
S1 S2 S3 S4

L1 L2 L3 L4

(super)Spine
aka ToF

What we want to obtain: connectivity from any leaf to any leaf, and (lots of) well-balanced ECMP.

What we build: connectivity from any leaf to any spine node and then from any spine node to any leaf (logical Clos)

If possible we add redundancy in the connectivity to avoid fallen leaves, but this consumes ports

A fallen leaf is a leaf that is not connected to all spine nodes (connectivity below not ensured)

Leaf L5 L6

Connectivity
not actual

links

S1 S2 S3 S4

M1 M2 M3 M4

L1 L2 L3 L4

 If the breakage is a southern link from a leaf Node going down, then connectivity to any node attached to the link is
lost. There is no need to disaggregate since the connectivity is lost for all spine nodes in a same fashion.

 If the breakage is a leaf Node going down, then connectivity through that leaf is lost for all nodes. There is no need to
 disaggregate since the connectivity is lost for all spine nodes in a same fashion.

 If the breakage is a ToF Node going down, then northern traffic is routed via alternate ToF nodes in the same plane and
there is no need to disaggregate routes

M5

L5

M6

L6Leaves (L=0)

ToF (L=2)

ToP (L=1)

S1 S2 S3 S4

M1 M2 M3 M4

L1 L2 L3 L4

 In a general manner, the mechanism of non-transitive positive disaggregation is sufficient when the disaggregating ToF
nodes collectively connect to all the ToP nodes in the broken plane. This happens in the following case:

• If the breakage is the last northern link from a ToP node to a ToF node going down, then the fallen leaf problem
affects only The ToF node, and the connectivity to all the nodes in the PoD is lost from that ToF node. This can be
observed by other ToF nodes within the plane where the ToP node is located and positively disaggregated within that
plane.

M5

L5

M6

L6

Reflection

Leaves (L=0)

ToF (L=2)

ToP (L=1)

S1 S2 S3 S4

M1 M2 M3 M4

L1 L2 L3 L4

If the breakage is the last northern link from a Leaf node within a plane - there is only one such link in a maximally
partitioned fabric - that goes down, then connectivity to all unicast prefixes attached to the Leaf node is lost within the plane
where the link is located. Southern Reflection by a Leaf Node - e.g., between ToP nodes if the PoD has only 2 levels -
happens in between planes, allowing the ToP nodes to detect the problem within the PoD where it occurs and positively
disaggregate. The problem can be observed by the ToF nodes in the same plane through the flooding of N-TIEs from the ToP
nodes, but the ToF nodes need to be aware of all the affected prefixes for the negative disaggregation to be fully effective.
The problem can also be observed by the ToF nodes in the other planes through the flooding of N-TIEs from the affected Leaf
nodes, together with non-node N-TIEs which indicate the affected prefixes. To be effective in that case, the positive
disaggregation must reach down to the nodes that make the plane selection, which are typically the ingress Leaf nodes, and
the information is not useful for routing in the intermediate levels

M5

L5

M6

L6

Reflection

Leaves (L=0)

ToF (L=2)

ToP (L=1)

S1 S2 S3 S4

M1 M2 M3 M4

L1 L2 L3 L4

If the breakage is a ToP node in a maximally partitioned fabric - in which case it is the only ToP node serving that plane in that
PoD - that goes down, then the connectivity to all the nodes in the PoD is lost within the plane where the ToP node is located -
 all leaves fall. Since the Southern Reflection between the ToF nodes happens only within a plane, ToF nodes in other planes
cannot discover the case of fallen leaves in a different plane, and cannot determine beyond their local plane whether a Leaf
node that was initially reachable has become unreachable. As above, the problem can be observed by the ToF nodes in the
plane where the breakage happened, and then again, the ToF nodes in the plane need to be aware of all the affected prefixes
for the negative disaggregation to be fully effective. The problem can also be observed by the ToF nodes in the other planes
through the flooding of N-TIEs from the affected Leaf nodes, if there are only 3 levels and the ToP nodes are directly
connected to the Leaf nodes, and then again it can only be effective it is propagated transitively to the Leaf, and useless above
that level.

