Alternative Elliptic Curve Representations

draft-ietf-lwig-curve-representations-00

René Struik
Struik Security Consultancy
E-mail: rstruik.ext@gmail.com

IETF 103 – Bangkok, Thailand, November 7, 2018
Background

History:
– Initial document presented on March 21, 2018 @ IETF-101
– Adopted as WG doc after IETF-102 meeting Montreal, July 2018

Background:
– NIST curves and CFRG curves use different curve models, thereby seemingly precluding code reuse
– Draft shows how curve models are related, by showing how one can switch between curve models via alternative representations
– Draft illustrates how to reuse existing code for NIST prime curves to implement CFRG curves (e.g., combine P-256 curve + Curve25519)
– Draft also illustrates how to use this to reuse existing standards
– Draft illustrates how to implement Edwards curve via Montgomery ladder, thereby allowing also code reuse amongst just CFRG curves
Current Status (1)

What was in pre-WG version 02?
– Pre-WG draft showed how to reuse *generic* existing ECC code
– Pre-WG draft also showed how to reuse *non-generic* existing implementations, including those that hardcode domain parameter $a=-3$ with short Weierstrass curves (which NISTp and Brainpool do)
– Pre-WG draft still lacked some fine details, since hard to compute

What is new in WG version 00?
– WG draft now provides full details of curve models and mappings, thereby allowing implementation of Curve25519 and Ed25519 with existing short-Weierstrass curve code, whether *generic, optimized*, or “Jacobian-friendly” (with hardcoded $a=-3$ domain parameter)
Current Status (2)

What has been added in WG version 01? (post submission cut-off)
– Some suggestions, e.g., by Nikolas Rösener, Phillip Hallam-Baker
– Incorporates worked-out examples:
 ◆ Implementations:
 – co-factor Diffie-Hellman (X25519) via Weierstrass curve;
 – EdDSA signing via Montgomery ladder for Curve25519;
 ◆ Specifications:
 – reuse NIST SP 800-56a to specify ephemeral key pairs for CFRG curves (e.g., §4.2.2 of draft-selander-ace-cose-ecdhe-10)

Implementations:
See https://community.nxp.com/docs/DOC-330199 (mentions 10x speed-up with existing ECC HW)
Next Steps?

Main features latest draft:
− Shows how to implement CFRG curves using existing NISTp code
− Shows how to implement Edwards curve using Montgomery ladder (thereby, allowing code reuse for different CFRG curve models, [even if one does not care about short-Weierstrass curves])

Do we need more?
− More feedback on latest draft welcome!
− Conversions can be implemented using a few field additions and multiplies. Do worked-out examples provide sufficient details?

Question:
− Are there any other ECC implementation mysteries to be dispelled? (and, if so, should this be in this draft or elsewhere?)