
draft-verdt-netmod-yang-solutions-00

Netmod WG
November 8, 2018

Netmod YANG Version Design Team
Rob Wilton (presenting)

1

Agenda

• Interesting questions for solutions to consider

• 5 potential solutions and comparison

• Modified semver in more detail

• Other work in solution space (only if time permitting):
• Data node lifecycle (proposed changes to status)
• Revision dates
• Import by version
• Client backwards compatibility (e.g. version selection)

2

Solution space

3

Easy for clients
Hard for servers/authors

Hard for clients
Easy for servers/authors

We are trying to find a
solution somewhere in
the middle

Q. What level of change in YANG modules should be allowed?
For new development:

4

None Only BC
changes

NBC
changes

@dev head

None Only BC
Changes

NBC
changes

@ older dev branch/revision

Q. What level of change in YANG modules should be allowed?
For bug fixes:

5

None Only BC
fixes

NBC
fixes

@dev head

None Only BC
fixes

NBC
fixes

@ older dev branch/revision

Open questions:
 What is the definition of a bug fix?
 Can a bug fix include NBC changes?
 And does NBC mean strict RFC 7950 module update rules or something softer?
 Should we even differentiate bug fixes vs enhancements?

Q. Linear or branched module evolution?

6

Strict linear
History
(e.g. RFC 7950
rules today)

Limited
Branching
(e.g. perhaps for bug
fixes, and/or minor
enhancements)

Unlimited
branching
(e.g. like git)

Solutions

Five solutions considered in the draft:

1. Semver (as per semver.org, also used by OpenConfig)

2. Modified semver

3. Release semver

4. Schema comparison tool

5. RFC 7950 module update rules

7

1. Semver

Version number is MAJOR.MINOR.PATCH

• Specified on semver.org

• Update version number based on change:
• NBC change => Increment major (reset minor, patch)
• BC change => Increment minor (reset patch)
• Editorial/Implementation change => Increment patch
• 0.x.y => pre-release, don’t have to follow rules

• Expectation is most development is broadly linear

8

1.0.0

1.1.0

2.0.0

1.0.1, 1.0.2

1. Semver – pros/cons

Benefits:

1. Compare two versions => BC, NBC, editorial change

2. Widely known/used (e.g. used by OpenConfig)

Disadvantages:

3. Very limited support for branching:
• Doesn’t facilitate bug fixes to released versions
• Doesn’t facilitate enhancements to released versions

9

1.0.0

1.1.0

2.0.0

1.0.1, 1.0.2

2. Modified semver
Version number is MAJOR.MINOR.PATCH(m|M)

• Update version number based on change:
• NBC change => Increment major or “patch + (M)”

• BC change => Increment minor or “patch + (m)”
• Editorial/Implementation change => Increment patch
• 0.x.y => pre-release, don’t have to follow rules
• (m|M) is sticky for a given “major.minor”

• Follow semver rules where possible (e.g. @dev head, and
where possible for fixes/enhancements)

• But allows fixes/enhancements to shipped modules

• With great power comes great responsibility

10

1.0.0

2.0.0

1.1.0

1.1.1(M)

2.1.0

2.2.0

2.0.1(m)

2.1.1

2.0.2(m)

2. Modified semver – pros/cons
Benefits:

1. Like semver but allows limited branching and backwards
compatibility without too much extra complexity

2. Allows fixes (and enhancements) to released modules

3. Backwards compatible with semver scheme.

Disadvantages:

4. Cannot always semantically compare branches, e.g.
2.0.1(m) to 2.1.0 may be nbc.

5. Different to semver and slightly higher complexity

11

1.0.0

2.0.0

1.1.0

1.1.1(M)

2.1.0

2.2.0

2.0.1(m)

2.1.1

2.0.2(m)

3. Release semver

Version number is RELEASE.MAJOR.MINOR.PATCH

• Release is updated for each major release
• Major.minor.patch reset to 1.0.0
• Module author defines major releases

• Within a release:
• Normal semver rules are followed

12

1.1.0.0

2.1.0.0

3.1.0.0

2.2.0.0

2.2.1.0,
2.2.1.1

2.3.0.0

Semver within
 a release

3. Release semver – pros/cons

Benefits:

1. Allows more branching, e.g.
fixes/enhancements within a major release

Disadvantages:

2. Loses key semver comparison (e.g. 1.2.3.4 to
2.1.0.0 may have no changes)

3. Less familiar numbering scheme

4. What defines a major release?

13

1.1.0.0

2.1.0.0

3.1.0.0

2.2.0.0

2.2.1.0,
2.2.1.1

2.3.0.0

Semver within
 a release

4. Schema comparison tool

Idea: Use tooling to perform node by node comparison of full schema
trees between two releases using rules like RFC 7950 module update
rules.

Refinements:

1. Also take features and deviations into consideration

2. Restrict comparison to subset of modules that are used

Probably requires extension to tag schema nodes that cannot be
automatically compared by tooling (e.g. description, pattern, xpath
changes)

14

4. Schema comparison tool – pros/cons
Benefits:

1. Full solution - any two schema trees are comparable.

2. Can take more considerations into account, can give a more accurate answer.

Disadvantages:

3. Have to run tool, can’t just look at a number.

4. Will require annotations in schema for cases where the tooling cannot figure
it out, could be noisy depending on quality.

5. Requires a way to document instance data usage.

Probably not a solution on its own. Best used in conjunction with a versioning
number scheme.

