In-Network Computing Enablers for Extended Reality
draft-montpetit-coin.xr-01

Marie-José Montpetit, Ph.D.
NWCRG
IETF 103
5 November 2018
Draft Overview

• Review of the XR requirements
• What in-network computing brings to the networked XR challenge
• Open issues
The Network XR Challenge

- The Multisource Multidestination Problem
 - Combine, video, Haptics Tactile Internet
 - XR= AR/VR/MR and 360° video

- Shared experiences across the network
 - Interconnected, distributed and federated XR nodes for global immersive experiences
 - Principles:
 - Allow joint collaboration in XR
 - Multi-view XR
 - Add extra streams (IoT) to experiences

- Challenges:
 - On time delivery of the multiple streams with rendering of the content across the multiple participants
 - Sensitivity to packet loss and loss induced delay especially for non video components
 - Low end to end delay/delay variation
 - Optimized caching and rendering
In-Network Computing and XR Summary

• Optimized location and type of resources for the multisource/multi-destination (mutiparty/multi-input) by using of AI/ML and advanced load balancing

• Distribute functionality between datacenters and edge
 • Functional decomposition of the XR elements
 • Federation of nodes to provide the required experience
 • Evaluation of local caching/micro datacenters with pre-rendering

• **Multicast distribution and processing as well as peer to peer to minimize delay and re-use capacity**

• Trend/ML based congestion control to favor AR and VR sessions
 • Joint learning algorithms across both data center, edge computers and goggle/glasses to allocate functionality and creation of semi permanent datasets and analytics for usage trending

• Dynamic allocation of control, forwarding and storage resources and related usage model

• **Performance optimization by tunneling, session virtualization and loss protection**
Architecture

Smart Manufacturing

Smart Cities

Fog Network

Peer-to-peer networking
Blockchain trust model

Program mobile element

Edge Network/Microdatacenter

Cache

Geolocalized content

L2/L3 Transit Network

Datacenter/cloud

Content Provider Network(s)

Live and stored video

Augmented 3D Content

Graphics

Sensor inputs

Live and stored video

Augmented 3D Content

Graphics

Sensor inputs

COIN Option

Sensor inputs

Peer-to-peer networking

Blockchain trust model
Link to NWCRG

- Networked XR is very delay sensitive
- Erasure coding used to provide the packet erasure coding to maximize peer to peer and multipath efficiency and reduce the need for any form of retransmission
- Direct link to current in-network computing and programmable network elements
Next Steps

• Request comments from the COIN and NWCRG community and find co-authors from the XR community
• Generate a v1 for IETF 104 (Prague)
• (Eventually) have it adopted as a COIN RG Document
Join us for the COIN side meeting

Friday Nov. 9 from 10am to 12pm Bangkok time (GMT+7) in room Boromphimarn 3
(https://datatracker.ietf.org/meeting/103/floor-plan)

Remote access via the IETF Webex:
link: https://ietf.webex.com/ietf/j.php?MTID=m4d74e60aecea8c08e8532decfa823a4a
Meeting number: 642 054 101
Meeting password: y7evFtMt

marie@mjmontpetit.com