‘The Stellar Consensus Protocol
(SCP)

draft-mazieres-dinrg-scp-05

Nicolas Barry, Giuliano Losa, David Ma2|eres Jed McCaleb,
- Stanislas Polu :

IETF103

| Tuesday, November 8, 2018

Motivation: Internet-level consensus

Atomically transact across incompatible/distrustful systems
- E.g., Transfer domain name in exchange for payment
Irrevocably delegate identifiers
- E.g., certify email user public key w/o ability to equivocate
Verify public disclosure & timestamp of information

- Build loT device that only upgrades to public firmware

All of these can be addressed w. public append-only log

2/15

Slice infrastructures

Aslice infrastructure is a set of nodes that select quorum slices
Each node picks quorum slices it believes speaks for the Internet
E.g., | pick {Stanford, IETF}, you pick {Baidu, Wechat, Alibaba}
Alibaba and Stanford both include Google in their quorum slices
Transitively, we both depend on Google

Want guaranteed agreement so long as Google honest

For fault tolerance, pick multiple quorum slices

- E.g.,4/5 FAANG companies, or 3/4 of servers from each FAANG
Define quorums as the transitive closure of slices

- LetV be all nodes, Q(v) be all of node v’s quorum slices

Definition (Quorum)

A quorum U C Vs a set of nodes that contains at least one slice of each of
its members: Vv € U,3qg € Q(v) such thatqg C U

3/15

Definition (Quorum)

A quorum U C Vis a set of nodes that encompasses at least one
slice of each of its members: Vv € U,3q € Q(v) such thatg C U

— {{v,v2,v3}}
@‘—*@ Q (w)VZ Vé(v4)={{vZ,V3,v4}}
@

Visualize quorum slice dependencies with arrows

Vo, V3, V4 is @ quorum—contains a slice of each member
V1, Vo, v3 is a slice for v;, but not a quorum
- Doesn’t contain a slice for v, v3, who demand v,’s agreement

Vi, ..., Vs is the smallest quorum containing v,

4/15

Definition (Quorum)

A quorum U C Vis a set of nodes that encompasses at least one
slice of each of its members: Vv € U,3q € Q(v) such thatg C U

quorum for v,, v3, vy

@*—>@
~_

B

Visualize quorum slice dependencies with arrows

Vo, V3, V4 is @ quorum—contains a slice of each member
V1, Vo, v3 is a slice for v;, but not a quorum

- Doesn’t contain a slice for v, v3, who demand v,’s agreement

Vi, ..., Vs is the smallest quorum containing v,

Q(v1) = {{wv1,v2,v3}}
Q(v2) = Q(v3) = Q(va) = {{va,V3,va}}

4/15

Definition (Quorum)

A quorum U C Vis a set of nodes that encompasses at least one
slice of each of its members: Vv € U,3q € Q(v) such thatg C U

AN

@*—@
@

Visualize quorum slice dependencies with arrows

Vo, V3, V4 is @ quorum—contains a slice of each member
V1, Vp, vz is a slice for v4, but not a quorum

- Doesn’t contain a slice for v, v3, who demand v,’s agreement

Vi, ..., Vs is the smallest quorum containing v,

Q(v1) = {{wv1,v2,v3}}
Q(v2) = Q(v3) = Q(va) = {{v2, V3, Va}}

quorum slice for v, but not a quorum

4/15

Definition (Quorum)

A quorum U C Vis a set of nodes that encompasses at least one
slice of each of its members: Vv € U,3q € Q(v) such thatg C U

Q(v1) = {{wv1,v2,v3}}
Q(v2) = Q(v3) = Q(va) = {{v2,Vv3,va}}

quorum forvy, ..., vy

Visualize quorum slice dependencies with arrows
Vo, V3, V4 is @ quorum—contains a slice of each member
V1, Vo, v3 is a slice for v;, but not a quorum
- Doesn’t contain a slice for v, v3, who demand v,’s agreement

