Routing in Fat Trees (RIFT) Update
draft-rift-rift-03

IETF 103, 11/18, Montreal

The RIFT €abal Authors

Update from -02

* Last version presented in Canada -02

* We went to -03 since then, -04 already evolving
* Lots of Specification added

* Lost of Open Source Code written and interop’ed

* Once or twice weekly online meetings has been held by the ‘core
crew’

* Most meetings recorded and posted to mailing list

Status in -02

. Fabric Bandwidth

Balancing
Optimal Flooding /
Reduction and Load
Balancing

BFD Interactions

/ Security Envelope / /Multi-PIane Super-Spine/
. - Flooding FSM

RIFT-03 Update, IETF 103 3

Update -03/-04, Green is Done

. Fabric Bandwidth Negative, Transitive
Balancing = Disaggregation

Optimal Flooding
Reduction and Load
Balancing

y
/
\ /

BFD Interactions Multi-Plane Super-Spine/

RIFT-03 Update, IETF 103 4

Rough Statistics

* Emails on “core contributor” email threads since last IETF: 300+

 Commits on Open Source version since last IETF without branch
merges: 205

* Lines on Open Source version patch since last IETF: 15’897

* Diff Size Between -02 and -03 specification: 6’574 lines of text

* Flooding procedures
* Multi-plane fabrics
* Tons small fry since running code interop is the best teacher

* Objects on encoding model changed: 7
* |deas Discussed and Scrapped: Dozens ;-)

What did we remove first ;-) ?

* We need to keep the base spec a base spec and basic demands drives
the basic content

* PGP goes into separate draft
* SR goes into separate draft

» Key-Value Store will get its own draft
* A well-known key registry likely

What did we do then 15t ?

* We could not resist changing language since it got confused once we
started work on multiple planes on top of fabric
* ToF: Top of Fabric
* Spine: Anything between leaf and ToF
e ToP: Top of Pod
* Radix South/North: # of ports

+

I

I

What did we do 2™ 7?
I

I

e Significant work on flooding |
based on clean room open |
source implementation and :
the first fallout !

* Updated Flooding Scope Table I
* Driven mostly by Bruno’s |
clarifying question (albeit he |
implemented correctly from ;

old table) |

e ToF changed E-W flooding I
scopes !

I

I

RIFT-03 Update,

Type /
Direction

non-node
S-TIE

TIRE as
Request

IETF 103

—— t——— - — — e ———— — — — — — — — — — — — — — — — — + — — }

flood if level of
originator is equal
to this node

flood self-
originated only

include at least
all non-self
originated N-TIE
headers and self-
originated S-TIE
headers and node
S-TIEs of nodes at
same level

request all N-TIEs
and all peer's
self-originated
TIEs and all node
S-TIEs

Ack all received
TIEs

--------------- e
North | East-West |
I I
--------------- T
flood if | flood only if |
level of | this node is |
originator is | not ToF |
higher than | |
this node | I
--------------- T
flood only if | flood only if |
neighbor is | self-originated |
originator of | and this node |
TIE | is not ToF |
--------------- T
flood always | flood only if |
| this node is |

| ToF |
--------------- T
include at | if this node is |
least all | ToF then |
node S-TIEs | include all |
and all | N-TIEs, |
S-TIEs | otherwise only |
originated by | self-originated |
peer and all | TIEs |
N-TIEs | |
--------------- e
request all | if this node is |
S-TIEs | ToF then apply |
| North scope |

| rules, |

| otherwise South |

| scope rules |
--------------- T
Ack all | Ack all |
received TIEs | received TIEs |
oo - - +

Table 3: Flood#®ng Scopes

What did we do 3™ bis?

* Wrote all the flooding rules in Appendix B.3

* Flood Structure per Adjacency
e TIES TX, TIES RTX, TIES _REQ, TIES ACK Queues of TIE Headers conceptually

* TIDE

* Generation: Generate periodically the set of TIDE describing the database
 MIN_TIEID and MAX_TIEID were not specified precisely enough
* Included LifeTime wasn’t specified tight enough
* All has been derived from the fact that we slavishly follow ISIS spec
* Bunch of ideas along the lines of “let’s not sort headers” died in the fry

* Processing: Based on neighbor’s description manipulate the queues

* Major bug by omission has been found (we didn’t put all the “holes” in the middle of the TIDE
onto the queues in original text)

* Very delicate bug with >=vs > on a step has been found

What did we do 3™ bis bis ?

* TIRE

e Generation: On a regular basis gather TIES_REQ and TIES_ACK queues and
advertise

* Processing: not much different from a single entry in TIDE processing
* No issues found AFAIR

* TIE Processing

* Based on TIE Header comparisons accept and ack, regenerate own or queue a
new one to transmit

. II II II II
. rd :+----++--+ T o v Sy Sy S A &
What did we do then 3@ 2 imer miimer simor &1 mor w1
|| II | | II | | II | | II
| | ++==========++ | | ++==========++
. . | || || |
* Multi-plane Fabrics and || || | hemmeeeeeseeoee +
.)) N || | L
Negative Disaggregation 0 | o .
,] | | NN
* Pascal will spend good - : e : : : :
amount of time on that | [T E— T +
| N N]
* | can’t resist a retro-chic ST o
typewriter produced picture T e e I Y
.|Spinelll| |Spinell2| |Spinel2l| |[Spinel22|
thOugh S e B N SR o
o o | L
[s [—— +
| N | Bl
|- T | - s
| o | |
:|Leaf111| |Leaf112| |Leafl21| |Leafl22]

Secure, Optimized RIFT Information Element
Envelope Running Strawman

. S P P I Ny P NPy +
UDP	TIE	Fingerprint	Nonce/	Security	Model	Serialized
Header	Lifetime	Type/Key ID	Soft	Fingerprint	Version	RIFT Model ...
		(e.g. SHA)	Token			Object
S . S P NP U Ny P NPy +

Avoids Problems we found over years with traditional link-state protocols when securing them
Maximizes Flooding Speed (No Re-Serialization, No Lifetime protection)
Security Fingerprint Does Not Get Affected by TIE LifeTime Changes

e Security can be solved by forcing advertisement of origin timestamp and clock on fabric
Serialized Object Keeps Its Fingerprint and Does Not Need Re-Serialization on LifeTime Field Change by
Every Node
Lie Nonces Are Protected by Fingerprint Against Replays, Reflect Neighbors’ Nonce. The nonce can be
used as Salt to generate softtokens
Only Node with Private Key (or Shared Secret) Can Generate the Fingerprint (Either for LIEs One-Hop or
for TIEs Providing Origin Validation and Integrity)

So still to do as hanging comments

e Explain which parts of specification need to be implemented for
leaf/spine/superspine/ToF version in detail

* Write a section on E-W superspine/ToF flooding scope to connect partitions so it
becomes clearer

* Get security envelope done, move remaining lifetime out the TIE packet so it can be
modified independently of the SHA'd TIE

* Possibly go to soft token generation to avert the necessity to SHA the nonce on the TIE envelope
* Add an intermediate state on multiple neighbors

* Modify flooding procedure on TIDE reception with the case of stale north TIEs stuck
more than one level up (propagate header description southbound)

* Write section on negative disaggregation example
* Move adjacency formation rules onto FSM text and remove 2.4.2</t>

THANK YOU FOR YOUR ATTENTION

