
The Stellar Consensus Protocol
(SCP)
dra�-mazieres-dinrg-scp-05

Nicolas Barry, Giuliano Losa, David Mazières, Jed McCaleb,
Stanislas Polu

IETF103

Tuesday, November 8, 2018



Motivation: Internet-level consensus

Atomically transact across incompatible/distrustful systems
- E.g., Transfer domain name in exchange for payment

Irrevocably delegate identifiers
- E.g., certify email user public key w/o ability to equivocate

Verify public disclosure & timestamp of information
- Build IoT device that only upgrades to public firmware

All of these can be addressed w. public append-only log

2 / 15



Slice infrastructures
A slice infrastructure is a set of nodes that select quorum slices
Each node picks quorum slices it believes speaks for the Internet
- E.g., I pick {Stanford, IETF}, you pick {Baidu, Wechat, Alibaba}
- Alibaba and Stanford both include Google in their quorum slices
- Transitively, we both depend on Google
- Want guaranteed agreement so long as Google honest
For fault tolerance, pick multiple quorum slices
- E.g., 4/5 FAANG companies, or 3/4 of servers from each FAANG

Define quorums as the transitive closure of slices
- Let V be all nodes,Q(v) be all of node v’s quorum slices

Definition (Quorum)
A quorum U ⊆ V is a set of nodes that contains at least one slice of each of
its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

3 / 15



Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

4 / 15



Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

4 / 15



Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

4 / 15



Definition (Quorum)
A quorum U ⊆ V is a set of nodes that encompasses at least one
slice of each of its members: ∀v ∈ U,∃q ∈ Q(v) such that q ⊆ U

quorum for v2, v3, v4

quorum slice for v1, but not a quorumquorum for v1, . . . , v4v1

v2 v3

v4

Q(v1) = {{v1, v2, v3}}
Q(v2) = Q(v3) = Q(v4) = {{v2, v3, v4}}

Visualize quorum slice dependencies with arrows
v2, v3, v4 is a quorum—contains a slice of eachmember
v1, v2, v3 is a slice for v1, but not a quorum
- Doesn’t contain a slice for v2, v3, who demand v4’s agreement
v1, . . . , v4 is the smallest quorum containing v1

4 / 15



Two important thresholds

A node v believes messagem reaches. . .
Quorum threshold – when a quorum including v all sendsm
- Note v doesn’t care about quorums it doesn’t belong to (maybe Sybils)

Blocking threshold – a node sentm in each of v’s quorum slices
- Means if v in any honest quorum, none of its quorums can contradictm

5 / 15



Main subroutine: federated voting
vote a ∨ accept a
quorum thresh.

accept a
quorum thresh.

a is valid

accept a
blocking thresh.

uncommitted

voted a accepted a confirmed a

voted !a

Nodes vote for or against a conceptual statement a
- Illegal to vote for or accept two contradictory statements
- But you can vote for one statement then accept a contradictory one
When you confirm a statement, you know
- If you are intact, all other intact nodes will eventually confirm it
- Nodes intertwinedwith you won’t confirm contradictory statements
Until you confirm a statement, it might get permanently stuck

6 / 15



SCP overview by phase

NOMINATE – pick some value to try to agree on
- Nodes will likely agree if network synchronous, but can disagree

PREPARE part 1 – confirm prepare(b) for ballot 〈b.counter,b.value〉
- Use federated voting to abort and commit ballots
- prepare(b) = { abort(b′) | b′ < b ∧ b′.value 6= b.value }
- b.value taken from nomination output until any ballot p is confirmed
prepared, then use p.value for highest confirmed prepared ballot p

PREPARE part 2 – accept commit(b) a�er confirming prepare(b)
- But if in the process you accept abort(b), go back to PREPARE part 1

COMMIT – confirm commit(b) a�er accepting
EXTERNALIZE – output value of confirmed committed ballot
- Also sendmessage to optimize quorum discovery for slower nodes

