Status and Issues for the "Client-Server" Drafts

draft-ietf-netconf-crypto-types-02 draft-ietf-netconf-trust-anchors-03 draft-ietf-netconf-keystore-07 draft-ietf-netconf-ssh-client-server-08 draft-ietf-netconf-tls-client-server-08 draft-ietf-netconf-netconf-client-server-08

NETCONF WG IETF 103 (Bangkok)

Since IETF 102

All drafts updated and submitted as a set...twice!

- Most issues discussed in Montreal now resolved.
- A few additional fixes were mode as well

Two issues remain:

- 1. Should algorithm identities be moved from ietf-[ssh/tls]common to crypto-types?
- 2. Add support for TCP Keepalives?

This presentation only focuses on these two issues.

Quick Recap: Relationship between Drafts

Begin discussion on Issue #1

Should algorithm identities be moved from ietf-[ssh/tls]-common to crypto-types?

crypto-types updates

- Added many new cryptographic algorithms for completeness.
- New references to:
 - IPSec [RFC8221], IKEv2 [RFC8247], TLS 1.2 [RFC5246], TLS 1.3 [RFC8446], SSH-2 [RFC4253], ...
- There are now six categories of crypto algorithms and related identities:
 - hash-algorithm: sha1, sha224, ...
 - symmetric-encryption-algorithm: aes-128-cbc, ..., aes-128-ccm, ..., aes-128-gcm, ..., chacha20-poly1305
 - mac-algorithm: hmac-sha1, ..., hmac-sha2-512, hamc-sha2-512-256, aes-128-gmac, ..., aes-CMAC-96, ..., aes-128-ccm, ..., aes-128-gcm, ..., chacha20-poly1305
 - asymmetric-encryption-algorithm: rsa1024, ..., rsa15360
 - signature-algorithm: rsa-pkcs1-sha1, ..., rsa-pss-rsae-sha256, ..., rsa-pss-pss-sha256, ..., ecdsa_secp256r1_sha256, ..., ed25519, ed448, dsa-sha1, x509v3-rsa-pkcs1-sha1, ..., x509v3-ecdsa-secp256r1-sha256
 - key-negotiation-algorithm: rsa1024, ..., rsa15360, psk-only, dhe-ffdhe2048, ..., psk-dhe-ffdhe2048, ..., (psk-)ecdhe-secp256r1, (psk-) ecdhe-x25519, (psk-) ecdhe-x448, dh-group1-sha1,..., dh-group18-sha512, ecdh-sha2-secp256r1, ...

crypto-types issues

- 1. Need to refine the asymmetric-key-encryption-algorithm definition:
 - current list (rsa1024, ..., rsa15360) may be not complete or accurate.
 - More study and discussion is needed here.
- 2. How to define the key algorithm for public key pair/certificate, based on the six categories of cryptographic algorithms?
 - Option 1: A fine-grained way. To be an union of three algorithms (signature, asymmetric encryption and key exchange), with some statements about how these three algorithms can be combined together to represent a valid RSA or ECC plus DH/DHE suite;
 - Option 2: A coarse-grained way. Just use a general identifier "key-algorithm" simply
 - Other options?

Help is welcomed!!!

ssh-client-server updates

Section 5 now includes:

- An analysis of cryptographic algorithms of the SSH-2 [RFC4253]. In summary, there are four categories of cryptographic algorithms: host-key-alg, key-exchange-alg, encryption-alg and mac-alg.
- Four compatibility-matrix tables indicate how configured SSH-2 cryptographic algorithm values need to be compatible with the configured private key, having its key algorithm identity defined in crypto-types-02:
 - The SSH-2 Host-key-alg Compatibility Matrix Table
 - The SSH-2 Key-exchange-alg Compatibility Matrix Table
 - The SSH-2 Encryption-alg Compatibility Matrix Table
 - The SSH-2 Mac-alg Compatibility Matrix Table

ssh-client-server updates (cont.)