Vi, ..., Vs is the smallest quorum containing v,

4/15

Two important thresholds

A node v believes message m reaches...
Quorum threshold - when a quorum including v all sends m

- Note v doesn’t care about quorums it doesn’t belong to (maybe Sybils)
Blocking threshold - a node sent m in each of v’s quorum slices

- Meansif vin any honest quorum, none of its quorums can contradict m

5/15

Main subroutine: federated voting

vote a Vv accepta accepta
quorum thresh. quorum thresh.

ais valid voted a accepted a

accepta
blocking thresh.

voted !a

Nodes vote for or against a conceptual statement a

- lllegal to vote for or accept two contradictory statements

- Butyou can vote for one statement then accept a contradictory one
When you confirm a statement, you know

- If you are intact, all other intact nodes will eventually confirm it

- Nodes intertwined with you won’t confirm contradictory statements

Until you confirm a statement, it might get permanently stuck

SCP overview by phase

NOMINATE - pick some value to try to agree on
- Nodes will likely agree if network synchronous, but can disagree
PREPARE part 1 - confirm prepare(b) for ballot (b.counter, b.value)

- Use federated voting to abort and commit ballots
- prepare(b) = {abort(b’) | b’ < b A b’.value # b.value}

- b.value taken from nomination output until any ballot p is confirmed
prepared, then use p.value for highest confirmed prepared ballot p

PREPARE part 2 - accept commit(b) after confirming prepare(b)
- Butifin the process you accept abort(b), go back to PREPARE part 1

COMMIT - confirm commit(b) after accepting

EXTERNALIZE - output value of confirmed committed ballot

- Also send message to optimize quorum discovery for slower nodes

7/15

Ballots details

struct SCPBallot {
uint32 counter;
Value value;

s

Ballots totally ordered with counter more significant than value
If a node confirms commit(b) for any b, it decides b.value

Recall prepare(b) = {abort(b’) | b’ < b A b'.value # b.value}
Key invariants

- A node may vote abort(b) or commit(b) but not both (contradictory)
- Anode may accept abort(b) or commit(b) but not both

- A node cannot vote commit(b) unless it first confirms prepare(b)
— all committed & stuck ballots have same value

8/15

Nomination flow

NOMINATE NOMINATE NOMINATE
X, o %3 0

/ / /
B B B

Nodes nominate values and re-nominate any nominations seen
Stop adding to votes once any value confirmed nominated
Will converge on set of values
Deterministically combine nominations into composite value x
Nodes guaranteed to converge on same value x

- Complication: impossible to know when protocol has converged [FLP]
NOMINATE overlaps PREPARE to continue in background

- Ends when ballot confirmed prepared, as all intact nodes will confirm
prepared ballot and use its value

9/15

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf

Nomination flow

NOMINATE NOMINATE NOMINATE
X, txo, tX3 X, txo, tx3 X3

/ / /
B B B

Nodes nominate values and re-nominate any nominations seen
Stop adding to votes once any value confirmed nominated
Will converge on set of values
Deterministically combine nominations into composite value x
Nodes guaranteed to converge on same value x

- Complication: impossible to know when protocol has converged [FLP]
NOMINATE overlaps PREPARE to continue in background

- Ends when ballot confirmed prepared, as all intact nodes will confirm
prepared ballot and use its value

9/15

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf

Nomination flow

NOMINATE NOMINATE NOMINATE
X, txo, tX3 X, tXo, tX3 X, tXo, tX3

/ / /
B B B

Nodes nominate values and re-nominate any nominations seen
Stop adding to votes once any value confirmed nominated
Will converge on set of values
Deterministically combine nominations into composite value x
Nodes guaranteed to converge on same value x

- Complication: impossible to know when protocol has converged [FLP]
NOMINATE overlaps PREPARE to continue in background

- Ends when ballot confirmed prepared, as all intact nodes will confirm
prepared ballot and use its value

9/15

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf

Nomination flow

CUp G U

[a— [a— [a—
— — =

[»]] (1]