7 / 15



Ballots details

struct SCPBallot {
uint32 counter;
Value value;
};

Ballots totally ordered with countermore significant than value

If a node confirms commit(b) for any b, it decides b.value

Recall prepare(b) = {abort(b′) | b′ < b ∧ b′.value 6= b.value}
Key invariants
- A nodemay vote abort(b) or commit(b) but not both (contradictory)
- A nodemay accept abort(b) or commit(b) but not both
- A node cannot vote commit(b) unless it first confirms prepare(b)
=⇒ all committed & stuck ballots have same value

8 / 15



Nomination flow

v1

NOMINATE
tx1, tx2

v2

NOMINATE
tx3

v3

NOMINATE
∅

Nodes nominate values and re-nominate any nominations seen
Stop adding to votes once any value confirmed nominated
Will converge on set of values
Deterministically combine nominations into composite value x
Nodes guaranteed to converge on same value x
- Complication: impossible to know when protocol has converged [FLP]
NOMINATE overlaps PREPARE to continue in background
- Ends when ballot confirmed prepared, as all intact nodes will confirm
prepared ballot and use its value

9 / 15

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf


Nomination flow

v1

NOMINATE
tx1, tx2, tx3

v2

NOMINATE
tx1, tx2, tx3

v3

NOMINATE
tx3

Nodes nominate values and re-nominate any nominations seen
Stop adding to votes once any value confirmed nominated
Will converge on set of values
Deterministically combine nominations into composite value x
Nodes guaranteed to converge on same value x
- Complication: impossible to know when protocol has converged [FLP]
NOMINATE overlaps PREPARE to continue in background
- Ends when ballot confirmed prepared, as all intact nodes will confirm
prepared ballot and use its value

9 / 15

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf


Nomination flow

v1

NOMINATE
tx1, tx2, tx3

v2

NOMINATE
tx1, tx2, tx3

v3

NOMINATE
tx1, tx2, tx3

Nodes nominate values and re-nominate any nominations seen
Stop adding to votes once any value confirmed nominated
Will converge on set of values
Deterministically combine nominations into composite value x
Nodes guaranteed to converge on same value x
- Complication: impossible to know when protocol has converged [FLP]
NOMINATE overlaps PREPARE to continue in background
- Ends when ballot confirmed prepared, as all intact nodes will confirm
prepared ballot and use its value

9 / 15

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf


Nomination flow

v1

x =
⋃
i txi

v2

x =
⋃
i txi

v3

x =
⋃
i txi

Nodes nominate values and re-nominate any nominations seen
Stop adding to votes once any value confirmed nominated
Will converge on set of values
Deterministically combine nominations into composite value x
Nodes guaranteed to converge on same value x
- Complication: impossible to know when protocol has converged [FLP]
NOMINATE overlaps PREPARE to continue in background
- Ends when ballot confirmed prepared, as all intact nodes will confirm
prepared ballot and use its value

9 / 15

http://theory.lcs.mit.edu/tds/papers/Lynch/jacm85.pdf


Balloting flow

v1

PREPARE 〈1, x〉
COMMIT 〈1, x〉

v2

PREPARE 〈1, x〉
COMMIT 〈1, x〉

v3

PREPARE 〈1, x〉
COMMIT 〈1, x〉

In the common case, will prepare and commit nominated value
Else, arm timer when ballot counter reaches quorum threshold
Bump counter and restart with new ballot whenever
- Timer fires
- A blocking threshold is at a higher ballot counter
Timeout lengthens as counter increases
- Intact nodes spend longer and long on same counter together
- Eventually emulates a synchronous system