SSH-2 Cryptographic Algorithm Compatibility Matrix Tables

Table 1 The SSH Host-key-alg Compatibility Matrix

sshcmn:encryption-alg	ct:symmetric-key-encryption-algorithm
aes-128-cbc	aes-128-cbc
aes-192-cbc	aes-192-cbc
aes-256-cbc	aes-256-cbc
aes-128-ctr	aes-128-ctr
aes-192-ctr	aes-192-ctr
aes-256-ctr	aes-256-ctr

Table 3 The SSH Encryption-alg Compatibility Matrix

sshcmn:key-exchange-alg	ct:key-negotiation-algorithm
diffie-hellman-group14-sha1	diffie-hellman-group14-sha1
diffie-hellman-group14-sha256	diffie-hellman-group14-sha256
diffie-hellman-group15-sha512	diffie-hellman-group15-sha512
diffie-hellman-group16-sha512	diffie-hellman-group16-sha512
diffie-hellman-group17-sha512	diffie-hellman-group17-sha512
diffie-hellman-group18-sha512	diffie-hellman-group18-sha512
ecdh-sha2-secp256r1	ecdh-sha2-secp256r1
ecdh-sha2-secp384r1	ecdh-sha2-secp384r1

Table 2 The SSH Key-exchange-alg Compatibility Matrix

1	
sshcmn:mac-alg	ct:mac-algorithm
hmac-sha1 hmac-sha1-96 hmac-sha2-256 hmac-sha2-512	hmac-sha1 hmac-sha1-96 hmac-sha2-256 hmac-sha2-512

Table 4 The SSH Mac-alg Compatibility Matrix

tls-client-server updates

Section 5 now includes

- An analysis of cryptographic algorithms of the TLS 1.2 and TLS 1.3
 - For TLS1.2, there are 4 categories of cryptographic algorithms: TLS Cipher Suites, TLS SignatureAlgorithm, TLS HashAlgorithm, TLS Supported Groups
 - For TLS 1.3, there are 3 categories of cryptographic algorithms: TLS Cipher Suites, TLS SignatureScheme, TLS Supported Groups
- Compatibility-matrix tables indicate how configured "host-key-alg" values of TLS need to be compatible with the configured private key, having its key algorithm identity defined in crypto-types-02
 - For TLS 1.2, add 5 tables: TLS ciper suites mapping to hash-algorithm, symmetric-key-encryptionalgorithm, mac-algorithm, signature-algorithm, key-negotiation-algorithm
 - For TLS 1.3, add 5 tables: TLS ciper suites mapping to hash-algorithm, symmetric-key-encryptionalgorithm, mac-algorithm; SignatureScheme mapping to signature-algorithm; Supported Groups mapping to keynegotiation-algorithm

tls-client-server updates (cont.)

TLS 1.2 Cryptographic Algorithm Compatibility Matrix Tables

ciper-suites in hello-params-grouping	HASH
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	sha-256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	sha-384
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256	sha-256
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384	sha-384
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	sha-256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	sha-384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	sha-256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	sha-384
TLS_DHE_RSA_WITH_AES_128_CCM	sha-256
TLS_DHE_RSA_WITH_AES_256_CCM	sha-256
TLS_DHE_PSK_WITH_AES_128_CCM	sha-256
TLS_DHE_PSK_WITH_AES_256_CCM	sha-256
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256	sha-256
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256	sha-256
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256	sha-256
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256	sha-256
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256	sha-256
TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256	sha-256
TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384	sha-384
TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256	sha-256

Table 1-1 TLS 1.2 Compatibility Matrix Part 1: ciper-suites mapping to hash-algorithm

ciper-suites in hello-params-grouping	signature
TLS_DHE_RSA_WITH_AES_128_GCM_SHA256	rsa-pkcs1-sha256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384	rsa-pkcs1-sha384
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256	N/A
TLS_DHE_PSK_WITH_AES_256_GCM_SHA384	N/A
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256	ecdsa-secp256r1-sha256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384	ecdsa-secp384r1-sha384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256	rsa-pkcs1-sha256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384	rsa-pkcs1-sha384
TLS_DHE_RSA_WITH_AES_128_CCM	rsa-pkcs1-sha256
TLS_DHE_RSA_WITH_AES_256_CCM	rsa-pkcs1-sha256
TLS_DHE_PSK_WITH_AES_128_CCM	N/A
TLS_DHE_PSK_WITH_AES_256_CCM	N/A
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256	rsa-pkcs1-sha256
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256	ecdsa-secp256r1-sha256
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256	rsa-pkcs1-sha256
TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256	N/A
TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256	N/A
TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256	N/A
TLS_ECDHE_PSK_WITH_AES_256_GCM_SHA384	N/A
TLS_ECDHE_PSK_WITH_AES_128_CCM_SHA256	N/A

Table 1-4 TLS 1.2 Compatibility Matrix Part 4: ciper-suites mapping to signature-algorithm

tls-client-server updates (cont.)

