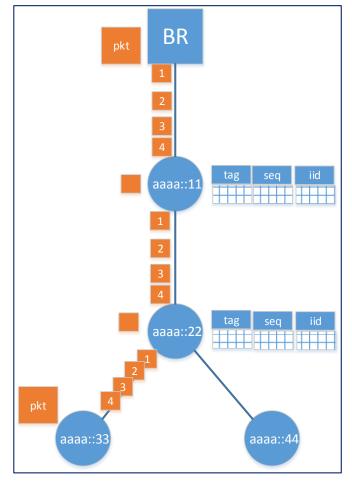

Fragment Forwarding vs Per hop reassembly

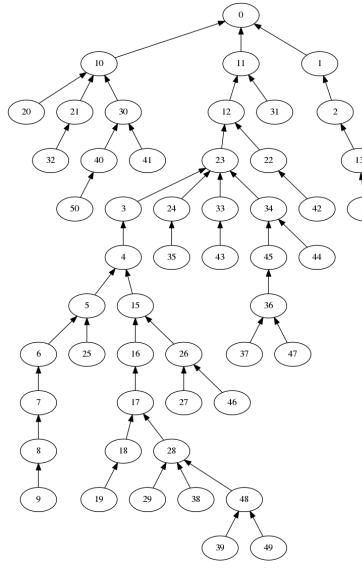
Performance report


https://github.com/nyrahul/ietf-data/blob/master/6lo-fragfwd-perf-report.rst

- Rahul Jadhav & Rabi Sahoo IETF 103, Bangkok

Briefly about fragment forwarding

Fragment forwarding

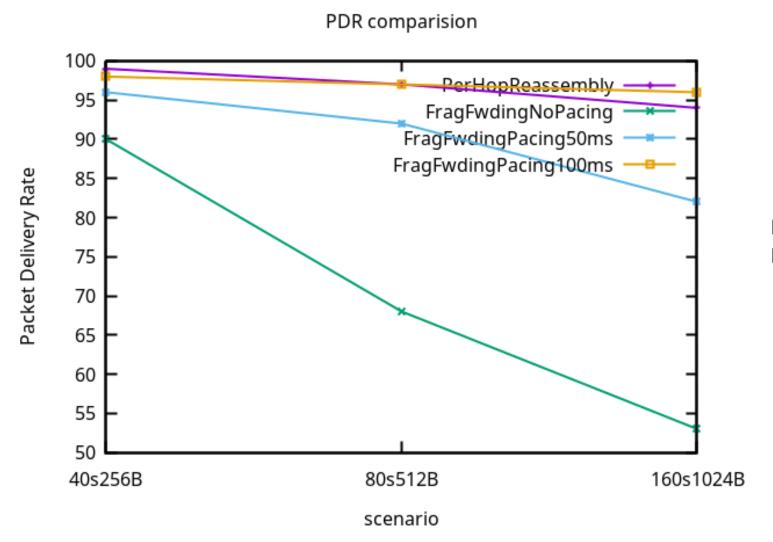


Our motivation

- Understand
 - Latency/PDR implications of using fragment forwarding(FF)
 - Focus not much on memory utilization
 - Fragment forwarding clearly improves memory utilization
- Motivation
 - Use of EAP-PANA (as defined by Wi-SUN) causes fragmentation during authentication
 - Can FF help improve PDR/latency such that network convergence time is reduced?

Test configuration

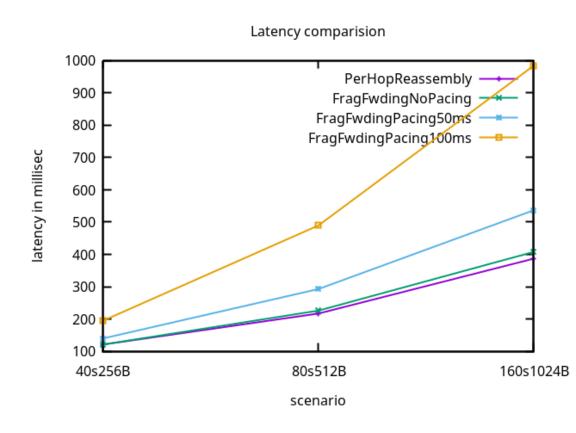
- L2 configuration
 - 802.15.4 in unslotted single channel 2.4GHz mode
 - Carrier sensing enabled but no RTS/CTS
 - LoWPAN does not use RTS/CTS because of high overhead
 - L2 MTU = 127 Bytes
 - Max mac retry = 3 (with exp backoff)
- Network Configuration
 - # of nodes = 50
 - Grid (10x5) Topology
 - Inter-node distance (x,y) = (80m, 100m)
- RPL Routing
 - MRHOF with ETX as routing metric
 - Trickle parameters, MRHOF thresholds same for all tests