10 / 15



Balloting flow

v1

PREPARE 〈1, x〉
COMMIT 〈1, x〉

v2

PREPARE 〈1, x〉
COMMIT 〈1, x〉

v3

PREPARE 〈1, x〉
COMMIT 〈1, x〉

In the common case, will prepare and commit nominated value
Else, arm timer when ballot counter reaches quorum threshold
Bump counter and restart with new ballot whenever
- Timer fires
- A blocking threshold is at a higher ballot counter
Timeout lengthens as counter increases
- Intact nodes spend longer and long on same counter together
- Eventually emulates a synchronous system

10 / 15



Balloting example

a b c d e f g h
1 ? ? ? ? ? ? ? ?
2 ? ? ? ? ? ? ? ?
3 ? ? ? ? ? ? ? ?

candidate values
co
un
te
r counter

% = aborted

! = commited

= stuck

0. Initially, all ballots are bivalent
1. Prepare 〈1,g〉 and vote to commit it
2. Lose vote on 〈1,g〉; agree 〈2, f 〉 prepared and vote to commit it
3. 〈2, f 〉 is stuck, so agree 〈3, f 〉 prepared and vote to commit it
4. Confirm commit 〈3, f 〉 and externalize f

- At this point nobody cares that 〈2, f 〉 is stuck
Notice how all committed & stuck ballots have same value

11 / 15



Balloting example

a b c d e f g h
1 % % % % % % ? ?
2 ? ? ? ? ? ? ? ?
3 ? ? ? ? ? ? ? ?

candidate values
co
un
te
r counter

% = aborted

! = commited

= stuck

0. Initially, all ballots are bivalent
1. Prepare 〈1,g〉 and vote to commit it
2. Lose vote on 〈1,g〉; agree 〈2, f 〉 prepared and vote to commit it
3. 〈2, f 〉 is stuck, so agree 〈3, f 〉 prepared and vote to commit it
4. Confirm commit 〈3, f 〉 and externalize f

- At this point nobody cares that 〈2, f 〉 is stuck
Notice how all committed & stuck ballots have same value

11 / 15



Balloting example

a b c d e f g h
1 % % % % % % % %

2 % % % % % ? ? ?
3 ? ? ? ? ? ? ? ?

candidate values
co
un
te
r counter

% = aborted

! = commited

= stuck

0. Initially, all ballots are bivalent
1. Prepare 〈1,g〉 and vote to commit it
2. Lose vote on 〈1,g〉; agree 〈2, f 〉 prepared and vote to commit it
3. 〈2, f 〉 is stuck, so agree 〈3, f 〉 prepared and vote to commit it
4. Confirm commit 〈3, f 〉 and externalize f

- At this point nobody cares that 〈2, f 〉 is stuck
Notice how all committed & stuck ballots have same value

11 / 15



Balloting example

a b c d e f g h
1 % % % % % % % %

2 % % % % % % %

3 % % % % % ? ? ?

candidate values
co
un
te
r counter

% = aborted

! = commited

= stuck

0. Initially, all ballots are bivalent
1. Prepare 〈1,g〉 and vote to commit it
2. Lose vote on 〈1,g〉; agree 〈2, f 〉 prepared and vote to commit it
3. 〈2, f 〉 is stuck, so agree 〈3, f 〉 prepared and vote to commit it
4. Confirm commit 〈3, f 〉 and externalize f

- At this point nobody cares that 〈2, f 〉 is stuck
Notice how all committed & stuck ballots have same value

11 / 15



Balloting example

a b c d e f g h
1 % % % % % % % %

2 % % % % % % %

3 % % % % % ! ? ?

candidate values
co
un
te
r counter

% = aborted

! = commited

= stuck

0. Initially, all ballots are bivalent
1. Prepare 〈1,g〉 and vote to commit it
2. Lose vote on 〈1,g〉; agree 〈2, f 〉 prepared and vote to commit it
3. 〈2, f 〉 is stuck, so agree 〈3, f 〉 prepared and vote to commit it
4. Confirm commit 〈3, f 〉 and externalize f

- At this point nobody cares that 〈2, f 〉 is stuck
Notice how all committed & stuck ballots have same value

