
Fragment Forwarding vs Per 
hop reassembly

Performance report
https://github.com/nyrahul/ietf-data/blob/master/6lo-fragfwd-perf-report.rst

- Rahul Jadhav & Rabi Sahoo

IETF 103, Bangkok

https://github.com/nyrahul/ietf-data/blob/master/6lo-fragfwd-perf-report.rst


Briefly about fragment forwarding

BR

aaaa::
22

aaaa::11

aaaa::22

aaaa::44aaaa::33

1

3 4

2

pkt

1
2

3
4

BR

aaaa::
22

aaaa::11

aaaa::44aaaa::33

1

2

3
4

1

3 4

2

pkt

BR

aaaa::
22

aaaa::11

aaaa::44aaaa::33

1

2

3
4

pkt

pkt

BR

aaaa::11

aaaa::22

aaaa::44aaaa::33

pkt

1
2

3
4

1

2

3

4

pkt

1

2

3

4

tag seq iid

tag seq iid

Per hop reassembly – RFC 4944 Fragment forwarding



Our motivation

• Understand
• Latency/PDR implications of using fragment forwarding(FF)

• Focus not much on memory utilization
• Fragment forwarding clearly improves memory utilization

• Motivation
• Use of EAP-PANA (as defined by Wi-SUN) causes fragmentation 

during authentication
• Can FF help improve PDR/latency such that network convergence time is 

reduced?



Test configuration

• L2 configuration
• 802.15.4 in unslotted single channel 2.4GHz mode
• Carrier sensing enabled but no RTS/CTS

• LoWPAN does not use RTS/CTS because of high overhead

• L2 MTU = 127 Bytes
• Max mac retry = 3 (with exp backoff)

• Network Configuration
• # of nodes = 50
• Grid (10x5) Topology

• Inter-node distance (x,y) = (80m, 100m)

• RPL Routing
• MRHOF with ETX as routing metric
• Trickle parameters, MRHOF thresholds same for all tests

Sample Topology in tree format



Data transmission

• Send frequency for every node
• 40s with UDP payload of 256B, results in 3 fragments

• 80s with 512B, results in 5 fragments

• 160s with 1024B, results in 9 fragments

• Please note that every node app adds random delay between 0.5s to 5s 
before transmitting

• All the data destined to BR



Data: PDR (Packet Delivery Rate)

PDR of FF without pacing was sub-optimal. 
Pacing improved it significantly. 



Pacing? Impact on latency?

• Add inter-fragment fixed delay on 
original sender side
• We tried 50ms and 100ms fixed delay

• Pacing allows the fragment receiver to 
receive and subsequently forward the 
fragment without interference

• Thanks to Carsten and Pascal for this 
discussion

• Pacing improved PDR drastically

• But pacing induced serious latency



Reasoning: MAC transmit failure

Please note that these are MAC transmit failures..
The packets delivered in first, second, third 
attempt are mentioned in the performance 
report. 2nd/3rd attempts are also much high for 
FragFwdingNoPacing case.



Observations (with this L2 setup)

• FF seems to depend on pacing
• But if you add pacing, the latency is impacted negatively

• Per hop reassembly seems to be doing better, in this case, both in 
terms of PDR & latency

• Clearly, L2 primitives have big impact on such schemes

• Note: fragment drop due to memory unavailability were very less
• Grid topology has less impact of bottleneck nodes
• traffic pattern was sparse

• Fragment-Recovery might help
• More fragments, higher payload loss probability. Not burst losses, usually.



Tools

• Simulation tool
• Whitefield-Framework (using NS3-lrwpan backend for realistic RF)

• Implementation
• FF support added in forked Contiki

• Implementation adds slack (reserves extra bytes) in the first fragment

• Slack is needed because the first fragment size might change en-route 
because of varying 6lo compression at each hop

• Timer (60sec) to clear off entries in fragment table in case all fragments 
do not arrive

• Contiki already supports per-hop reassembly

https://github.com/whitefield-framework/whitefield


More experiments needed

• Experiment with different RFs
• 6TiSCH

• Ad-hoc 802.11 with RTS/CTS

• 802.11s uses L2-mesh … This will result in fragment-forwarding like behavior.

• More optimal pacing algorithms needed
• Should pacing be done at original sender-side only?

• Trivial to implement

• Will it help if done at intermediate hops?
• non-trivial to implement since there could be multiple forwarding sessions in parallel

• Experiment same using a hardware based setup



Ack: Thanks to

• Yatch for sharing his insights into his experiments

• Carsten and Pascal for great discussions on 6lo-FF-design-team ML


