Area Abstraction

Better areas for IS-IS
draft-li-area-abstraction-00

Trend: Turning the router inside out

- Traditional multi-chassis router design:
- Packet forwarding engines at the edges
- Clos or Benes fabric in the middle
- Single system abstraction
- What happens if you put the fabric on the outside?
- Many smaller systems for doing packet forwarding
- Clos or leaf-spine topology
- Need abstraction of the result
- IGP abstraction mechanism: the area

Review: IS-IS areas

- Level 1 areas abstracted into Level 2
- But, for transit, Level 1 topology must also be Level 2 topology
- If most of the Level 1 topology is used for transit, this provides no benefit
- Result: Level 2 scale problem. Areas not particularly useful.

Requirements

- A stronger Level 1 abstraction
- Level 1 area looks like a Level 2 node
- Internal topology NOT advertised at all
- All external connectivity represented

Proposed Architecture

- Represent L1 area as a single L2 pseudo-node
- L1 area elects an Area Leader
- Area Leader picks a pseudo-node ID
- On external links, border routers generate IIH's using pseudo-node ID.
- Internally, border routers create tunneled L2 adjacencies with Area Leader.
- Area Leader creates pseudo-node LSP listing external adjacencies from border router LSPs.
- Only the pseudo-node LSP flooded on external links
- Other L2 area-originated LSPs NOT flooded externally
- L2 transit LSPs flooded normally
- Result: L1 area looks like a single L2 pseudo-node with full external connectivity

Internals

- L1 area border routers must provide forwarding for L2
- ABRs are full fledged L2 routers
- Logical connectivity is via the Area Leader, but that's suboptimal for forwarding
- Compute 'shortcuts' from entry ABR to exit ABR for direct tunneling across L1
- Can use SR (or even GRE) for forwarding

Area Pseudo-node TLV

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned} 1
$$

- TLV Type: TBD
- TLV Length: 2 + (system ID length + 1)
- Pseudonode ID: Pseudonode ID for the area