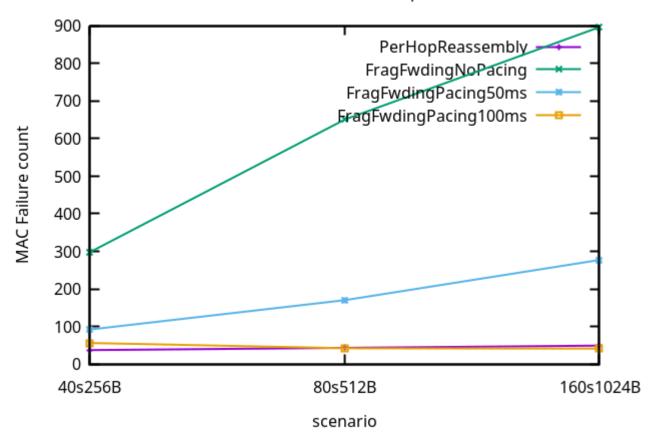
Sample Topology in tree format

Data transmission

- Send frequency for every node
 - 40s with UDP payload of 256B, results in 3 fragments
 - 80s with 512B, results in 5 fragments
 - 160s with 1024B, results in 9 fragments
 - Please note that every node app adds random delay between 0.5s to 5s before transmitting
 - All the data destined to BR


Data: PDR (Packet Delivery Rate)

PDR of FF without pacing was sub-optimal. Pacing improved it significantly.


Pacing? Impact on latency?

- Add inter-fragment fixed delay on original sender side
 - We tried 50ms and 100ms fixed delay
 - Pacing allows the fragment receiver to receive and subsequently forward the fragment without interference
 - Thanks to Carsten and Pascal for this discussion
- Pacing improved PDR drastically
- But pacing induced serious latency

Reasoning: MAC transmit failure

Please note that these are MAC transmit failures.. The packets delivered in first, second, third attempt are mentioned in the performance report. 2nd/3rd attempts are also much high for FragFwdingNoPacing case.

Observations (with this L2 setup)

- FF seems to depend on pacing
 - But if you add pacing, the latency is impacted negatively
- Per hop reassembly seems to be doing better, in this case, both in terms of PDR & latency
- Clearly, L2 primitives have big impact on such schemes
- Note: fragment drop due to memory unavailability were very less
 - Grid topology has less impact of bottleneck nodes
 - traffic pattern was sparse
- Fragment-Recovery might help
 - More fragments, higher payload loss probability. Not burst losses, usually.

Tools

- Simulation tool
 - Whitefield-Framework (using NS3-Irwpan backend for realistic RF)
- Implementation
 - FF support added in forked Contiki
 - Implementation adds slack (reserves extra bytes) in the first fragment
 - Slack is needed because the first fragment size might change en-route because of varying 6lo compression at each hop
 - Timer (60sec) to clear off entries in fragment table in case all fragments do not arrive
 - Contiki already supports per-hop reassembly

More experiments needed

- Experiment with different RFs
 - 6TiSCH
 - Ad-hoc 802.11 with RTS/CTS
 - 802.11s uses L2-mesh ... This will result in fragment-forwarding like behavior.
- More optimal pacing algorithms needed
 - Should pacing be done at original sender-side only?
 - Trivial to implement
 - Will it help if done at intermediate hops?
 - non-trivial to implement since there could be multiple forwarding sessions in parallel
- Experiment same using a hardware based setup

Ack: Thanks to

- Yatch for sharing his insights into his experiments
- Carsten and Pascal for great discussions on 6lo-FF-design-team ML