TLS 1.3 Cryptographic Algorithm Compatibility Matrix Tables

ciper-suites in hello -params-grouping	symmetric
TLS_AES_128_GCM_SHA256	enc-aes-128-gcm
TLS_AES_256_GCM_SHA384	enc-aes-128-gcm
TLS_CHACHA20_POLY1305_SHA256	enc-chacha20-poly1305
TLS_AES_128_CCM_SHA256	enc-aes-128-ccm

Table 2-2 TLS 1.3 Compatibility Matrix Part 2: ciper-suites mapping to symmetric-key--encryption-algorithm

supported Groups in hello -params-grouping	key-negotiation
dhe-ffdhe2048 dhe-ffdhe3072 dhe-ffdhe4096 dhe-ffdhe6144 dhe-ffdhe8192 psk-dhe-ffdhe3072 psk-dhe-ffdhe4096 psk-dhe-ffdhe8192 ecdhe-secp256r1 ecdhe-secp521r1 ecdhe-x25519 ecdhe-secp256r1 psk-ecdhe-secp256r1	$dhe-ffdhe2048 \\ dhe-ffdhe3072 \\ dhe-ffdhe4096 \\ dhe-ffdhe6144 \\ dhe-ffdhe8192 \\ psk-dhe-ffdhe2048 \\ psk-dhe-ffdhe3072 \\ psk-dhe-ffdhe4096 \\ psk-dhe-ffdhe6144 \\ psk-dhe-ffdhe8192 \\ ecdhe-secp256r1 \\ ecdhe-secp384r1 \\ ecdhe-secp521r1 \\ ecdhe-x25519 \\ ecdhe-x448 \\ psk-ecdhe-secp256r1 \\ psk-ecdhe-secp384r1 \\ edhe-secp384r1 \\ edhe-secp521r1 \\ ecdhe-secp521r1 \\ ecdhe-secp521r1 \\ ecdhe-secp5384r1 \\ ecdhe-secp5384r1 \\ edhe-secp384r1 $
psk-ecdhe-secp521r1 psk-ecdhe-x25519 psk-ecdhe-x448	psk-ecdhe-secp521r1 psk-ecdhe-x25519 psk-ecdhe-x448

Table 2-5 TLS 1.3 Compatibility Matrix Part 5: Supported Groups mapping to key-negotiation-algorithm Begin discussion on Issue #2

Add support for TCP Keepalives?

Last time we discussed how discussions with the Transport Area folks concluded that there is a need for keepalives at every protocol layer (TCP, SSH, TLS, NETCONF, RESTCONF, etc.)

- Aliveness of a lower layer says nothing about the aliveness of an upper layer
- Aliveness checks at an upper layer SHOULD NOT not preclude aliveness checks at a lower layer.

The question we're stuck on is *how* to configured keepalives at the various layers...

An idea, but you may not like it...

Independent of this discussion, I've been aware of gaps in our current solution. Specifically that we're missing the dependent protocol layers: TCP, HTTP, and HTTPS.

FWIW: I withheld raising this to the WG because I envisioned much eye-rolling and general exasperation, but now it seems that the time has come...

Draft Restructuring Idea

Adding in the missing tcp/http/https-client-server Layers

Benefits of Restructuring

Factoring out these dependent layers will provide a basis for future protocols models.

- Surely there will be more TCP-based models.
- Surely there will be more HTTP-based models.
- Surely there will be more HTTPS-based models.

And, back to the Keepalive issue...

Distinct layers enable keepalives to be configured at each layer.

The configuration of:

- TCP-keepalives can be defined in the tcp-client-server models
- SSH-keepalives can be defined in the ssh-client-server models
- TLS-keepalives can be defined in the tls-client-server models
- HTTP-keepalives can be defined in the http-client-server models
- NETCONF-keepalives (TBD) can be defined in the netconf-client-server models
- RESTCONF-keepalives (TBD) can be defined in the restconf-client-server models

Should we do it?

