
Status and Issues for the “Client-Server” Drafts

NETCONF WG
IETF 103 (Bangkok)

draft-ietf-netconf-crypto-types-02
draft-ietf-netconf-trust-anchors-03
draft-ietf-netconf-keystore-07
draft-ietf-netconf-ssh-client-server-08
draft-ietf-netconf-tls-client-server-08
draft-ietf-netconf-netconf-client-server-08
draft-ietf-netconf-restconf-client-server-08

Since IETF 102

All drafts updated and submitted as a set...twice!
– Most issues discussed in Montreal now resolved.

– A few additional fixes were mode as well

Two issues remain:
1. Should algorithm identities be moved from ietf-[ssh/tls]-

common to crypto-types?

2. Add support for TCP Keepalives?

This presentation only focuses on these two issues.

2

Quick Recap: Relationship between Drafts

3

 +----------> crypto-types <--------+
 uses + ^ ^ | uses
groupings | / \ | groupings
 | / \ |
 | trust-anchors keystore |
 | ^ ^------+ ^ ^ |
	\		
	+-----------+		
	/ \		
ssh-client-server tls-client-server			
^ ^ ^			
+---------+			
/			
 netconf-client-server restconf-client-server

Begin discussion on Issue #1

Should algorithm identities be moved from ietf-
[ssh/tls]-common to crypto-types?

4

crypto-types updates

5

• Added many new cryptographic algorithms for completeness.

• New references to:
– IPSec [RFC8221], IKEv2 [RFC8247], TLS 1.2 [RFC5246], TLS 1.3 [RFC8446], SSH-2 [RFC4253], …

• There are now six categories of crypto algorithms and related identities:
– hash-algorithm: sha1, sha224, …

– symmetric-encryption-algorithm: aes-128-cbc, …, aes-128-ccm, …, aes-128-gcm, …, chacha20-poly1305

– mac-algorithm: hmac-sha1, …, hmac-sha2-512, hamc-sha2-512-256, aes-128-gmac, …, aes-CMAC-96, …, aes-128-ccm, …,

aes-128-gcm, …, chacha20-poly1305

– asymmetric-encryption-algorithm: rsa1024, …, rsa15360

– signature-algorithm: rsa-pkcs1-sha1, …, rsa-pss-rsae-sha256, …, rsa-pss-pss-sha256, …, ecdsa_secp256r1_sha256, …,

ed25519, ed448, dsa-sha1, x509v3-rsa-pkcs1-sha1, …, x509v3-ecdsa-secp256r1-sha256

– key-negotiation-algorithm: rsa1024, …, rsa15360, psk-only, dhe-ffdhe2048, …, psk-dhe-ffdhe2048, …, (psk-)ecdhe-

secp256r1, (psk-) ecdhe-x25519, (psk-) ecdhe-x448, dh-group1-sha1,…, dh-group18-sha512, ecdh-sha2-secp256r1, …

crypto-types issues

6

1. Need to refine the asymmetric-key-encryption-algorithm definition:
– current list (rsa1024, …, rsa15360) may be not complete or accurate.

– More study and discussion is needed here.

2. How to define the key algorithm for public key pair/certificate,
based on the six categories of cryptographic algorithms?
– Option 1: A fine-grained way. To be an union of three algorithms (signature,

asymmetric encryption and key exchange), with some statements about how
these three algorithms can be combined together to represent a valid RSA or
ECC plus DH/DHE suite;

– Option 2: A coarse-grained way. Just use a general identifier “key-algorithm”
simply

– Other options?

Help is welcomed!!!

ssh-client-server updates

7

Section 5 now includes:

• An analysis of cryptographic algorithms of the SSH-2 [RFC4253].
In summary, there are four categories of cryptographic
algorithms: host-key-alg, key-exchange-alg, encryption-alg and
mac-alg.

• Four compatibility-matrix tables indicate how configured SSH-2
cryptographic algorithm values need to be compatible with the
configured private key, having its key algorithm identity defined
in crypto-types-02:

– The SSH-2 Host-key-alg Compatibility Matrix Table

– The SSH-2 Key-exchange-alg Compatibility Matrix Table

– The SSH-2 Encryption-alg Compatibility Matrix Table

– The SSH-2 Mac-alg Compatibility Matrix Table

ssh-client-server updates (cont.)