11 / 15



SCP preparemessage (changed)
struct SCPPrepare {
SCPBallot ballot;
SCPBallot *prepared;
uint32 aCounter; // new -- replaces preparedPrime
uint32 hCounter;
uint32 cCounter;
};

vote-or-accept prepare(ballot)

if prepared 6= NULL: accept prepare(*prepared)

accept {abort(b) | b.counter < aCounter }
if hCounter 6= 0: confirm prepare(〈hCounter,ballot.value〉)
if cCounter 6= 0:
vote {commit(〈n,ballot.value〉) | cCounter ≤ n ≤ hCounter}

Progress to COMMIT phase upon accepting commit(b) for any b
12 / 15



Setting the prepare fields
ballot.counter starts at 1, increases with timeouts/blocking sets

ballot.value b.value from highest confirmed prepare(b) (if any),
else composite nomination value (if any),
else b.value from highest accepted prepare(b) (if any),
otherwise don’t send SCPPrepare yet

prepared highest b for which sender accepted prepared(b)

aCounter counter (or counter +1) of highest accepted prepared
ballot with di�erent value from prepared.value

hCounter h.counter from highest hwith confirmed prepared(h)
and b.value == h.value (new), else 0

cCounter 0 if hCounter == 0 or internal “commit ballot”
c == NULL. Else, c.counter. Note c← ballotwhen
confirmed prepared and NULLwhen accepted aborted.

13 / 15



Status

The good news
- Dra� is stabilizing (one open question: max nomination message size)
- Existing protocol has slightly better liveness than previously proven
- At least 4 implementations: stellar-core, Bob Glickstein, Mobilecoin,
Peirs Poslesland

The bad news –might want huge changes / other documents
- No hope of interoperability because nomulticast specification
- Maybe we can improve liveness by re-running nomination between
counters (would terminate with prob. 1 even with Byzantine nodes)

- Maybe simpler protocol for slice infrastructures (would require
alternate competing dra�, slow everything down)

14 / 15

https://github.com/stellar/stellar-core
https://github.com/bobg/scp
https://www.mobilecoin.com/


Questions?
15 / 15



SCP nominationmessage
typedef opaque Value<>;

struct SCPNominate {
Value voted<>; // vote to nominate these values
Value accepted<>; // assert that these are accepted
};

union SCPStatement switch (SCPStatementType type) {
case SCP_ST_NOMINATE:
SCPNominate nominate;
/* ... */
};

Nodes broadcast nominated values in voted
- Initially vote values in all received votes (ignoring optimization here)
Upon accepting nomination of a, move from voted to accepted
Stop voting for new values once any is confirmed nominated
- But continue accepting and repeating votes already cast
Stop sending SCPNominatewhen ballot confirmed prepared
- Means NOMINATION phase overlaps with PREPARE phase

16 / 15



SCP commit message

struct SCPCommit {
SCPBallot ballot;
uint32 preparedCounter;
uint32 hCounter;
uint32 cCounter;

};

{accept commit(〈n, ballot.value〉) | cCounter ≤ n ≤ hCounter}
vote-or-accept prepare(〈∞, ballot.value〉)
accept prepare(〈preparedCounter, ballot.value〉)
confirm prepare(〈hCounter, ballot.value〉)
{vote commit(〈n, ballot.value〉) | n ≥ cCounter}

17 / 15



SCP externalize message
struct SCPExternalize {
SCPBallot commit;
uint32 hCounter;

};

{accept commit(〈n, commit.value〉) | n ≥ commit.counter}
{confirm commit(〈n, commit.value〉)

| commit.counter ≤ n ≤ hCounter}
accept prepare(〈∞, commit.value〉)
confirm prepare(〈hCounter, commit.value〉)

By the time you send this, already externalized commit.value
- Means you have confirmed committed a ballot with commit.value
- Goal is definitive record to help other nodes prove value/catch up

18 / 15


