Market Resistance to Homenet

Ted Lemon <mellon@fugue.com>
What is our market right now?

- Skeptical-to-unfriendly:
 - Managers at ISPs
 - Managers at router vendors
- Friendly:
 - Early adopters who want to run it on OpenWRT
 - Developers who are doing it because we're developing it
- Our pitch to friendly people isn't working
 - because we don't really have a product
- Our pitch to the skeptical audience feels a bit hopeless
The Competition

• Three options for multi-AP homenets
 1. Homenet (routed mesh, lots of services)
 2. Layer Two Mesh
 3. Layer Two Wired-to-AP infrastructure
• Current off-the-shelf solutions are all (2) or (3)
• At IETF of course we prefer Option 1
• How do we convince people who aren’t part of our milieu?
• Let’s compare…
Comparison: Host Mobility

- On homenet:
 - Whenever a host switches APs, it renumbers
 - All connections have to be restarted
 - Any call I might have been on on wifi glitches or even drops
 - Latency is L2 switching time plus the L3 config time

- On an L2 network:
 - Connections remain, unless they time out (unlikely)
 - Connect Latency is time it takes to connect to the new AP
 - There are probably some congestion control issues
 - When you switch APs, the spanning tree has to adjust
Service Discovery

- On homenet:
 - We need a complicated name resolution infrastructure
 - This probably delivers better performance
 - But it's complicated, and it has to be gotten right, or we have reliability issues

- On an L2 network:
 - Just use mDNS
 - Produces a lot of multicast traffic that can't be easily isolated
 - But in principle, it can work
 - And there are ways to mitigate the multicast traffic issue, for example by doing unicast to each host
Routing

- On homenet:
 - We have a routing fabric, which maybe works
 - I've heard some discouraging reports from Dave Taht
 - The routing fabric can be joined by IoT gateways
 - Traffic is isolated to individual links

- On L2 mesh:
 - We have some proprietary or IEEE L2 mesh protocol

- On L2 Infrastructure or Mesh:
 - Traffic isolation relies on Spanning Tree
 - This doesn't work for mDNS
 - Doesn't entirely work for Neighbor Discovery
Isolation

- On homenet:
 - In principle we can have separate subnets that are firewalled from each other
 - We can have a DMZ
 - We can do service discovery across the DMZ
- On L2 networks:
 - We can use VLANs for isolation
 - But then we need L3 routing
 - Can’t do service discovery across VLANs
Standardization

- Homenet can in principle be standardized, but we still have a lot of work to do
- L2 hub-and-spoke is pretty straightforward
- L2 mesh isn't usefully standardized, so everyone rolls their own which is sort of based on IEEE 802.11s
 - If you are a router vendor, this is a way to achieve lock-in
 - If you are a host vendor, you don't really care
• Homenet can do this without adding much complexity
• For a non-homenet router, this is a substantial increase in software footprint
• But they can just tell you to install an appliance if you want to do that, because it's a flat network
• Could even do it (shudder) in the cloud
Code Complexity

- Homenet requires:
 - HNCP implementation
 - Discovery Proxy
 - Full-service resolver or Discovery Broker + Proxy
 - Babel routing protocol implementation
 - ???

- L2 requires:
 - L2 mesh implementation
 - Spanning tree or equivalent
 - Dumb DNS Proxy
Multihoming

- Homenet:
 - Does this nicely, for the most part
- Layer 2:
 - Multiple RAs, one per ISP
 - Host is responsible for figuring out what to do
 - Actually pretty simple to specify
Secure Services on the Homenet

- Homenets can do ACME over IPv6, if they have IPv6
- L2 can do ACME however they want
- This matters because it allows for validate-able TLS certs for home router services
- TLS certs allow for secure access to router web UI
- Also allow for secure communication for OAM apps, if any
IoT Support

- Homenet
 - Allows routers to join and participate in the network
 - Has a stateful service discovery solution that can be used by IoT routers
 - Can propagate routes in such a way that non-IoT hosts can definitely talk to IoT hosts
 - IoT routers can use homenet routing plane for transit between them
- L2
 - Discovery of IoT devices on IoT network ULA prefix requires
 - changes to hosts
 - special name service behavior
 - Spanning tree has to be really effective, or this is going to completely swamp the IoT network
 - Need ALGs for every multicast protocol that is used on the IoT network
 - IoT routers can discover each other and establish transit between them
• I think the strongest pitch here is IoT
 • The problem with this pitch is that it doesn't actually address the target market
• I would personally prefer the services a homenet offers, but
 • How would I pitch that to a manager who isn't a True Believer
 • How would I pitch that to an end user
• Is the first target market for homenet actually IoT edge routers?
• Are we even doing the right thing here? Should we just be defining how multi-homed IPv6 L2 home networks work better?