Nodes nominate values and re-nominate any nominations seen
Stop adding to votes once any value confirmed nominated
Will converge on set of values
Deterministically combine nominations into composite value x
Nodes guaranteed to converge on same value x

- Complication: impossible to know when protocol has converged [FLP]
NOMINATE overlaps PREPARE to continue in background

- Ends when ballot confirmed prepared, as all intact nodes will confirm
prepared ballot and use its value
9/15

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf

Balloting flow

PREPARE (1,x) PREPARE (1,x) PREPARE (1,x)

/ / /
B B B

In the common case, will prepare and commit nominated value

Else, arm timer when ballot counter reaches quorum threshold
Bump counter and restart with new ballot whenever

- Timer fires

- Ablocking threshold is at a higher ballot counter
Timeout lengthens as counter increases

- Intact nodes spend longer and long on same counter together

- Eventually emulates a synchronous system

10/15

Balloting flow

PREPARE (1,x) PREPARE (1,x) PREPARE (1,x)
coMMmIT (1,x) coMMmIT (1,x) coMMmIT (1,x)

/ / /
B B B

In the common case, will prepare and commit nominated value

Else, arm timer when ballot counter reaches quorum threshold
Bump counter and restart with new ballot whenever

- Timer fires

- Ablocking threshold is at a higher ballot counter
Timeout lengthens as counter increases

- Intact nodes spend longer and long on same counter together

- Eventually emulates a synchronous system

10/15

Balloting example

candidate values

‘a b ¢ d e f g h
o1 X =aborted
42 v/ = commited
(@]
13 = stuck
0. Initially, all ballots are bivalent
1. Prepare (1,g) and vote to commit it
2. Losevoteon (1,g); agree (2,f) prepared and vote to commit it
3. (2,f)is stuck, so agree (3, f) prepared and vote to commit it
4, Confirm commit (3, f) and externalize f

- At this point nobody cares that (2, f) is stuck

Notice how all committed & stuck ballots have same value
1/15

Balloting example

candidate values

‘a b ¢ d e f g h
o[X X X X X X X =aborted
42 v/ = commited
(@]
°13 = stuck
0. Initially, all ballots are bivalent
1. Prepare (1,g) and vote to commit it
2. Losevoteon (1,g); agree (2,f) prepared and vote to commit it
3. (2,f)is stuck, so agree (3, f) prepared and vote to commit it
4, Confirm commit (3, f) and externalize f

- At this point nobody cares that (2, f) is stuck

Notice how all committed & stuck ballots have same value
1/15

Balloting example

candidate values

‘a b ¢ d e f g h\
,q_)l)()()()()()()()(X =aborted
Edo X X X X X v/ = commited
(@]

13 = stuck
0. Initially, all ballots are bivalent
1. Prepare (1,g) and vote to commit it
2. Losevoteon (1,g); agree (2, f) prepared and vote to commit it
3. (2,f)is stuck, so agree (3, f) prepared and vote to commit it
4, Confirm commit (3, f) and externalize f

- At this point nobody cares that (2, f) is stuck

Notice how all committed & stuck ballots have same value
1/15

Balloting example

candidate values

‘a b ¢ d e f g h\
,G_J]XXXXXXXX X =aborted
Sl X X X X X X X V/=commited
(@]

Cl3 X X X X X = stuck
0. Initially, all ballots are bivalent
1. Prepare (1,g) and vote to commit it
2. Losevoteon (1,g); agree (2,f) prepared and vote to commit it
3. (2,f) is stuck, so agree (3,f) prepared and vote to commit it
4, Confirm commit (3, f) and externalize f

- At this point nobody cares that (2, f) is stuck

Notice how all committed & stuck ballots have same value
1/15

Balloting example

candidate values

‘a b ¢ d e f g h‘
sq_)1)‘)‘)‘)‘)‘)‘)‘)‘ X =aborted
S X X X X X X XV =commited
Sls x ¥ x x X v = stuck
0. Initially, all ballots are bivalent
1. Prepare (1,g) and vote to commit it
2. Losevoteon (1,g); agree (2,f) prepared and vote to commit it
3. (2,f)is stuck, so agree (3, f) prepared and vote to commit it
4. Confirm commit (3,f) and externalize f

