Alternative Elliptic Curve Representations

draft-ietf-lwig-curve-representations-00

René Struik

Struik Security Consultancy <u>E-mail:</u> rstruik.ext@gmail.com

IETF 103 – Bangkok, Thailand, November 7, 2018

Background

History:

- Initial document presented on March 21, 2018 @ IETF-101
 https://datatracker.ietf.org/meeting/101/materials/slides-101-lwig-4-lwig-curve-representations-01
 Adopted as WG doc after IETE-102 meeting Montreal July 20
- Adopted as WG doc after IETF-102 meeting Montreal, July 2018
 Background:
- NIST curves and CFRG curves use different curve models, thereby seemingly precluding code reuse
- Draft shows how curve models are related, by showing how one can switch between curve models via alternative representations
- Draft illustrates how to *reuse existing code* for NIST prime curves to implement CFRG curves (e.g., combine P-256 curve + Curve25519)
- Draft also illustrates how to use this to reuse existing standards
- Draft illustrates how to implement Edwards curve via Montgomery ladder, thereby allowing also code reuse amongst just CFRG curves

Current Status (1)

What was in pre-WG version 02?

- Pre-WG draft showed how to reuse generic existing ECC code
- Pre-WG draft also showed how to reuse *non-generic* existing implementations, including those that hardcode domain parameter a=-3 with short Weierstrass curves (which NISTp and Brainpool do)
- Pre-WG draft still lacked some fine details, since hard to compute

What is new in WG version 00?

 WG draft now provides full details of curve models and mappings, thereby allowing implementation of Curve25519 and Ed25519 with existing short-Weierstrass curve code, whether *generic*, *optimized*, or "Jacobian-friendly" (with hardcoded a=-3 domain parameter)

Current Status (2)

What has been added in WG version 01? (post submission cut-off)

- Some suggestions, e.g., by Nikolas Rösener, Phillip Hallam-Baker
- Incorporates worked-out examples:
 - Implementations:
 - co-factor Diffie-Hellman (X25519) via Weierstrass curve;
 - EdDSA signing via Montgomery ladder for Curve25519;
 - Specifications:
 - reuse NIST SP 800-56a to specify ephemeral key pairs for CFRG curves (e.g., §4.2.2 of draft-selander-ace-cose-ecdhe-10)

Implementations:

- [1] N. Rösener, Evaluating the Performance of Transformations Between Curve Representations in Elliptic Curve Cryptography for Constrained Device Security, M.Sc., Universität Bremen, August 2018.
- [2] H. Liu, "How to Use the Kinets LTC ECC HW to Accelerate Curve25519 (v.7)," NXP, April 27, 2017.
 See https://community.nxp.com/docs/DOC-330199 (mentions 10x speed-up with existing ECC HW)

Next Steps?

Main features latest draft:

- Shows how to implement CFRG curves using existing NISTp code
- Shows how to implement Edwards curve using Montgomery ladder (thereby, allowing code reuse for different CFRG curve models, [even if one does not care about short-Weierstrass curves])

Do we need more?

- More feedback on latest draft welcome!
- Conversions can be implemented using a few field additions and multiplies. Do worked-out examples provide sufficient details?

Question:

Are there any other ECC implementation mysteries to be disspelled?
 (and, if so, should this be in this draft or elsewhere?)

draft-ietf-lwig-curve-representations-00