
A. Malhotra1, K. Teichel2, M. Hoffmann3, W. Toorop4

Boston University1, PTB2, Open Netlabs3, NLnet Labs4

On Implementing Time
draft-aanchal-time-implementation-guidance-01

November 6, 2018
IETF 103 - Bangkok



• functionality and security of apps hinges on some 
notion of time.

• choose from multiple clocks on systems.
• applications oblivious to implications of choosing 

one or the other clock for implementation

Motivation.



Scope of the Document. 

• Expressing Time: methods to express time by 
applications

• Different clocks: properties of clocks maintained 
by digital systems

• trade-offs of using one clock over the other
• provides guidance to help implementers make an 

informed choice



• Not specific to architecture of a PC or other 
devices

• Not specific to any OS. 
• Does not deal with how different clocks are 

available on different PCs or other devices
• No set-in-stone final recommendation.

The final decision would vary depending on the 
availability of clocks and the security requirements 
of the specific application under implementation.

Non-Scope of the Document.



• Expressing Time: Absolute vs Relative Time

• Keeping Time: Native Time vs World Time

• Trade-offs of using Native vs World Time

• Current implementation approaches

• POSIX & Windows Example.

Outline.



• Absolute Time: expresses an absolute point in time. 
Nov 6, 2018 12.10pm

• E.g. validity of objects with a limited lifetime that are 
shared over the network.

Expressing time: Absolute vs Relative time



Expressing time: Absolute vs Relative time

• Relative Time: measures the time interval that has 
passed from a reference point. 

• e.g. Time-to-Live values that determine the length of 
time for which an object is valid or usable.



Different Clocks – Native Clock

• Native Clock: system’s own perception of time
• obtained by:

• counting cycles of an oscillator
• using process CPU times or thread CPU timers

• returns difference in time between two points



Different Clocks – Native Clock (Properties)

• Properties
• monotonic
• immune to vulnerabilities from external time sources 
• quality depends on stability of oscillator or CPU timer
• Clock drift: clock rate may vary from other systems



Different Clocks – World Clock

• World Clock : in synch with other systems.
• Obtained by:

• manual settings.
• accessing hardware clock provided by the system which 

itself is set/updated obtained from an external time source. 
• via external sources of time such as Network Time Protocol 

(NTP), Chrony, SNTP, OpenNTP and others.



Different Clocks – World Clock (Properties)

• Properties
• can be adjusted for clock drift

• may stay in sync with other systems

• manual setting -> misconfiguration errors

• H/W clock access
• is resource intensive

• quality of the hardware clock may not be very high leading 
to a large clock drift if solely relying on it.

• otherwise, external sources opens up to network 
attacks



COMMON APPROACH
relative time ---> absolute time

Absolute time =? current system time

Updated by 
external time 
sources

How do software implementations deal with 
relative time?



Other possible implementation approaches & 
their trade-offs.

To implement absolute time, no other option but 
the world clock.

To implement relative time, one MAY use native 
clock.



POSIX & Microsoft Windows API.

• POSIX: clock_gettime() may provide native time
• Microsoft Windows: 

• GetTickCount returns 32 bit count
• GetTickCount64 returns 64-bit count



Way forward for the draft?


