An IETF Traffic Engineering Overview

Haomian Zheng zhenghaomian@huawei.com Adrian Farrel adrian@olddog.co.uk

IETF-103: Bangkok: November 2018

Who Are We?

Adrian

- Served six years as Routing Area Director to March 2015
- Co-chaired WGs in Routing, Operations, and Security
- Technical Advisor to the TEAS WG
- Just appointed as Independent Stream Editor

- Active in all the right working groups
 - TEAS
 - PCE
 - CCAMP
- Specialist in GMPLS and management for optical network

Warning – Information Overload

There is a lot to say about TE in the IETF

We only have one hour

- It's going to be fast and furious!
- Just a taster and lots of pointers
- If we leave out your favourite protocol, please forgive us

Menu

- What is Traffic Engineering?
 - Why do it?
 - What do we need from our protocols?
- Lots of work already done
 - An overview of IETF TE techniques
- What's new and up-and-coming?
 - What new TE tools and techniques is the IETF working on?
- References
 - We can't mention every RFC and draft
 - Just flag up a few key RFCs

What is the Point?

- Traffic Engineering (TE) is concerned with performance optimization of operational networks
- The application of technology and scientific principles to the measurement, modelling, characterization, and control of Internet traffic, and the application of such knowledge and techniques to achieve specific performance objectives
- --- So says RFC 2702
- The purpose is to allow a network operator better control of their network to:
 - Provide more reliable traffic delivery
 - Offer advanced services
 - Make better use of network resources
 - Survive outages and planned maintenance
 - Make the network predictable

What Does That Really Mean?

- First you have to know your network
 - Topology: nodes and links and connectivity
 - Capabilities: bandwidth, delay, metrics
 - Traffic: patterns, demands, matrices
 - Errors and plans
- Then you have to control how the traffic flows
 - To do that you have to configure
 - The network
 - The traffic
 - The management tools

What Sort of Networks?

- Traffic Engineering applies to any data delivery network
 - Actually, applies to any commodity delivery network
 - Electricity, cars, water, sewage, etc.
- We focus on "layer 3 and below"
 - Packets/frames : IP, MPLS, Ethernet
 - Transport technologies : TDM, OTN, lambda, port

Shortest Path First

- In 1956 Edsger Dijkstra wanted to find the shortest way home from the coffee house
 - Least hops quickly leads to per-hop metrics
 - Dijkstra's algorithm is embedded in OSPF and IS-IS so that all nodes in the network make the same forwarding assumptions
 - SPF is quick to compute even in very large networks

Constraint-based Shortest Path First (CSPF)

- Apply additional constraints to the SPF calculation
 - Constraints may be per-hop (for example, bandwidth or lambda continuity)
 - Processing is simple pruning of the graph before or during SPF
 - Constraints may be cumulative (for example, delay)
 - Processing is just like SPF with multiple counters
 - CSPF is quick to compute even on complex networks with multiple constraints
 - But can still tend to converge traffic on some links

It's All a Bit Fishy

Suppose a 5MB demand arrives first

- It gets placed on the shortest path
- Then the 7MB can't be placed

TE allows the 5MB demand to be steered to BCEFG

 Allows the network to support both demands

A Global View for An Optimal Network

- Solving the fish problem requires knowledge of:
 - The network topology
 - The status of all links
 - Up/down/wait-for-down
 - Available bandwidth
 - Other constraints
 - Share Risk Link Groups (SRLGs)
 - All demands
 - Any relationships between demands
- Adaptive TE places set of demands and tweaks the network

High Level View of the Toolkit

- In an abstract sense, we need:
 - Network management
 - Sees whole network and all/new demands
 - Computes how to place demands / modify network
 - Issues commands
 - Routing/discovery
 - Device configuration / signalling
 - Packet / flow marking
- You don't always use all the tools in any deployment

IETF Tools

- IP Source Routing
- IGP Metric Tweaking
- Coloured Graphs
- RSVP
- MPLS-TE
- GMPLS
- PCE
- BGP-LS and Network Aggregation

IP Source Routing

- Encode path information in the packet
 - Strict path
 - Packet header enumerates every node in the path
 - No path information stored in the network
 - E.g., IPv4 with Strict Source Routing Option
 - Loose path
 - Path is divided into segments
 - Segment contains one or more router hops
 - Packet header enumerates each segment that the packet traverses
 - But it does not necessarily enumerate every node
 - Network contains enough state to forward the packet through multi-node segments
 - Normal SPF routing
 - Examples
 - IPv4 Loose Source Routing Option
 - IPv6 Routing Extension Header

Tweak Those Metrics

- Consider the SPF graph from before
- Add a second flow
- Two links may be overloaded