- At this point nobody cares that (2, f) is stuck

Notice how all committed & stuck ballots have same value
1/15

SCP prepare message (changed)

struct SCPPrepare {
SCPBallot ballot;
SCPBallot *prepared;
uint32 aCounter; // new -- replaces preparedPrime
uint32 hCounter;
uint32 cCounter;

};

vote-or-accept prepare(ballot)

if prepared # NULL: accept prepare(*prepared)

accept { abort(b) | b.counter < aCounter }

if hCounter # 0: confirm prepare((hCounter, ballot.value))

if cCounter +# 0:
vote {commit((n, ballot.value)) | cCounter < n < hCounter}

Progress to cOMMIT phase upon accepting commit(b) for any b

12/15

Setting the prepare fields

ballot.counter starts at 1, increases with timeouts/blocking sets

ballot.value b.value from highest confirmed prepare(b) (if any),

prepared

aCounter

hCounter

cCounter

else composite nomination value (if any),
else b.value from highest accepted prepare(b) (if any),
otherwise don’t send SCPPrepare yet

highest b for which sender accepted prepared(b)

counter (or counter +1) of highest accepted prepared
ballot with different value from prepared.value

h.counter from highest h with confirmed prepared(h)
and b.value == h.value (new), else 0

0 if hCounter == 0 or internal “commit ballot”
¢ == NULL. Else, c.counter. Note ¢ + ballot when
confirmed prepared and NuLL when accepted aborted.

13/15

Status

The good news
- Draftis stabilizing (one open question: max nomination message size)
- Existing protocol has slightly better liveness than previously proven
- At least 4 implementations: stellar-core, Bob Glickstein, Mobilecoin,
Peirs Poslesland
The bad news - might want huge changes / other documents

- No hope of interoperability because no multicast specification

- Maybe we can improve liveness by re-running nomination between
counters (would terminate with prob. 1 even with Byzantine nodes)

- Maybe simpler protocol for slice infrastructures (would require
alternate competing draft, slow everything down)

14/15

https://github.com/stellar/stellar-core
https://github.com/bobg/scp
https://www.mobilecoin.com/

Y

| Que“sl'tions_? e

111111

SCP nomination message
typedef opaque Value<>;
struct SCPNominate {

Value voted<>; // vote to nominate these values
Value accepted<>; // assert that these are accepted

};

union SCPStatement switch (SCPStatementType type) {
case SCP_ST_NOMINATE:
SCPNominate nominate;
/7‘: .. -.':/
+s

Nodes broadcast nominated values in voted

- Initially vote values in all received votes (ignoring optimization here)
Upon accepting nomination of a, move from voted to accepted
Stop voting for new values once any is confirmed nominated

- But continue accepting and repeating votes already cast
Stop sending SCPNominate when ballot confirmed prepared

- Means NOMINATION phase overlaps with PREPARE phase o

SCP commit message

struct SCPCommit {
SCPBallot ballot;
uint32 preparedCounter;
uint32 hCounter;
uint32 cCounter;

s
{accept commit((n,ballot.value)) | cCounter < n < hCounter}
vote-or-accept prepare((oo, ballot.value))
accept prepare((preparedCounter, ballot.value))
confirm prepare((hCounter, ballot.value))

{vote commit((n, ballot.value)) | n > cCounter}

17/15

SCP externalize message

struct SCPExternalize {
SCPBallot commit;
uint32 hCounter;

}s
{accept commit((n, commit.value)) | n > commit.counter}

{confirm commit((n, commit.value))
| commit.counter < n < hCounter}

accept prepare((co, commit.value))

confirm prepare((hCounter, commit.value))

By the time you send this, already externalized commit.value

- Means you have confirmed committed a ballot with commi t.value
- Goal is definitive record to help other nodes prove value/catch up

18/15

