November 6, 2018

IETF 103 - Bangkok

On Implementing Time draft-aanchal-time-implementation-guidance-01

A. Malhotra ${ }^{1}$, K. Teichel ${ }^{2}$, M. Hoffmann ${ }^{3}$, W. Toorop ${ }^{4}$ Boston University ${ }^{1}$, PTB², Open Netlabs ${ }^{3}$, NLnet Labs ${ }^{4}$

Motivation.

- functionality and security of apps hinges on some notion of time.
- choose from multiple clocks on systems.
- applications oblivious to implications of choosing one or the other clock for implementation me the other clock for implementation

號

.

Scope of the Document.

- Expressing Time: methods to express time by applications
- Different clocks: properties of clocks maintained by digital systems
- trade-offs of using one clock over the other
- provides guidance to help implementers make an informed choice

Non-Scope of the Document.

- Not specific to architecture of a PC or other devices
- Not specific to any OS.
- Does not deal with how different clocks are available on different PCs or other devices
- No set-in-stone final recommendation.

The final decision would vary depending on the availability of clocks and the security requirements of the specific application under implementation.

Outline.

- Expressing Time: Absolute vs Relative Time
- Keeping Time: Native Time vs World Time
- Trade-offs of using Native vs World Time
- Current implementation approaches
- POSIX \& Windows Example.

Expressing time: Absolute vs Relative time

- Absolute Time: expresses an absolute point in time. Nov 6, 2018 12.10pm
- E.g. validity of objects with a limited lifetime that are shared over the network.

Expressing time: Absolute vs Relative time

- Relative Time: measures the time interval that has passed from a reference point.
- e.g. Time-to-Live values that determine the length of time for which an object is valid or usable.

Different Clocks - Native Clock

- Native Clock: system's own perception of time
- obtained by:
- counting cycles of an oscillator
- using process CPU times or thread CPU timers
- returns difference in time between two points

Different Clocks - Native Clock (Properties)

- Properties
- monotonic
- immune to vulnerabilities from external time sources
- quality depends on stability of oscillator or CPU timer
- Clock drift: clock rate may vary from other systems

Different Clocks - World Clock

- World Clock : in synch with other systems.
- Obtained by:
- manual settings.
- accessing hardware clock provided by the system which itself is set/updated obtained from an external time source.
- via external sources of time such as Network Time Protocol (NTP), Chrony, SNTP, OpenNTP and others.

Different Clocks - World Clock (Properties)

- Properties
- can be adjusted for clock drift
- may stay in sync with other systems
- manual setting -> misconfiguration errors
- H/W clock access
- is resource intensive
- quality of the hardware clock may not be very high leading to a large clock drift if solely relying on it.
- otherwise, external sources opens up to network attacks

How do software implementations deal with relative time?

COMMON APPROACH relative time ---> absolute time

Other possible implementation approaches \& their trade-offs.

To implement absolute time, no other option but the world clock.

To implement relative time, one MAY use native clock.

POSIX \& Microsoft Windows API.

- POSIX: clock_gettime() may provide native time - Microsoft Windows:
- GetTickCount returns 32 bit count
- GetTickCount64 returns 64-bit count

Way forward for the draft?