- Careful changing of metrics redistributes traffic
- Beware!
 - With many flows it is very complex
 - Unexpected consequences
 - Don't flap the network
 - Consider what happens with changes in a live network
- Use off-line central tool
- It is successfully deployed

Coloured Graphs

- IGP allows different metrics to be assigned to different code points on the same link
- Builds separate (coloured) topologies on the same physical underlay
- Entry point directs traffic to a topology
 - 5-tuple hash or policy configuration, etc.
 - Colour packets using DSCP
 - Use SPF on the coloured topology identified by the DSCP
- Main use cases
 - Resilience
 - Two diverse paths from source to destination, on in each graph
 - High priority versus best effort

Resource ReSerVation Protocol (RSVP)

- A control (signalling) protocol for packet neetworks
- Control packets
 - Follow flows (i.e., follows SPF) source to destination
 - Describe the flows (principally bandwidth)
 - Retrace their steps destination to source
 - Making bandwidth reservations
- State maintained in network
- Adaptive to:
 - Changes in SPF
 - Merging of flows
- Not widely deployed
 - But see MPLS-TE

Multiprotocol Label Switching (MPLS-TE)

- The MPLS data plane invented for fast forwarding
- The forwarding construct is the Label Switched Path (LSP)
 - Hop-by-hop forwarding state in the network
 - Indexed by a label on each packet
- MPLS-TE places LSPs in the network according to CSPF or central planning
- Objectives:
 - Reduce the overall cost of operations by more efficient use of bandwidth resources
 - Ensure the most desirable/appropriate path for certain traffic types based on certain policies
 - Reserve network resources for traffic flows
 - Rapid recovery by routing (steering) around failures
- The ultimate goal is cost saving

MPLS-TE Protocol Family

- Routing dissemination
 - Extensions to the IGPs (OSPF-TE, ISIS-TE)
 - Add information/status about TE qualities of links
- Signalling
 - Extensions to RSVP (RSVP-TE)
 - Now follow explicit path in preference to SPF
 - LSP setup, modification, teardown

GMPLS: A Label Hierarchy

- Observe that MPLS-TE is a circuit switching technology based on labels
 - We can generalize the concept to any switching technology
 - Labels move from additions to the packet (headers) to physical identifiers Generalized MPLS (GMPLS)
 - MPLS control plane extended for circuits, lambdas, fiber and ports
 - OSPF-TE (and ISIS-TE), RSVP-TE
 - New protocol
 - Link Management Protocol (LMP) to coordinate physical links

Path Computation Element (PCE)

- PCE: Path Computation Element. An entity (component, application, or network node) that is capable of computing a network path or route based on a network graph and applying computational constraints – RFC 4655
 - This does not say it is a dedicated server
 - It can be embedded in a router
 - It can be embedded in every router
- For virtual PoP use case
 - PCE function in head-end LSR for local domain
 - PCE function in remote ASBR accessed through remote call

Realisations of the PCE Architecture

- Historically, head-end LSRs did path computation
 - They included a PCE component
- Historically, the NMS determined paths and instructed the network
 - It included a PCE component
- The PCE architecture recognises these and allows PCE to be externally visible perhaps on a dedicated server

PCE in a dedicated server

Topology Aggregation

Abstraction Layer Network

Client layer resources: C1, C2, C3, C4

Server layer resources: CN1, CN2, CN3, CN4, CN5

Abstraction layer resources:

Nodes: C2, CN1, CN3, CN5, C3

Physical links: C2-CN1, CN5-C3

Abstract links: CN1-CN3, CN3-CN5

Abstraction Leads to Virtualization

- Abstraction is about providing a summarised topology of potential connectivity
- Policy-based
 - Policies set by one network with knowledge of the other networks
 - Overcome issues of scaling, stability, confidentiality, and misinformation found in aggregation
 - Hint: virtual node representations may struggle
- Apply policy to the available TE information within a domain, to produce selective information that represents the potential ability to connect across the domain
 - Don't necessarily offer all possible connectivity options
 - Present a general view of potential connectivity
 - Consider commercial and operational realities
- Retain as much useful information as possible while removing the data that is not needed
- Can be further filtered to provide different views for different consumers

Topology Export (BGP-LS)

- Gather topology information via the IGP
- Abstract it using policy
- Now you need to tell someone about it
 - Essentially you have a topology you want to tell someone about
 - The topology might change over time
- Why BGP?
 - BGP implementations are good at applying policy to routing information
 - BGP is good at exporting bulk data
 - Export is from "key points" that often already have BGP
 - Route Reflectors enable multicast of information
- Link State BGP (BGP-LS) is the encodings to do this
- Note well: work in hand to use YANG models for this
- Note also: proposals in hand to use PCEP extensions for this

IETF Work In Progress

- Lots of tweaks to existing tools
- And some new stuff
 - IGP Flooding Modifications
 - Deterministic Networking
 - Segment Routing
 - PCE as a Central Controller PCECC
 - Abstraction and Control of TE Networks ACTN
 - YANG models

Improving IGP Flooding

- Long-term idea in IGPs
 - To reduce the load (on network and device) of flooding
 - May improve convergence in a busy network
- Why is this interesting for TE?
 - Not all nodes need to know about all TE link changes
- Why might it be unnecessary?
 - TE link updates are recommended to be damped, anyway
 - Configured to only re-advertise when change is more than a percentage of residual bandwidth
 - TE state may be relatively static
 - Arrival rates and setup times don't need such rapid convergence
- Nevertheless, may be some interesting work for TE
 - And care is needed to not break any TE functions!

