
MLS @ IETF 103
Slides for RLB slots

Add / Remove
without
Double-Join

Flow
[[The Tree Invariant]]

[[Add w/ Double-Join]]

[[Blanking + Resolution]]

[[Add w/o DJ]]

[[Efficiency]]

The Tree
Invariant

The private key for a node in the
tree shall be known to the
descendants of that node, and
them alone.

A “double join” is a violation of this
invariant.

Add / Rem w/
Double Join

In prior versions, Add and Remove
caused double joins

This is because the sender sets the
intermediate nodes

No More
 Double Joins

Allow nodes to be blank

Instead of setting to a
double-joined value, leave it blank

Resolution

When you want to send an update
and you would encrypt to a blank
node, you instead encrypt to its
populated descendants

Remove

To remove a node, just blank out
its direct path

Init

To set up a new tree, just put the
members’ DH public keys (from
UserInitKey) in the leaves

The first update is linear

Efficiency
Fragmented trees lead to worse-than-log-size operations

In particular, on Init, there’s a “warm up” phase O(N) -> O(log N)

Simulating a 1000-member group doing random operations...

Key
Confirmation

Basically SIGMA
draft-01 guaranteed that:
 If two parties arrive at different rosters…
 … then they arrive at different keys

The only way to realize you had different keys
was message decryption failure

draft-02 adds a key confirmation MAC
 If processing of the HS message succeeds…
 ...then the sender and receiver have the same
view of the roster

struct {

 uint32 prior_epoch;

 GroupOperation operation;

 uint32 signer_index;

 SignatureScheme algorithm;

 opaque signature<1..2^16-1>;

 opaque confirmation[Hash.length];

} Handshake;

To MAC or not to MAC
Two parallel PRs:
 https://github.com/mlswg/mls-protocol/pull/71
 https://github.com/mlswg/mls-protocol/pull/72

Option 1: Derive a value from the key schedule
and publish it in the HS message

Option 2: Derive a value from the key schedule
and publish a MAC with it in the HS message

But HKDF already uses HMAC!

 ...

 |

 V

 HKDF-Extract = epoch_secret

 |

 +--> Derive-Secret(., "confirm")

 | = confirmation_key

 | |

 | V

 | HMAC?

 V

Derive-Secret(., "init", GroupState_[n])

 |

 V

 ...

Efficiency vs.
Confidentiality

Two Questions
1. Do we want to allow out-of-band roster / tree distribution?

2. Should we expose information to the server that allows it to passively cache
roster / tree information?

Send by commit instead of by value
struct {

 opaque group_id<0..255>;

 uint32 epoch;

 Credential roster<1..2^32-1>;

 PublicKey tree<1..2^32-1>;

 opaque transcript_hash<0..255>;

 opaque init_secret<0..255>;

} Welcome;

struct {

 opaque group_id<0..255>;

 uint32 epoch;

 opaque roster_hash<0..255>;

 opaque tree_hash<0..255>;

 opaque transcript_hash<0..255>;

 opaque init_secret<0..255>;

} Welcome;

Assumes OOB distribution of roster, key

Could be server-based or client-based (e.g., encrypted Roster / Tree messages)

Expose information for server assist
The only way to avoid a linear-size upload is for
the server to cache the roster / tree info gleaned
from HS messages in transit

Tree => Public keys for tree nodes*

Roster => Identities / credentials*

Both => Basically no HS encryption

Two modes?
 O(N) Welcome + Full HS encryption
 O(1) Welcome + No HS encryption

struct {

 uint32 prior_epoch;

 GroupOperation operation {

 Add{ DH, cred, sig },

 Update{ path },

 Remove{ index, path }

 }

 uint32 signer_index;

 SignatureScheme algorithm;

 opaque signature<1..2^16-1>;

 opaque confirmation[Hash.length];

} Handshake;

* Assuming no composable encryption scheme

