A Secure Selection and Filtering Mechanism for the Network Time Protocol Version 4

draft-schiff-ntp-chronos-01

Neta Rozen Schiff, Danny Dolev, Tal Mizrahi, Michael Schapira
Reminder: Threat Model

The attacker:

• Controls a large fraction of the NTP servers in the pool (say, \(\frac{1}{4}\))

• Capable of both deciding the content of NTP responses and timing when responses arrive at the client

• Malicious
Reminder: Chronos Architecture
Chronos’ design combines several ingredients:

• **Rely on many NTP servers**
 - Generate a large server pool (hundreds) per client
 - E.g., by repeatedly resolving NTP pool hostnames and storing returned IPs
 - Sets a very high threshold for a MitM attacker

• **Query few servers**
 - Randomly query a small fraction of the servers in the pool (e.g., 10-20)
 - Avoids overloading NTP servers

• **Smart filtering**
 - Remove outliers via a technique used in approximate agreement algorithms
 - Limits the MitM attacker’s ability to contaminate the chosen time samples
New in draft 001: Precision Vs. Security

• Chronos compared to NTPv4:
 • Greater variety of sampled servers over time
 • Avoids (NTPv4) source quality filters
 • Provable security guarantees

• Possible adverse effects on precision and accuracy.
 • Bounded by Chronos' ω parameter (25ms)
 • Insignificant for many applications of interest

• Hybrid approach (when precision and accuracy are critical):
 • By default NTPv4 updates the local clock
 • When a threat or evidence of attack is detected (based on Chronos’ samples), Chronos time is considered instead.
New comments for draft 001

• Use Chronos externally to enhance the security of NTPv4

• Use Chronos as a new filter (or verification step) within NTPv4

We thank Dieter and Greg for useful discussions!
Thank You

See full draft (@IETF):
https://tools.ietf.org/id/draft-schiff-ntp-chronos-01.html