Bandwidth occupancy issue in draft-ietf-rmcat-coupled-cc

Julius Flohr
University of Duisburg Essen
IETF 103 Bangkok
Introduction

- Implemented Active FSE as defined in draft-ietf-rmcat-coupled-cc-07 in Omnet/INET

- Document does not consider application limited scenarios in case of Active FSE, but does for Passive FSE?

- Issues with multiple RTP flows with different priorities when application limited streams are present
Active FSE Algorithm

• On CC update of flow f:

 (a) It updates S_{CR}.

 \[S_{CR} = S_{CR} + CC_R(f) - FSE_R(f) \]

 [\ldots]\n
 (c) It calculates the sending rates for all the flows in an FG and distributes them.

 for all flows i in FG do
 \[
 FSE_R(i) = \frac{(P(i) \times S_{CR})}{S_P}
 \]
 send $FSE_R(i)$ to the flow i
 end for
Active FSE Algorithm

- On CC update of flow f:

 (a) It updates S_{CR}.

 $$S_{CR} = S_{CR} + CC_R(f) - FSE_R(f)$$

 [...]

 (c) It calculates the sending rates for all the flows in an FG and distributes them.

 for all flows i in FG do

 $$FSE_R(i) = \frac{(P(i)*S_{CR})}{S_P}$$

 send $FSE_R(i)$ to the flow i
 end for

 What if this is bigger than R_{MAX}?
Example

\[p_1 = 1.0, \ p_2 = 0.5 / \text{BtlBdw: 4Mbps / RMAX = 1.5 Mbps} \]
Proposed fix

- On CC update of flow f:

 (a) It updates S_{CR}.

 $$S_{CR} = S_{CR} + CC_R(f) - FSE_R(f)$$

 [...]

 (c) It calculates the sending rates for all the flows in an FG and distributes them.

 $$TLO = 0$$
 for all flows i in FG do
 $$FSE_R(i) = (P(i) * S_{CR}) / S_P + TLO$$
 $$TLO = 0$$
 if $FSE_R(i) > RMAX(i)$
 $$TLO = FSE_R(i) - RMAX(i)$$
 $$FSE_R(i) = RMAX(i)$$
 end if
 send $FSE_R(i)$ to the flow i
 end for
Proposed fix

\[p_1 = 1.0, \ p_2 = 0.5 \ / \ BtlBdw: \ 4Mbps \ / \ RMAX = 1.5 \ Mbps \]
Questions

• Is this an issue we should address?

• How to get RMAX to the FSE? FSE REGISTER?

• What about low-quality media sources? CC-limited vs. media-source limited?
for all flows i in FG do
 \[FSE_R(i) = \max(P(i) \cdot S_{CR})/S_P, RMAX) \]
 send $FSE_R(i)$ to the flow i
end for

$p_1 = 1.0$, $p_2 = 0.5$ / BtlBdw: 2.5 Mbps / RMAX = 1.5 Mbps