MAMS* User-Plane Protocols

(IETF 103)

Jing Zhu (Intel)

Collaborators: SungHoon Seo (KT), Satish Kanugovi (Nokia), and Shuping Peng (Huawei)

*: Multi-Access Management Service

draft: https://tools.ietf.org/html/draft-zhu-intarea-mams-user-protocol-06

MAMS Reference Architecture

- Network Multi Access Data Proxy (N-MADP): user-plane functionalities in the network
- Client Multi Access Data Proxy (C-MADP): user-plane functionalities in the client

MAMS U-Plane Related Requirements

- Access technology agnostic
- Support common transport deployments
- Independent Access path selection for Uplink and Downlink
- Adaptive access network path selection
- Multipath support and Aggregation of access link capacities
- Lossless Path (Connection) switching
- Concatenation and Fragmentation to adapt to MTU differences

Ref: https://tools.ietf.org/html/draft-kanugovi-intarea-mams-framework-02

MAMS U-Plane Protocol Stacks

- Multi-Access (MX) Convergence Sublayer: performs tasks across multiple accesses, e.g., access (path) selection, multi-link (path) aggregation, splitting/reordering, lossless switching, etc.
 - MP-TCP Proxy
 - GRE-based Convergence Protocol (modified)
 - Trailer-based Convergence protocol (new)
- Multi-Access (MX) Adaptation Sublayer: handle access-specific tasks, e.g. tunneling, network security, and NAT.
 - UDP Tunneling
 - IPsec Tunneling
 - Client Net Address Translation (NAT)
 - Pass Through

User Payl	oad (e.g. IP PDU)	
 Multi-Access (MX) Convergence Sublayer	
 MX Adaptation Sublayer (optional)	MX Adaptation MX Adaptation Sublayer Sublayer (optional) (optional)	
Access #1 IP +	Access #2 IP Access #3 IP +	
		- 1

MAMS Convergence Option #1: MP-TCP Proxy

	МРТСР	
TCP	ТСР	ТСР
MX Adaptation Sublayer (optional)	MX Adaptation Sublayer (optional)	MX Adaptation Sublayer (optional)
Access #1 IP	Access #2 IP	Access #3 IP

- Pros: mature protocols, real-world deployments, etc.
- Cons: non-TCP traffic (e.g. QUIC), same path/access for downlink (TCP data) and uplink (TCP ACK)
- Change: none

Ref: https://tools.ietf.org/html/draft-ietf-tcpm-converters-04

MAMS Convergence Option #2: GRE

+			+
	User Payloa	ad (e.g. IP PDU)	
	GRE GRE Deliv	as MX Convergen	nce Sublayer
	MX Adaptation Sublayer (optional)	MX Adaptation Sublayer (optional)	MX Adaptation Sublayer (optional)
 +	Access #1 IP	ACCESS #2 IP	ACCESS #3 IP +

- Pros: support all IP traffic
- Cons: IP-over-IP encapsulation overhead, low flexibility (reusing GRE header).
- Change: reuse the "Key" field in the GRE header to carry MAMS-specific info.

MAMS Convergence Option #3: Trailer-based

• Protocol Type = xyz (e.g. a new IP protocol type or 114*)

Trailer-based Encapsulation Format (114: "Any 0-Hop Protocol")

- Pros: low overhead & high flexibility, support all IP traffic
- Change: a new trailer-based protocol

Summary

- MAMS (Multi-Access Management Service) is a programmable framework to manage and configure various multi-access convergence solutions, e.g. MP-TCP, GRE, etc.
- A new "Trailer-based Convergence Protocol" is proposed
 - low overhead & high flexibility
 - similar encapsulation approach as IPSec ESP
- Call for interests/collaborations to improve the draft
 - INTAREA WG document ?

Backup

IPSec ESP Encapsulation

• Trailer-based encapsulation is also used in IPSec

GMA Concatenation & Fragmentation

MAMS Convergence Control Messages

MX Convergence Control	Protocol	stack
------------------------	----------	-------

MX Cor	nvergence Control	Messages
	UDP/IP	
MX Adaptation Sublayer (optional)	MX Adaptation Sublayer (optional)	MX Adaptation Sublayer (optional)
Access #1 IP	Access #2 IP	Access #3 IP

MX Convergence Control PDU

	<mx control="" payload="" pdu=""></mx>
Ì	IP header UDP Header Type CID MX Control Message
+	
	CID: the identification of the delivery connection for sending the control message

Keep-alive Message

...

- Probe-REQ/ACK Message
- Acknowledgement Message
- First Sequence Number (FSN) Message
- Coded MX SDU (CMS) Message

MAMS Convergence Control Flow (1): Retransmission

C-MADP may send out the Packet Loss Report (PLR) messages to report lost MX SDU for example during handover. In response, C-MADP may retransmit the lost MX SDU accordingly.

N-MADP may send out the FSN messages to indicate the oldest MX SDU in its buffer if a lost MX SDU is not found in the buffer after receiving the ACK message from C-MADP. In response, C-MADP SHALL only report packet loss with SN not smaller than FSN.

MAMS Convergence Control Flow (2): Network Coding

N-MADP (or C-MADP) may send out the CMS message to support downlink (or uplink) packet loss recovery through coding. A coded MX SDU is generated by applying a coding algorithm to multiple consecutive (uncoded) MX SDUs, and it is used for fast recovery without retransmission if any of the MX SDUs is lost.

Other Usage: 3GPP Release 16 ATSSS

E2E User Plane Protocol Stack with Trailer-based GMA (Generic Multi-Access) protocol

Source: TR 23.793

ATSSS: Access Traffic Splitting Switching and Steering