Distributed Delegated Mappings

draft-watson-dinrg-delmap-01

Jean-Luc Watson¹, Sydney Li², Colin Man³
DINRG - IETF 103

¹UC Berkeley, ²Electronic Frontier Foundation, ³Stanford University
Recap
Mappings

DNS Provider

...
ietf.org -> zone
...

Internet Registry

...
192.0.2.0/28 -> owner
...

Key Directory

...
Colin -> key
...

CA

...
eff.org -> cert
...
Mappings

Distributed Delegated Mappings

Colin -> key
me@gmail.com -> key
ietf.org -> zone
eff.org -> cert
192.0.2.0/28 -> owner
Structure

- Root Key Listing
 - IP Delegation Root
 - DNS Root
 - Public Storage Root
 - ...
Structure
Structure

Root Key Listing

- IP Delegation Root
- DNS Root
- Public Storage Root

Root DNS Table

<table>
<thead>
<tr>
<th>entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>org.eff</td>
</tr>
<tr>
<td>edu.berkeley</td>
</tr>
</tbody>
</table>

DelegateCell

- Created 08/24/13
- Revised 08/23/18
- Committed until 01/15/19 8:00 AM

Delegation

- UCB_key
- root_sig
- edu.berkeley

Local Domain Table

<table>
<thead>
<tr>
<th>entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>eecs</td>
</tr>
<tr>
<td>police</td>
</tr>
</tbody>
</table>

ValueCell

- Created 08/25/13
- Revised 09/10/18
- Committed until 09/17/18 2:00 AM

Value

- police_key
- UCB_sig
- zone file
Updates
1. Prefix-only delegation

1.0.0.0/8 ➔ 1.9.0.0/16 ➔ 1.9.5.1/32

org. ➔ org.ietf. ➔ org.ietf.tools
1. Prefix-only delegation

- 1.0.0.0/8
- 1.9.0.0/16
- 1.9.5.1/32

- org.
- org.ietf.
- org.ietf.tools

2. Updated verification rules

- Valid (commitment) timestamps
- Signed by party authorized to update specified fields
- Does not violate prefix property
 - No overlapping delegations
 - No duplicate values
1. Prefix-only delegation

- 1.0.0.0/8 → 1.9.0.0/16 → 1.9.5.1/32
- org. → org.ietf. → org.ietf.tools

2. Updated verification rules

- Valid (commitment) timestamps
- Signed by party authorized to update specified fields
- Does not violate prefix property
 - No overlapping delegations
 - No duplicate values

3. Security Considerations

Discussion on how the system behaves in the face of attacks from:

- DoS/resource exhaustion
- Consensus node compromise
- Upstream compromise
1. Prefix-only delegation

2. Updated verification rules
 - Valid (commitment) timestamps
 - Signed by party authorized to update specified fields
 - Does not violate prefix property
 - No overlapping delegations
 - No duplicate values

3. Security Considerations
 Discussion on how the system behaves in the face of attacks from:
 - DoS/resource exhaustion
 - Consensus node compromise
 - Upstream compromise

4. Table Allowances
 New delegation field to recursively limit size of tables:
 \[\text{valuecells} + \text{delegatecell allowances} \leq \text{table allowance}\]
 In certain cases, may be unlimited.
1. Prefix-only delegation

- 1.0.0.0/8
- 1.9.0.0/16
- 1.9.5.1/32

- org.
- org.ietf.
- org.ietf.tools

2. Updated verification rules

- Valid (commitment) timestamps
- Signed by party authorized to update specified fields
- Does not violate prefix property
 - No overlapping delegations
 - No duplicate values

3. Security Considerations

Discussion on how the system behaves in the face of attacks from:

- DoS/resource exhaustion
- Consensus node compromise
- Upstream compromise

4. Table Allowances

New delegation field to recursively limit size of tables:

\[
\text{valuecells + delegatecell allowances} \leq \text{table allowance}
\]

In certain cases, may be unlimited.

Governance
Governance
Separation of Concerns

Mapping Safety
- Delegation rules
- Valid updates
- Verifying permissions
- Global consistency

Consensus

Content-specific Administration
- Which table entries are added, and with what value
- Who obtains a delegation
- Deletion process
- Renewal policies

Table Authorities
Separation of Concerns

Mapping Safety
- Delegation rules
- Valid updates
- Verifying permissions
- Global consistency

Content-specific Administration
- Which table entries are added, and with what value
- Who obtains a delegation
- Deletion process
- Renewal policies

Consensus

Table Authorities

Root Key Listing
Content-specific but with no single authority
Separation of Concerns

Mapping Safety
- Delegation rules
- Valid updates
- Verifying permissions
- Global consistency

Content-specific Administration
- Which table entries are added, and with what value
- Who obtains a delegation
- Deletion process
- Renewal policies

Consensus & Voting

Table Authorities

Root Key Listing

Content-specific but with no single authority
Voting

- Give consensus nodes agency to vote for or against significant, valid changes
- Explicit additional requirement for the underlying consensus scheme that is already common for protocol updates:
 - Quorums in slice infrastructures like SCP
 - Bitcoin-style percentage of agreeing blocks over a time window
 - Hard forks
Addressing governance through voting

Example:

Prospective Root Entry:

<table>
<thead>
<tr>
<th>“the_pirate_bay”</th>
<th>tpb_signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>tpb_public_key</td>
<td>1,000 cells</td>
</tr>
</tbody>
</table>

Two primary concerns from a consensus layer perspective:

① Some nodes may not want to support a root that is likely anti-copyright

②
Nodes that disagree with The Pirate Bay can vote against the new root.

Potential outcomes:
- Vote on change succeeds → every node accepts that the root listing is updated even if they disagree with the new root’s application
- Vote fails → every node maintains the current listing
- Fundamental disagreement between significant node groups → realistically should not trust consensus relationships moving forward
Addressing governance through voting

Example:

<table>
<thead>
<tr>
<th>Prospective Root Entry:</th>
<th>“tor”</th>
<th>tor_signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>tor_public_key</td>
<td>1,000,000,000 cells</td>
<td></td>
</tr>
</tbody>
</table>

Two primary concerns from a consensus layer perspective:

① Some nodes may not want to support a root that is likely anti-copyright

② Maintaining up to a billion mappings and their resulting requests would overburden some nodes’ infrastructure.
② Resource Consumption

Nodes evaluate resource usage by including explicit structural limits.

- Every node observes the same allowance value, enabling informed votes against new entries that may pose an unreasonable burden.
- **Tor** must find large enough set of nodes willing to support 1 billion new cells OR change its request to a smaller, more reasonable value.

Prospective Root Entry:

```
<table>
<thead>
<tr>
<th>tor</th>
<th>tor_signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>tor_public_key</td>
<td>1,000,000,000 cells</td>
</tr>
</tbody>
</table>
```
Questions?

https://tools.ietf.org/id/draft-watson-dinrg-delmap-01.txt