15

5. RFC 7950 module update rules

Specified in RFC 7950 chapter 11:
• All changes are backwards compatible
• Introduce new nodes (or modules) for nbc changes
• Deprecate, then obsolete, old nodes
• Strictly linear history, all updates to latest revision

Assumptions (not in RFC 7950):
• Deprecated nodes must be implemented
• If versioned by a new module, then old module is

also supported (for a while)

16

2001-01-01

2010-01-01

2061-01-01

5. RFC 7950 module update rules–
pros/cons
Benefits:

1. Already defined

2. Fully backwards compatible for clients

Disadvantages:

3. Not sufficient (or we wouldn’t be here)

4. Doesn’t allow bug fixes to older releases

5. New module breaks all existing paths

6. Two paths to one underlying property synchronization
issues

17

2001-01-01

2010-01-01

2061-01-01

Solution comparison table
(Not intended to be a beauty contest)
Solution Branching BC fixes NBC fixes BC dev NBC dev Semver

Semver:
Maj.Min.Patch

Very limited Only guaranteed
at head

Only guaranteed
at head

At head only At head only Yes

Modified Semver:
Maj.Min.Patch(M|m)

Limited Yes Yes Recommended at
head.
Allowed on
branch

Recommended at
head, allowed on
branch

Yes, except
changes on (m|
M) versions.

Release Semver:
Rel.Maj.Min.Patch

Yes, if
release
number
updated

Yes, within a
release

Yes, within a
release

Yes, within a
release

Yes, within a
release

Within a release
only

Schema compare tool Supported Anywhere Anywhere Anywhere Anywhere Yes, offline

RFC 6020/7950
module update rules

Linear At head only Limited/
Disallowed

At head only Disallowed Implied (always
backwards
compatible)

18

Modified semver – current front runner
• There is no perfect technical solution

• Modified semver seems to strike a pragmatic balance, hence DT front
runner.

• Vendors should decouple versioning of modules (API) from the
versioning software artifact (API implementation)

• The scheme allows some things that are undesirable, hence need to
provide a set of sensible usage guidelines.

• Open issue: Is updating major and minor version number strict? Or
can they be incremented without a major/minor version change?

19

Modified semver – example guidelines
1. Churn is painful for clients, try to ship high quality modules and

keep them stable

2. Minimize nbc updates - particularly on released code

3. “m|M” should be used as a tool of last resort, use normal semver
where possible

4. Version modules independently from releases

5. If a fix is made on an older branch then port it to all newer branches
at the same time.

6. Deprecating nodes is a bc change, obsoleting is nbc.

20

Other work in solution space …

… only if time permitting:

• Data node lifecycle (proposed changes to status)

• Revision dates

• Import by version

• Client backwards compatibility (e.g. version selection)

21

Data node lifecycle - YANG status
changes
1. We want the YANG versioning solution to refine:

i. “status deprecated” to mean that a server MUST implement (or deviate)

ii. “status obsolete” to mean that a server MUST NOT implement

iii. Adding “status deprecated” to a module is a BC change

iv. Adding “status obsolete” to a module is an NBC change

2. Allow “description” under “status” statement

3. Provide two global leaves in YANG library:
i. “Implements deprecated nodes” - if set, the server always implements,

otherwise behavior is unspecified

ii. “No obsolete nodes“- if set, the server never implements, otherwise,
behavior is unspecified

22

Revision dates
Currently assumed to chronologically ordered, but branching breaks
this. Two choices:

1. Ditch revision dates =>
Respin YANG library, hello messages, etc to use version number

2. Retain revision date =>
• Lose chronological ordering guarantee
• But retain uniqueness, i.e. (module name, rev-date) uniquely identifies a

module

Design team is leaning towards 2.

23

Import by version
Not been discussed by the DT in any great detail yet, but:

• We want to extend YANG import to allow import by version
Perhaps also want to recommend that import by revision is not used.

• Normally will be:
• a set of compatible version compatible,
• with some sort of wildcard support, or version X or later.

• If we go with modified semver, need to consider bc/nbc updates to
patch number.

24

Client backwards compatibility
If we go with modified semver …

… also not been discussed by the DT in any great detail yet, but:

• This is a hard/expensive problem to solve

• Probably requires clients selecting a particular module set via YANG
library and protocol additions and the server maps request data
between older versions to latest.

• Mapping to latest will be hard, impossible in some cases.

• Could be done in server, controller, or client

• What version does the client get if it doesn’t choose (earliest, or
latest)?

25

Next Steps

• Incorporate feedback from the WG

• Converge on a solution within the DT

• Hopefully have initial solution draft(s) ready for IETF 104

• We may split the solution into multiple drafts, e.g.
• Core solution - module version number
• Extension – version selection
• Extension – schema tree comparison

26

	Slide 1
	Agenda
	Solution space
	Slide 4
	Slide 5
	Q. Linear or branched module evolution?
	Solutions
	1. Semver
	1. Semver – pros/cons
	2. Modified semver
	2. Modified semver – pros/cons
	3. Release semver
	3. Release semver – pros/cons
	4. Schema comparison tool
	4. Schema comparison tool – pros/cons
	5. RFC 7950 module update rules
	5. RFC 7950 module update rules– pros/cons
	Solution comparison table (Not intended to be a beauty contest)
	Modified semver – current front runner
	Modified semver – example guidelines
	Other work in solution space …
	Data node lifecycle - YANG status changes
	Revision dates
	Import by version
	Client backwards compatibility
	Next Steps

