NADA Implementation in Mozilla Browser

draft-ietf-rmcat-nada-09

Xiaoqing Zhu, Rong Pan, Michael A. Ramalho, Sergio Mena, Paul E. Jones, Jiantao Fu, and Stefano D'Aronco

Nov 2018 | IETF 103 | Bankok, Thailand
Code Changes in Mozilla Repo

• Modified sender behavior:

• Changes in ~/media/webRTC/trunk/webRTC/modules/bitrate_controller

• Replaces default send_bandwidth_estimation.cc/h modules with nada_bandwidth_estimation.cc/h

• Using relative RTT as the congestion signal, ignores packet loss, updates interval ~1 sec

• Unmodified receiver behavior:

• Added logging via existing WebRTC logging framework
Real-World Test: Setup

Firefox Nightly w/ modifications
- NADA bandwidth estimation
- maximum sending rate at 4Mbps
- Default video height: 720p
- Logging stats of outgoing flow in the NADA module

Bi-directional audiovisual calls via appr.tc

Client A

Unmodified Chrome browser

Client B
Real-Life Test: Local Session

Client A:
• Location: Austin, Texas
• Internet connection: home WiFi

Client B:
• Location: Austin, Texas
• Internet connection: home WiFi

* Both clients connect to the Internet via the same home WiFi AP
* Base RTT: ~1ms
Real-Life Test: Remote Session within US

Client A:
• Location: Austin, Texas
• Internet connection: enterprise office

Client B:
• Location: San Jose, California
• Internet connection: home WiFi

Base RTT: ~160ms
Real-Life Test: Remote Session across Atlantic

Client A:
• Location: Austin, Texas, USA
• Internet connection: enterprise office

Client B:
• Location: Lausanne, Switzerland
• Internet connection: home WiFi

Base RTT: ~235ms
Summary of Observations

- Over ideal uncontested scenarios:
 - Ramp up to maximum rate within 15ms
 - Sending rate dips briefly due to occasional RTT spikes (~50 ms) but recovers quickly

- Over remote connections:
 - Reacts to RTT spikes over 500ms by dropping rate to minimum and recovers more slowly (~100 s)
 - Otherwise sustains maximum streaming rate with random fluctuations

- Overall, fairly robust to high RTTs and high FB intervals
Next Steps

• Integrate with new FB format so that congestion control signal is based on relative one-way delay values, as described in draft

• Experiment with the impact of different FB intervals

• Add logging on loss statistics and experiment over lossy links