
draft-ietf-i2nsf-capability -04
Development Plans

L. Xia, J. Strassner, C. Basile, D. Lopez

I2NSF Meeting,
Bangkok, Thailand
November 7 th, 2018

� NSFs are defined by Capabilities
� The set of features to be exposed to other I2NSF components

and NSFs, independent of the customer and provider
interfaces

� NSFs can be combined to provide security services
� Every NSF SHOULD be described with the set of capabilities

it offers.
� Capabilities MAY have their access control restricted by

policy (this is out of scope for this draft)

� This draft defines
� The concept of NSF Capabilities and their use using an info

model and a Capability Algebra
� Ensures that the different actions of the Policy Rule do not conflict with

each other
2

Introduction: the Context

� Events, Conditions, and Actions are each Templates
� Define a structure and organization of MTI attributes

(and optionally, methods) that define behavior
� Each may have metadata to further describe properties and

operation and/or prescribe behavior

� Policy Rule is a Template of Templates
� Defines a structure and organization of MTI components

of a policy rule
� Each may have metadata to further describe properties and

operation and/or prescribe behavior
� Information Model used to describe the structure an d

semantics of these templates in a technology-neutra l way

3

Conceptually, a Template of Templates

� Security is independent of physical vs. virtual pac kaging

� Security is described by one or more Capabilities

� Policies define how to manage Capabilities

� Policies are defined in an object-oriented info mod el

� This enables
� NSF behavior to be defined using Capabilities
� Policy Rules to be defined to manage NSF behavior
� Capabilities and Policy Rules can be reused as is, or extended

4

Key Abstractions

� The Current Model Uses ECA Policy Rules
� Events: significant occurrences the NSF is able to react to

� Conditions: how the NSF decides which actions to apply

� Actions: what operations to execute

� PolicyRule: a container that aggregates an Event, a
Condition, and an Action (Boolean) clause

� Behavior
� Actions MAY execute if Event and Condition (Boolean)

clauses BOTH evaluate to TRUE; this is controlled by
resolution strategy and metadata
� Capability Algebra used to make resolution strategy decidable

� Default actions MAY be specified
5

The ECA Policy Rule Model

Conceptual Operation

6

External Info Model

SecurityPolicyRule NSFMetadata

SecurityCapability

HasSecurityCapability

HasSecurityCapabilityDetail

0..n

0..n

ManagesSecurityCapability

0..n

0..1

Exemplary External Info Model (MCM)

7

Decorator
Pattern

Objects IN A PolicyRule

Types of
PolicyRules

Types of
Decorated

ObjectsClauses in a
PolicyRule

ECAPolicyRule

� Let’s review YANG construction guidelines
� Three key information modeling concepts that a data model SHOULD

consistently represent: classes, class inheritance, and associations.
� Each class in the model is represented by a YANG identity and by a

YANG grouping. The grouping enables us to define classes abstractly.
Each grouping begins with two leaves (either defined in the grouping or
inherited via a uses clause), which provide common functionality.
� One leaf is used for the system-wide unique identifier for this instance
� The second leaf is an identityref which is set to the identity of the instance. It

is read-write in the YANG formalism due to restrictions on the use of MUST
clauses.

� Subclassing is done by defining an identity and a grouping for the new
class. The identity is based on the parent identity, and is given a new
name to represent this class. The new grouping uses the parent grouping.
It refines the entity-class of the parent (the second leaf), replacing the
default value of the entity-class with the correct value for this class.

8

YANG Generation (1)

� Associations are represented by the use of instance-identifiers and
association classes. Association classes are classes, using the above
construction, which contain leaves representing the set of instance-
identifiers for each end of the association, along with any other properties
the information model assigns to the association.

� The two associated classes each have a leaf with an instance-identifier
that points to the association class instance.

� Each instance-identifier leaf is defined with a must clause. That must
clause references the entity-class of the target of the instance-identifier,
and specifies that the entity class type must be the same as, or
subclassed from, a specific named class. Thus, associations can point to
any instance of a selected class, or any instance of any subclass of that
target.

� Note: It is impossible in YANG to retain the difference between
associations, aggregations, and compositions. This is mitigated by the use
of association classes.

9

YANG Generation (2)

� The concrete class tree is constructed as follows. The YANG model
defines a container for each class that is defined as concrete by the
information model. That container contains a single list, keyed by an
appropriate instance-identifier. The content of the list is defined by a uses
clause referencing the grouping that defines the class.

� Example on next slide:

10

YANG Generation (3)

module: ietf-supa-policy

+--rw supa-encoding-clause-container

| +--rw supa-encoding-clause-list* [supa-policy-ID]

| +--rw entity-class? identityref

| +--rw supa-policy-ID string

| +--rw supa-policy-name? string

| +--rw supa-policy-object-description? string

| +--rw supa-has-policy-metadata-agg-ptr* instance-identifier

| +--rw supa-policy-clause-deploy-status identityref

| +--rw supa-has-policy-clause-part-ptr* instance-identifier

| +--rw supa-policy-clause-has-decorator-agg-ptr* instance-identifier

| +--rw supa-encoded-clause-content string

| +--rw supa-encoded-clause-language enumeration

+--rw supa-policy-variable-container

| +--rw supa-policy-variable-list* [supa-policy-ID]

| +--rw entity-class? identityref

| +--rw supa-policy-ID string

| +--rw supa-policy-name? string

| +--rw supa-policy-object-description? string

| +--rw supa-has-policy-metadata-agg-ptr* instance-identifier

| +--rw supa-policy-clause-has-decorator-part-ptr* instance-identifier

| +--rw supa-has-decorated-policy-component-part-ptr? instance-identifier

| +--rw supa-pol-clause-constraint* string

| +--rw supa-pol-clause-constraint-encoding? identityref

| +--rw supa-has-decorated-policy-component-agg-ptr* instance-identifier

| +--rw supa-pol-comp-constraint* string

| +--rw supa-pol-comp-constraint-encoding? identityref

| +--rw supa-policy-term-is-negated? boolean

| +--rw supa-policy-variable-name? string
11

Example YANG

12

Main Updates in -04

� Re-organize the document structure (no more new contents):
create a new section 3.4 (Modelling NSF Features as Security
Capabilities), and move the existing sections into it, in which;
� 3.4.1 - Matched Policy Rule, 3.4.2 Conflict, Resolution Strategy and

Default Action and 3.4.3 I2NSF Condition Clause Operator Types are
logically closely related, to clarify how to construct a Policy Rule and
all of the key components

� 3.4.4 - Uses of the capability information model: clarify the “GNSF”
concept

� 3.4.5 - A Syntax to Describe the Capability of an NSF and 3.4.6 -
Capability Algebra are together to describe the representation of NSF
Capability and how to manipulate them with a formal way (Capability
Algebra)

� Add Section 4 (Considerations on the Practical Use of the CapIM)
to describe how our IM serves the purposes of I2NSF WG and
allows solving issues that WG wanted to solve: maybe better as an
Appendix

� Further content improvement of section 4 (consideri ng
moving it to Appendix), one more round of document text
polishing

� Provide examples of the YANG generation rules in Ap pendix

� Next version (-05) for WGLC?

� Analyze existing DMs in the light of the Capability Model and
contribute it as a supporting Internet Draft
� Not as part of this document to avoid unmanageable

forward references

13

Next Step

Questions?

Questions?

“Create like a god. Command like a king. Work like a slave”
- Constantin Brancusi