M5

L5

M6

L6Leaves (L=0)

ToF (L=2)

ToP (L=1)

S1 S2 S3 S4

M1 M2 M3 M4

L1 L2 L3 L4Leaves (L=0)

ToF (L=2)

In case of a partitioned ToF, RIFT can use inter-plane rings to connect the dots between planes

S1 and S2 synchronize prefix-related information (Non-Node N-TIES typically from leaves) over their ring

Same for S3 and S4. As a result

Þ A breakage is detected by ToF nodes in the plane where it happens

Þ Those nodes associate the breakage with fallen leaves, prefix N-TIEs seen over the Ring but not within plane

ToP (L=1) M5

L5

M6

L6

Inter-plane
ring

Inter-plane
rings

S1 S2 S3 S4

M1 M2 M3 M4

The process of negative disaggregation is as follows:

S1 figures that A exists and is not reachable. As a consequence S1 injects a new negative route to all of its children.

Upon that message the children install a route to A via all the parents from which they did not receive a negative
route to A (that’s S2, S3, and S4 here). This is 3 messages instead of 12 for the same route information

Transitive disaggregation operation: an intermediate node (e.g., M1) propagates the negative advertisement when
it has it from all its parents, IOW as a consequence of receiving one from a last parent.

A

Inject ~A

ToF (L=2)

ToP (L=1)

S1 S2 S3 S4

M1 M2 M3 M4

(perspective of M1). M1 gets the ~As in order.

Step 1: upon first ~A, say coming from S1:

• Select parents advertising reachability to the longest known aggregation
that encompasses A, typically the default route

• Install a more specific route towards A via each of them but S1

• Remove route to S1 for negative routes to prefixes nested in A:: (recursive)

A

First
~A ?

 ~A from Parent S1

Install route to A::
via all other parents
that advertise route
towards the longest
aggregation of A::

yes

no

1) receive ~A

2) Install route to A via other parents

ToF (L=2)

ToP (L=1)

S1 S2 S3 S4

M1 M2 M3 M4

(perspective of M1).

M1 gets the ~A advertisements in some order, uncontrolled.

Step 2: second ~A, coming from S2:

Route to A:: and nested negative prefixes via parent S1 are removed.
This is not the last parent with a route to A, so do nothing else.

Next, a third ~A is received from say, S4. Same thing, routes via S4 for
A:: and nested negatives are removed.

A

First
~A ?

Remove
route to A
via that
parent

yes

no

1) receive ~A

Last
parent

with
route to

A?
X

X

no

2) Remove
route to A

done

ToF (L=2)

ToP (L=1)

S1 S2 S3 S4

M1 M2 M3 M4

A

(perspective of M1).

Step 3: fourth ~A, coming from S3:

Route to A via parent S3 is removed.

This was the last parent advertising reachability to the longest known
aggregation that encompasses A, so transitively send a ~A to all children

1) receive ~A

Remove
route to A
via that
parent

Last
parent

with
route to

A?

no

yes

Send ~A to
all children

XX2) Remove route to A

A

3) Advertise ~A

Leaves (L=0)

ToF (L=2)

ToP (L=1)

S1 S2 S3 S4

M1 M2 M3 M4

A

(perspective of M1).

Link comes back up, information spreads in uncontrolled order

Step 4: A advertisement coming from S3 (really, undoing of ~A)

 Route to A via parent S3 is reinstalled. Negative routes for prefixes nested
in A:: are completed to add S3 as a feasible successor (recursive).

Since A is now reachable, M1 send advertises reachability to A again to
children (again, as an undoing of ~A)

1) receive A advertised
2) Install route to A

3) advertise A

First
Parent
with

route to
A ?

 Advertisement of reachability
to A from Parent S3

Reinstall Route to A
via parent S3

yes

no

Advertise reachability
of A to children

Leaves (L=0)

ToF (L=2)

ToP (L=1)

First
Parent
with

route to
A ?

