
Evaluating the Performance of
CoAP, MQTT, and HTTP
in Vehicular Scenarios

Roberto Morabito, Zakaria Laaroussi, Jaime Jiménez (Ericsson Research)

Reference at the paper: https://goo.gl/2r6RMJ
(published in IEEE Conference on Standards for Communications and Networking – IEEE CSCN 2018)

Outline

1.  Introduction
2.  Scenario
3.  Testbed Setup
4.  Performance Evaluation
5.  Empirical Results
6.  Conclusion and Future Perspectives

Introduction

• Purpose of the Study
– Evaluating the performance (throughput and latency) of MQTT,

CoAP, and HTTP in vehicular scenarios.
– It can be considered a preliminary performance evaluation.

– Empirically demonstrate whether there are performance differences
when comparing edge-based service provisioning and cloud-based
service provisioning.

Scenario

Data Center

In-Car
On Board

Unit

Base
Station

Edge
Server

Base Station

Cloud–based
service

provisioning Edge–based service provisioning

Testbed Setup – Implementation Plan

Edge Entity #1
Edge Entity #2

Edge Entity #3
Data

Center

Vehicle-to-Vehicle
Communication

Vehicle-to-Edge
Communication

Vehicle-to-Cloud
Communication

Testbed Setup – Current Status

Edge Entity #1

Data
Center

Vehicle-to-Vehicle
Communication

Vehicle-to-Edge
Communication

Vehicle-to-Cloud
Communication

✖	

✔	

✔	

Testbed Setup – More details (i)

In-Car OBU

Edge Entity #1
Data

Center

•  Data Center
– Located in Lund (Sweden).
– OpenStack environment.

•  Edge Entity
– Located in Jorvas (Finland).
– Dell Precision T5500 server.
– Connection with the base

station through the mobile
network of a Finnish operator.

– No local breakout between base
station and edge server (we
fully rely on the network setup
provided by the mobile network
operator).

Testbed Setup – More details (ii)

In-Car OBU

Edge Entity #1
Data

Center

•  In-Car On-Board Unit
– Deployed in a general-

purpose board, such as
Raspberry Pi 3.

– Connectivity is provided by
a system combining a
Sixfab base shield and a
Quectel EC25 Mini PCle
4G/LTE module. Both
boards are in turn
connected to the RPi3
through GPIO interface.

Testbed Setup – Ongoing studies

•  Cloud-based vs. Edge-based service provisioning ✔
– Shed light on the performance impact that a service provisioning provided from the

cloud or from the edge introduces
•  Comparison among different application layer protocols ✔

– MQTT | CoAP | HTTP (through 4G connection)
– Transmission of small-sized payloads

•  Service provisioning of large-sized payloads ✔✖
– The testbed is already set up for providing additional services to the vehicle

(e.g., Multimedia contents)
– Empirical evaluation must still be made

•  Testing and comparing different Radio interfaces ✔✖
– 4G vs. Wi-Fi
– 802.11p for Car-to-Car communication

Performance Evaluation – Background

•  Main goals
– Evaluate two service provisioning approaches

– Cloud-based vs. Edge-based
– Application layer comparison

– Transmission of small-sized messages
– CoAP, MQTT, HTTP

– Impact of additional factors
– Vehicle’s speed
– Number of clients
– QoS in MQTT

Performance Evaluation – Background*
Criteria HTTP CoAP MQTT

Architecture Client/Server Client/Server or Client/Broker Client/Broker

Abstraction Request/Response Request/Response or Publish/
Subscribe Publish/Subscribe

Header Size Undefined 4 Byte 2 Byte

Message size
Large and Undefined

(depends on the web server or
the programming technology)

Small and Undefined
(normally small to fit in

single IP datagram)

Small and Undefined (up to
256 MB maximum size)

Semantics/Methods Get, Post, Head, Put, Patch,
Options, Connect, Delete Get, Post, Put, Delete Connect, Disconnect, Publish,

Subscribe, Unsubscribe, Close

Quality of Service (QoS)
/Reliability

Limited
(via Transport Protocol - TCP)

Confirmable Message or
Non-confirmable Message

QoS 0 - At most once
QoS 1 - At least once
QoS 2 - Exactly once

Transport Protocol TCP UDP, TCP TCP (MQTT-SN can use UDP)
Security TLS/SSL DTLS/IPSEC TLS/SSL

Default Port 80/443 (TLS/SSL) 5683 (UDP)/5684 (DTLS) 1883/8883 (TLS/SSL)
*	N.	Naik,	"Choice	of	effective	messaging	protocols	for	IoT	systems:	MQTT,	CoAP,	AMQP	and	HTTP,"	2017	IEEE	International	Systems	Engineering	
Symposium	(ISSE),	Vienna,	2017,	pp.	1-7.	