8

SSH-2 Cryptographic Algorithm Compatibility Matrix Tables

tls-client-server updates

9

Section 5 now includes

• An analysis of cryptographic algorithms of the TLS 1.2 and TLS 1.3
o For TLS1.2, there are 4 categories of cryptographic algorithms: TLS Cipher Suites, TLS

SignatureAlgorithm, TLS HashAlgorithm, TLS Supported Groups

o For TLS 1.3, there are 3 categories of cryptographic algorithms: TLS Cipher Suites, TLS

SignatureScheme, TLS Supported Groups

• Compatibility-matrix tables indicate how configured "host-key-alg" values
of TLS need to be compatible with the configured private key, having its key
algorithm identity defined in crypto-types-02
o For TLS 1.2, add 5 tables: TLS ciper suites mapping to hash-algorithm, symmetric-key-encryption-

algorithm, mac-algorithm, signature-algorithm, key-negotiation-algorithm

o For TLS 1.3, add 5 tables: TLS ciper suites mapping to hash-algorithm, symmetric-key-encryption-

algorithm, mac-algorithm; SignatureScheme mapping to signature-algorithm; Supported Groups mapping to key-
negotiation-algorithm

tls-client-server updates (cont.)
TLS 1.2 Cryptographic Algorithm Compatibility Matrix Tables

tls-client-server updates (cont.)
TLS 1.3 Cryptographic Algorithm Compatibility Matrix Tables

Begin discussion on Issue #2

Add support for TCP Keepalives?

12

Last time we discussed how discussions with
the Transport Area folks concluded that there is
a need for keepalives at every protocol layer
(TCP, SSH, TLS, NETCONF, RESTCONF, etc.)

– Aliveness of a lower layer says nothing about the
aliveness of an upper layer

– Aliveness checks at an upper layer SHOULD NOT not
preclude aliveness checks at a lower layer.

The question we’re stuck on is *how* to configured
keepalives at the various layers...

An idea, but you may not like it...

Independent of this discussion, I’ve been aware
of gaps in our current solution. Specifically that
we’re missing the dependent protocol layers:
TCP, HTTP, and HTTPS.

FWIW: I withheld raising this to the WG because I envisioned much eye-rolling
and general exasperation, but now it seems that the time has come...

14

Draft Restructuring Idea

Adding in the missing tcp/http/https-client-server Layers

15

 +----------> crypto-types <-----+
 | ^ ^ |
 | / \ |
 | / \ |
 | trust-anchors keystore | tcp-client-server
 | ^ ^ ^ ^ | ^ ^ ^
	+----+		+ / /
	\		/ / /
	+---------+	+ / /	
	/ \		/ /
	/ +-----------------+ /		
	/ / \		/
ssh-client-server tls-client-server http-client-server			
^ ^ ^ ^			
+---------+ https-client-server			
/ ^			
 netconf-client-server |
 restconf-client-server

Factoring out these dependent layers will provide
a basis for future protocols models.

– Surely there will be more TCP-based models.

– Surely there will be more HTTP-based models.

– Surely there will be more HTTPS-based models.

And, back to the Keepalive issue...

16

Benefits of Restructuring

Distinct layers enable keepalives to be
configured at each layer.

The configuration of:
• TCP-keepalives can be defined in the tcp-client-server models

• SSH-keepalives can be defined in the ssh-client-server models

• TLS-keepalives can be defined in the tls-client-server models

• HTTP-keepalives can be defined in the http-client-server models

• NETCONF-keepalives (TBD) can be defined in the netconf-client-server models

• RESTCONF-keepalives (TBD) can be defined in the restconf-client-server
models

Should we do it?

17

� Thanks for the input!

18

	Slide 1
	Since IETF 102
	Quick Recap: Relationship between Drafts
	Slide 4
	crypto-types updates
	crypto-types issues
	ssh-client-server updates
	ssh-client-server updates (cont.)
	tls-client-server updates
	tls-client-server updates (cont.)
	tls-client-server updates (cont.)
	Slide 12
	Slide 13
	An idea, but you may not like it...
	Slide 15
	Slide 16
	Slide 17
	Thanks for the input!