Deterministic Networking (DetNet)

- Deterministic data paths (predictable)
- Operate over Layer 2 bridged and Layer 3 routed segments
- Paths can provide:
 - Bounds on latency
 - Bounds on loss
 - Bounds on packet delay variation (jitter)
 - High reliability
- Work-load split
 - IEEE802.1 Time Sensitive Networking (TSN) responsible for Layer 2 operations
 - IETF DetNet Working Group responsible for Layer 3 operations
- Data plane encapsulations for MPLS and IP
 - It is simple, but not trivial
 - Tunnel-based approach
 - MPLS tunnels may be placed with knowledge of network behaviour
 - All tunnel packets may be marked to help achieve desired qualities

Segment Routing (SR)

- A tunneling technology
 - Encapsulates a packet within a header
 - Forwards packet based upon encapsulating header
 - Compare and contrast with IP source routing
- A Traffic Engineering (TE) technology
 - Allows a router to steer traffic along an SR path
 - Path can be different from the least cost path
- Maybe more?
 - Innovative new applications to be discovered
- Control plane
 - Signaling removed from the network
 - Routing protocols augmented a little
- Forwarding planes
 - MPLS
 - IPv6
 - **NOT** IPv4

PCE as a Central Controller (PCE-CC)

- Integrating PCE into an SDN architecture
 - All southbound exchanges use PCEP
 - Control may be single node
 - Applications proposed in MPLS, non-packet, and IP environments

Abstraction and Control of TE Networks (ACTN)

Layer

Key Idea: introducing SDN controller hierarchies, and make use of abstraction techniques to provide multi-vendor, multi-domain solution

CNC: customer w/o network knowledge; representing application and service, to be understood by operators.

MDSC: bridges user to network.

- ✓ Customer Mapping/Translation;
- ✓ Virtual Service Coordination;
- ✓ Multi-domain Coordination;
- ✓ Abstraction/Virtualization;

PNC: Configures the Network.

- ✓ Control/Manage the NE;
- ✓ Monitoring the topology;

ACTN Scenario 1: Topology Discovery and Abstraction

ACTN Scenario 2: End-to-End Path Computation

Modeling Requirement:

- ✓ MDSC global view (abstracted);
- ✓ Unified models on MPI for path computation;
- ✓ Policy & constraint supported;
- ✓ E2E Tunnel Set up after path computation;

ACTN Progress in the IETF

 Demonstrates the time-line for developing significant pieces of work

YANG Models

- A Data Model is a formal representation of the data elements that describe and control some element of protocol or networking
 - For example, and OSPF instance, an interface, a link, a topology
- Data models are written in human readable / machine parsable language
 - The IETF's language of choice is YANG
- On the wire YANG is encoded as
 - XML
 - JSON
- The IETF has several hundred YANG models
 - The arrival rate of YANG RFCs is increasing rapidly
- YANG models form a key component of SDN systems
 - Refer back to ACTN where YANG is used between components

YANG Models for ACTN and TE

Summary

- TE is a valuable tool for operating networks
 - Enables the delivery of enhanced services
 - Allows an operator to get more out of their network
- There is a patchwork of IETF tools and techniques
 - Some of them are widely deployed
- More tools and techniques are being developed
 - To meet new requirements
 - Address evolving architectural models
- Lots of opportunity to get involved

Pointers

- Far too many references to list
- A few key RFCs are called out on specific slides
 - These are only a starting point for each topic
 - Look for other documents they reference
 - Look for other documents that reference them
- Some important working groups for new work
 - TEAS : Anchor for all new TE work
 - MPLS : MPLS-TE when not generic
 - CCAMP : Technology specific work
 - PCE : All PCEP work
 - SPRING : Segment Routing work
 - IDR : BGP and especially BGP-LS
 - NETMOD : YANG protocol and foundation models
 - LSR: Extensions to the IGPs
 - DETNET : Deterministic Networking

Questions and Follow-up

zhenghaomian@huawei.com adrian@olddog.co.uk

Please provide feedback by taking this very brief survey https://www.surveymonkey.com/r/trafficengineering