S1 S2 S3 S4

M1 M2 M3 M4

A

(perspective of M1).

Step 5: A advertisement coming from S1 and then S4 (really, undoing of ~A)

• Route to A via those parents is reinstalled, and recursively for nested
negative routes.

• There are other parents that poisoned A (S2 here), so do nothing else

1) receive A

2) Install route to A

A

no

All
Parents

with
route to

A ?
no

Leaves (L=0)

ToF (L=2)

ToP (L=1)

S1 S2 S3 S4

M1 M2 M3 M4

L1 L2 L3 L4

A

(perspective of M1).

Step 6: A advertisement coming from S2.

 Route to A via those parents is reinstalled.

There are other parents that poisoned A, so do nothing else

1) receive A

2) Install route to A

First
Parent
with

route to
A ?

yes

no

Advertise reachability
of A to children

All
Parents

with
route to

A ?

yes

Remove redundant
routes

3) Remove redundant routes

Leaves (L=0)

ToF (L=2)

ToP (L=1)

Default

Via S1

Via S2

Via S3

Via S4

Default

Via S1

Via S2

Via S3

Via S4

RIB FIB

Routing table north, only default to start with

Default

Via S1

Via S2

Via S3

Via S4

RIB

10.0.0.0/16

~Via S1

Default

Via S1

Via S2

Via S3

Via S4

FIB

10.0.0.0/16

Via S2

Via S3

Via S4

Getting a negative for 10.0.0.0, installing matching routes in FIB

Default

Via S1

Via S2

Via S3

Via S4

RIB

10.0.0.0/16

~Via S1

Default

Via S1

Via S2

Via S3

Via S4

FIB

10.0.0.0/16

Via S2

Via S3

Via S4

10.1.0.0/16

~Via S4

10.1.0.0/16

Via S2

Via S3

Via S1

Getting a negative for 10.1.0.0, installing matching routes in FIB

Default

Via S1

Via S2

Via S3

Via S4

RIB

10.0.0.0/16

~Via S1

Default

Via S1

Via S2

Via S3

Via S4

FIB

10.0.0.0/16

Via S2

Via S3

Via S4

10.1.0.0/16

~Via S4

10.1.0.0/16

Via S2

Via S3

Via S1

Recursive negative clean up if positive aggregation goes away

Default

Via S1

Via S2

Via S3

Via S4

RIB

10.0.0.0/16

~Via S1

Default

Via S2

Via S3

Via S4

FIB

10.0.0.0/16

Via S2

Via S3

Via S4

Getting a negative for 10.0.10.0, installing matching routes in FIB

10.0.10.0/24

~Via S2

10.0.10.0/24

Via S3

Via S4

Via S1

Default

Via S1

Via S2

Via S3

Via S4

RIB

10.0.0.0/16

~Via S1

Default

Via S1

Via S2

Via S3

Via S4

FIB

10.0.0.0/16

Via S2

Via S3

Via S4

10.0.10.0/24

~Via S2

10.0.10.0/24

Via S3

Via S4

Recursive negative clean up if positive aggregation goes away

S1 S2 S3 S4

M1 M2 M3 M4

L1 L2 L3 L4

A

The resulting routing is as follows;

Default routing applies to all parents north

More specific routes to A:: exist in L4’s North shadow cone

A new more specific route is installed on L3 via M4 so as to avoid M3, and in L1 and L2 to avoid M1

(should they have other sources of packets which is not the case is the topology below) M1 and M3 would keep
forwarding packets for prefix A via S1 and S2 though in fact it has no solution, and the packets will be dropped or
forwarded along another default route .

Installed by normal
flooding (preexisting)

Installed by positive
disaggregation (fast)

Leaves (L=0)

ToF (L=2)

ToP (L=1)

Installed in FIB by negative
disaggregation (slower)

More specific route to A::

Installed in RIB by negative
disaggregation (slower)

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

