IGP extension for PCEP security capability support in the PCE discovery
draft-wu-lsr-discovery-security-support-00

Zitao Wang
Qin Wu
Dhruv Dhody
Daniel King
Diego Lopez
IETF 103
Bangkok, Tailand
Oct 12, 2018
Recap

• Security protection for routing protocol such as PCEP, BGP
 – TCP-MD5 (RFC2385) Provides integrity, but doesn’t protect against IP header stuff. Deprecated due to being weak.
 – TLS (RFC5246). Well deployed
 – IPSec. Largely just works, but
 • Not work well with NAT boxes
 • Slow session establishment, Bootstrapping issue
 – TCP AO (RFC5925) address many deficiency of TCP-MD5, and add key agility, but lack widely deployment.
 • This will be changed soon when more and more vendors implement TCP AO (e.g., TCP AO implementation hackathon work in IETF 103).
Motivation

• RFC8253(PCEPS) describes using TLS to enhance PCEP security. This requires that both PCC and PCE server should support TLS

• Before connecting to a PCE server with TLS support, TCP AO, TCP MD5, PCC needs to know which PCE server supports TLS, TCP AO, etc.

• The current PCE discovery protocol define in [RFC5088] and [RFC5089] doesn’t provide such capability

• Without using discovery, it leads to unexpected failure or additional message exchange is needed to indicate error to PCC using PCErr message.
Solution

• PCE-CAP-FLAGS sub-TLV is defined in [RFC5088] and [RFC5089] to advertise PCE capability.

• Proposes new capability flag bits for PCE-CAP-FLAGS sub-TLV that can be announced as attributes in the IGP advertisement to distribute PCEP security support information.
 – E.g., PCE with TLS support
 – PCE with TCP-MD5 support
 – PCE with TCP-AO support
New flag bits in PCE-CAP-FLAGS sub-TLV

- **PCEP-CAP-FLAGS Sub-TLV format**

In the PCE capability Flags field, we add three new flag bits as follows:

<table>
<thead>
<tr>
<th>Flag Bit</th>
<th>Capability Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xx</td>
<td>TCP MD5 support</td>
</tr>
<tr>
<td>xx</td>
<td>TCP AO Support</td>
</tr>
<tr>
<td>xx</td>
<td>PCEP with TLS support</td>
</tr>
</tbody>
</table>

In the PCE capability Flags field, we add three new flag bits as follows:
Open Issue: Include Key-ID

• Add key-id for TCP-AO or TLS usage
 – the key-chain name from RFC 8177
 – Add details security parameter raises security concern
 • E.g., include the actual keys in IGPs
 • Having actual key in BGP

• Proposal:
 – Only add key-id for TCP-AO or TLS usage.
Next Step

• Adoption?
With Discovery

• * With discovery - PCE requiring TLS
 – PCC uses discovery to know it needs to use TLS to connect to the desired PCE
 – PCC initiates TCP connection and TLS handshake
 – PCEP exchange within TLS context

• * With discovery – PCE not requiring TLS
 – PCC uses discovery to know it needs not to use TLS to connect to the desired PCE
 – PCC initiates TCP connection
 – PCEP exchange over TCP
Without Discovery

* Without discovery - PCE requiring TLS
 1.- PCC initiates TCP connection and TLS handshake
 2.- PCEP exchange within TLS context

* Without discovery - PCE not requiring TLS
 1.- PCC initiates TCP connection
 2.- PCEP exchange over TCP

1.- PCC initiates TCP connection and attempts a PCEP OPEN message
2.- PCE rejects the message with a PCErr message (Error-Type=1, Error-value=3, TLV identifying the need for TLS)
 (optionally)
3.- PCC initiates TCP connection and TLS handshake
4.- PCEP exchange within TLS context

1.- PCC initiates TCP connection and TLS handshake
2.- No TLS context established with PCE or error message received
 (optionally)
3.- PCC initiates TCP connection
4.- PCEP exchange over TCP