Dynamic Flooding On Dense Graphs

draft-li-lsr-dynamic-flooding-01
(from draft-li-dynamic-flooding-05)
Review: Dynamic Flooding

- Decouple flooding topology (FT) from physical topology
- Centralized vs. distributed mode
- Not to discuss algorithms for computing the FT
- IS-IS and OSPF TLVs:
 - Area Leader Sub-TLV (preference for becoming an AL)
 - Area System IDs TLV (all systems in the flooding topology)
 - Flooding Path TLV (adjacency matrix for the flooding topology)
Changes from Previous Version

- **New Protocol Elements**
 - IS-IS Dynamic Flooding Sub-TLV
 - IS-IS Flooding Request TLV
 - OSPF Dynamic Flooding Sub-TLV
 - OSPF Flooding Request Bit

- **Treatment of Topology Events**
 - Temporary Flooding
Protocol Elements: IS-IS TLVs

- **Dynamic Flooding Sub-TLV**
 - Used for
 - Optimizing the flooding topology
 - Selecting optimal algorithm in distributed mode
 - Indicates
 - Whether the node supports dynamic flooding
 - What algorithms are supported in distributed mode

- **Flooding Request TLV**
 - Used for
 - Requesting temporary flooding from the adjacent node
 - Indicates
 - Which circuit type and flooding scope for temporary flooding
IS-IS Dynamic Flooding Sub-TLV

- Sub-TLV of the IS-IS Router Capability TLV (242)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Algorithm...</th>
</tr>
</thead>
</table>

- Type: TBD
- Length: 0-255; number of Algorithms
- Algorithm: zero or more numeric identifiers in the range 0-255 that identifies the algorithm used to calculate the flooding topology
IS-IS Flooding Request TLV

- MAY be included in IIH PDUs

```
+-----------------------------+
|     Type      |     Length    | Circuit Type  |R|  Scope      |
|-----------------------------|
```

- Type: TBD
- Length: 1 + number of advertised Flooding Scopes
- Circuit Type: as specified in [ISO10589]. Needed in P2P.
- R: Must be 0 and ignored on receipt
- Scope: LSP Flooding Scope Identifier Registry defined by [RFC7356]
Protocol Elements: OSPF TLVs

- Dynamic Flooding Sub-TLV
 - Both v2 and v3
 - In the Router Information LSA [RFC7770]

- Flooding Request Bit
 - Both v2 and v3
 - Option bit in the LLS Type 1 Extended Options and Flags field [RFC2328]
OSPF Dynamic Flooding Sub-TLV

- Type: TBD
- Length: 0-255; number of Algorithms
- Algorithm: zero or more numeric identifiers in the range 0-255 that identifies the algorithm used to calculate the flooding topology
Temporary Flooding

- Nodes supporting dynamic flooding MUST use flooding topology (FT) for flooding.
- Cases to temporarily add a link to the FT:
 - A new link is added and one of the adjacent nodes is not in current FT
 - A local link fails and the node has one or no connection to the FT
- Adjacency up: existing mechanism for link state database resync
- Start temporary flooding on a link:
 - Enable flooding on local
 - Request flooding from the neighbor (using the flooding request TLV)
- Stop temporary flooding:
 - When both adjacent nodes are on the FT
A Tradeoff

- Stability vs. Fast convergence
 - Excessive flooding: may lead to instability
 - Less flooding: may lead to slow convergence

- To be considered in both flooding topology and enabling temporary flooding