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Introduction 

• Purpose of the Study 
– Evaluating the performance (throughput and latency) of MQTT, 

CoAP, and HTTP in vehicular scenarios. 
– It can be considered a preliminary performance evaluation. 

– Empirically demonstrate whether there are performance differences 
when comparing edge-based service provisioning and cloud-based 
service provisioning. 
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Testbed Setup – Implementation Plan 
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Testbed Setup – Current Status 
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Testbed Setup – More details (i) 
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•  Data Center 
– Located in Lund (Sweden). 
– OpenStack environment. 

•  Edge Entity 
– Located in Jorvas (Finland). 
– Dell Precision T5500 server. 
– Connection with the base 

station through the mobile 
network of a Finnish operator.  

– No local breakout between base 
station and edge server (we 
fully rely on the network setup 
provided by the mobile network 
operator). 

 
 



Testbed Setup – More details (ii) 
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•  In-Car On-Board Unit 
– Deployed in a general-

purpose board, such as 
Raspberry Pi 3. 

– Connectivity is provided by 
a system combining a 
Sixfab base shield and a 
Quectel EC25 Mini PCle 
4G/LTE module. Both 
boards are in turn 
connected to the RPi3 
through GPIO interface. 

 



Testbed Setup – Ongoing studies 

•  Cloud-based vs. Edge-based service provisioning     ✔ 
– Shed light on the performance impact that a service provisioning provided from the 

cloud or from the edge introduces 
•  Comparison among different application layer protocols    ✔ 

– MQTT | CoAP | HTTP (through 4G connection) 
– Transmission of small-sized payloads 

•  Service provisioning of large-sized payloads              ✔✖ 
– The testbed is already set up for providing additional services to the vehicle 

(e.g., Multimedia contents) 
– Empirical evaluation must still be made 

•  Testing and comparing different Radio interfaces             ✔✖ 
– 4G vs. Wi-Fi 
– 802.11p for Car-to-Car communication 

      



Performance Evaluation – Background 

•  Main goals 
– Evaluate two service provisioning approaches 

– Cloud-based vs. Edge-based 
– Application layer comparison 

– Transmission of small-sized messages 
– CoAP, MQTT, HTTP 

– Impact of additional factors 
– Vehicle’s speed 
– Number of clients 
– QoS in MQTT 



Performance Evaluation – Background* 
Criteria HTTP CoAP MQTT 

Architecture Client/Server Client/Server or Client/Broker Client/Broker 

Abstraction Request/Response Request/Response or Publish/
Subscribe Publish/Subscribe 

Header Size Undefined 4 Byte 2 Byte 

Message size 
Large and Undefined 

(depends on the web server or 
the programming technology) 

Small and Undefined  
(normally small to fit in 

single IP datagram) 

Small and Undefined (up to 
256 MB maximum size) 

 

Semantics/Methods Get, Post, Head, Put, Patch, 
Options, Connect, Delete Get, Post, Put, Delete Connect, Disconnect, Publish, 

Subscribe, Unsubscribe, Close 

Quality of Service (QoS) 
/Reliability 

Limited 
(via Transport Protocol - TCP) 

Confirmable Message or 
Non-confirmable Message 

QoS 0 - At most once 
QoS 1 - At least once 
QoS 2 - Exactly once 

Transport Protocol TCP UDP, TCP TCP (MQTT-SN can use UDP) 
Security TLS/SSL DTLS/IPSEC TLS/SSL 

Default Port 80/443 (TLS/SSL) 5683 (UDP)/5684 (DTLS) 1883/8883 (TLS/SSL) 
*	N.	Naik,	"Choice	of	effective	messaging	protocols	for	IoT	systems:	MQTT,	CoAP,	AMQP	and	HTTP,"	2017	IEEE	International	Systems	Engineering	
Symposium	(ISSE),	Vienna,	2017,	pp.	1-7.	



Performance Evaluation – Background 

•  Application later protocols – Setup 
– MQTT 

Mosquitto (https://mosquitto.org/ ) 
MQTT benchmark tool (https://github.com/krylovsk/mqtt-benchmark) 

– HTTP 
Apache HTTP Server Project (https://httpd.apache.org/) 
ab benchmark tool (https://httpd.apache.org/docs/2.4/programs/ab.html ) 

– CoAP 
 libcoap (https://libcoap.net/)  
 CoAPBench (https://www.eclipse.org/californium/)  



Empirical Results – Impact of vehicle’s speed 

•  No	strict	dependence	between	vehicle's	speed	increase	and	throughput/latency	variation.	
•  CoAP	is	outperforming	both	MQTT	(with	QoS	2)	and	HTTP.	
•  Edge-based	service	provisioning	shows	performance	benefits	when	compared	to	the	cloud-

based	approach.	
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Empirical Results – Impact due to number of connected clients. 
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•  Average	throughput	delivered	to	each	client	decreases	when	the	number	of	
connected	clients	grows	

•  CoAP	still	the	most	efficient	protocol	(10%	throughput	decrease)	



Empirical Results – Impact of QoS in MQTT* 
 

•  Best-effort delivery.  
•  No guarantee of delivery. 
•  Recipient does not 

acknowledge receipt of the 
message and the message 
is not stored and re-
transmitted by the sender  

•  It guarantees that a message is 
delivered at least one time to 
the receiver. 

•  The sender stores the message 
until it gets a packet from the 
receiver that acknowledges 
receipt of the message. 

•  Message can be sent or 
delivered multiple times. 

•  It guarantees that each 
message is received only once 
by the intended recipients. 

•  Safest and slowest QoS. 
•  Guarantee is provided by at 

least two request/response 
flows (a four-part handshake) 
between the sender and the 
receiver 

QoS	0	 	 	✖	 QoS	1	 	 	✔	 QoS	2	 	 	✔	
	

*	https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels	



Empirical Results – Impact of QoS in MQTT. 
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•  Higher	QoS	produces	a	throughput	reduction	in	the	order	of	40%.		
•  Higher	QoS	slows	down	the	message	transmission	by	approximately	75%	
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Conclusion 

• Conclusion 
(small-sized messages transmission…to be kept in mind…) 

– CoAP outperforms MQTT (both QoS 1 and QoS 2) and HTTP, both 
from throughput and latency perspective in different case studies. 

– In MQTT, the choice of the QoS has effects in the produced 
performance. 

– Tangible performance gains when exploiting edge-based service 
provisioning. 



Conclusion and Future Perspectives 

•  Future Work 
– Large-sized workloads. 
– Evaluate the impact of Object Security for Constrained RESTful 

Environments (OSCORE). 
– Additional network interfaces. 
– Different placement for the edge entity. 

As a general rule, the choice of using a protocol over another highly 
depends on the use case under examination and the workloads 
intrinsically generated within them, without also neglecting the 

implementation choices of different service providers. 
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