocol.
Ties the outputs to a particular environment.
Sig(sk, tag1) can be cached (but must never be exposed) � for
performance reasons, for eliminating additional operations with sk.

tag2: Dynamic string � timestamp, counter, etc.
Ensures that outputs are unique even if the input randomness
source degenerates to constant.

draft-irtf-cfrg-re-keying (CFRG) 19 / 19



Changes

Relaxed requirements for a signature scheme

There was a strict requirement in -00 to the signature scheme:
½Moreover, Sig MUST be a deterministic signature function, e.g.,
deterministic ECDSA�.

It has been relaxed, since the digital signature procedure can use its
own entropy source: ½or use an independent (and completely reliable)
entropy source, e.g., if Sig is implemented in an HSM with its own
internal trusted entropy source for signature generation.�

draft-irtf-cfrg-re-keying (CFRG) 19 / 19


	Overview
	Changes in -03 version
	Security proofs
	Current state and plans