Performance Evaluation – Background

•  Application later protocols – Setup
– MQTT

Mosquitto (https://mosquitto.org/)
MQTT benchmark tool (https://github.com/krylovsk/mqtt-benchmark)

– HTTP
Apache HTTP Server Project (https://httpd.apache.org/)
ab benchmark tool (https://httpd.apache.org/docs/2.4/programs/ab.html)

– CoAP
 libcoap (https://libcoap.net/)
 CoAPBench (https://www.eclipse.org/californium/)

Empirical Results – Impact of vehicle’s speed

•  No	strict	dependence	between	vehicle's	speed	increase	and	throughput/latency	variation.	
•  CoAP	is	outperforming	both	MQTT	(with	QoS	2)	and	HTTP.	
•  Edge-based	service	provisioning	shows	performance	benefits	when	compared	to	the	cloud-

based	approach.	

0	
5	

10	
15	
20	
25	
30	
35	
40	

Edge	 Cloud	 Edge	 Cloud	 Edge	 Cloud	

MQTT	(QoS	2)	 HTTP	 CoAP	

Th
ro
ug
hp

ut
	(m

sg
/s
ec
)	

Speed	30	
Speed	40	
Speed	50	

0	
20	
40	
60	
80	
100	
120	
140	
160	
180	
200	

Edge	 Cloud	 Edge	 Cloud	 Edge	 Cloud	

MQTT	(QoS	2)	 HTTP	 CoAP	

La
te
nc
y	
(m

s)
	

Speed	30	
Speed	40	
Speed	50	

Empirical Results – Impact due to number of connected clients.

0	

5	

10	

15	

20	

25	

30	

Edge	 Cloud	 Edge	 Cloud	 Edge	 Cloud	

MQTT	(QoS	2)	 HTTP	 CoAP	

Th
ro
ug
hp

ut
	p
er
	c
lie
nt
	(m

sg
/s
ec
)	

Client	1	

Client	10	

0	

50	

100	

150	

200	

250	

300	

350	

Edge	 Cloud	 Edge	 Cloud	 Edge	 Cloud	

MQTT	(QoS	2)	 HTTP	 CoAP	

La
te
nc
y	
pe

r	c
lie
nt
	(m

s)
	 Client	1	

Client	10	

•  Average	throughput	delivered	to	each	client	decreases	when	the	number	of	
connected	clients	grows	

•  CoAP	still	the	most	efficient	protocol	(10%	throughput	decrease)	

Empirical Results – Impact of QoS in MQTT*

•  Best-effort delivery.
•  No guarantee of delivery.
•  Recipient does not

acknowledge receipt of the
message and the message
is not stored and re-
transmitted by the sender

•  It guarantees that a message is
delivered at least one time to
the receiver.

•  The sender stores the message
until it gets a packet from the
receiver that acknowledges
receipt of the message.

•  Message can be sent or
delivered multiple times.

•  It guarantees that each
message is received only once
by the intended recipients.

•  Safest and slowest QoS.
•  Guarantee is provided by at

least two request/response
flows (a four-part handshake)
between the sender and the
receiver

QoS	0	 	 	✖	 QoS	1	 	 	✔	 QoS	2	 	 	✔	
	

*	https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels	

Empirical Results – Impact of QoS in MQTT.

0	

5	

10	

15	

20	

25	

30	

QoS	1	 QoS	2	

Cloud	

Th
ro
ug
hp

ut
	p
er
cl
ie
nt
	(m

sg
/s
ec
)	

Client	1	

Client	10	

•  Higher	QoS	produces	a	throughput	reduction	in	the	order	of	40%.		
•  Higher	QoS	slows	down	the	message	transmission	by	approximately	75%	

0	

20	

40	

60	

80	

100	

120	

QoS	1	 QoS	2	

Cloud	

La
te
nc
y	
pe

r	c
lie
nt
	(m

s)
	 Client	1	

Client	10	

Conclusion

• Conclusion
(small-sized messages transmission…to be kept in mind…)

– CoAP outperforms MQTT (both QoS 1 and QoS 2) and HTTP, both
from throughput and latency perspective in different case studies.

– In MQTT, the choice of the QoS has effects in the produced
performance.

– Tangible performance gains when exploiting edge-based service
provisioning.

Conclusion and Future Perspectives

•  Future Work
– Large-sized workloads.
– Evaluate the impact of Object Security for Constrained RESTful

Environments (OSCORE).
– Additional network interfaces.
– Different placement for the edge entity.

As a general rule, the choice of using a protocol over another highly
depends on the use case under examination and the workloads
intrinsically generated within them, without also neglecting the

implementation choices of different service providers.

ericsson.com/IoT	

