BMP for BGP Route Leak Detection

draft-gu-grow-bmp-route-leak-detection-00

Yunan Gu
Shunwan Zhuang
This draft proposes a method for detecting BGP route leaks using BMP.

We mainly identified the requirements and concerns for the route leak detection, such as:
- Implementation dependency on other ISPs
- Detection accuracy and so on

We feel that BMP might be a good choice for the detection information collection with minor extension work while meeting these requirements.
- Do not change BGP protocol
- Not put heavy impact on BGP processes
- Single-ISP-Available solution
Legacy Solutions—Heavily depending on correct configurations, Lacking Verifications

Routing between multi-AS:

1. R1 receives Route A from AS2, Sets ISP-Specific community per the business relation between AS1 and AS2;
2. R1 sends Route A to the other border routers (e.g. R2);
3. Per the ISP-Specific community in Route A and the business relation between AS1 and AS3/4, R2 can control the route advertisement, e.g., Send A to AS3, Not send A to AS4

Pre-configured routing policies:

- P1: Configure Inbound Policies on R1 for eBGP neighbors in AS2;
- P2: Configure Outbound Policies on R2 for eBGP neighbors in AS3 AND AS4
Pre-requisites:

- **BGP Open Message (extension for route leak protection capability)** exchange before peering set up;

Routing between multi-AS:

1. R1 receives Route A from AS2, set the Internal Only To Customer (iOTC) attribute per the business relation exchanged through Open message exchange between R1 and AS2;
2. R1 sends Route A to the other border routers (e.g. R2);
3. Per the iOTC attribute in Route A and the business relation exchanged between R2 and AS3/4, R2 make the route advertisement decision, e.g., Send A to AS3, Not send A to AS4

Motivation

- "route tagging which relies on operator maintained policy configuration is too easily and too often misconfigured"
- A means to "standardize" the route marking procedures for route leak avoidance
Proposed Solution - Intra-AS route leak detection

Routing between multi-AS:
(1) R1 receives Route A from AS B1; sets ISP-Specific community per the business relation between AS A1 and AS B1; R1 sets business relation to the BMP Route-Monitoring message that including Route A within the message, and sends the BMP Route-Monitoring message to RLD Server;
(2) R1 sends Route A to the other border routers (e.g. R4);
(3) Per the ISP-Specific community in Route A and the business relation between AS A1 and AS F1/G1, R4 can control the route advertisement, e.g., send A to AS F1, not send A to AS G1. R4 sets business relation to the BMP Route-Monitoring message that including Route A within the message if Route A been sent to AS F1/G1, and sends the BMP Route-Monitoring message to RLD Server;
(4) RLD Server doing route-leak verifications using the BMP information collecting from R1 & R4.

Pre-configuration options:
1. Legacy ISP-specific policy-based approach;
2. BGP open policy approach;

Our approach can be an ISP route leak self-checking method:
1. No dependency on third-party ISP;
2. No BGP extension required.
Any comment?