mDNS ICE Candidates

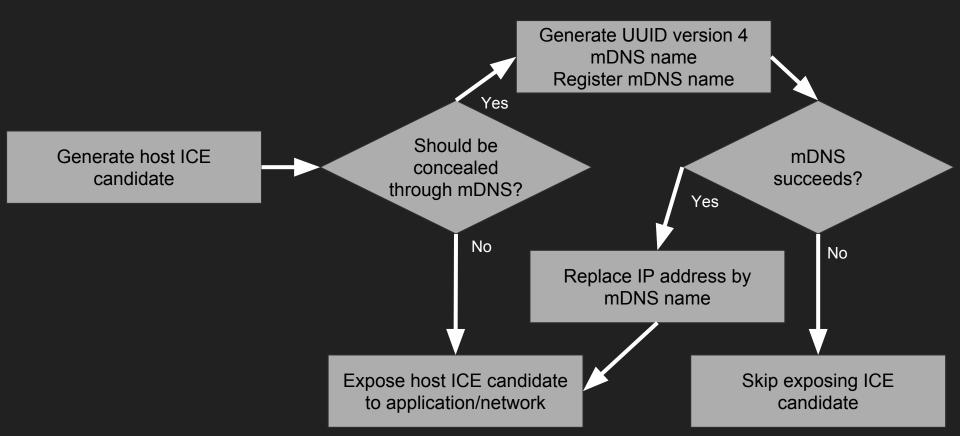
J. de Borst, Y. Fablet, J. Uberti, Q. Wang IETF 103

Purpose

- WebRTC by default exposes host candidates to web pages
 - To enable the most efficient connection path
- This information is used by web pages to fingerprint users
 - Gathering of private IPv4 addresses
- Chrome, Firefox and Edge do expose default route host candidates by default
- Safari does not expose any host candidates by default
 - This hurts connection success/connection efficiency

Specifications Scope

- IP-Handling v1
- mDNS ICE candidates
 - Define the technique to use mDNS for ICE candidates
- IP-Handling v2
 - Integrate new mode(s) based on mDNS ICE candidates proposal


IP-Handling v1

- Improve the description of private IP addresses issue
- Mention the possibility for future modes
- Leave other work for future documents

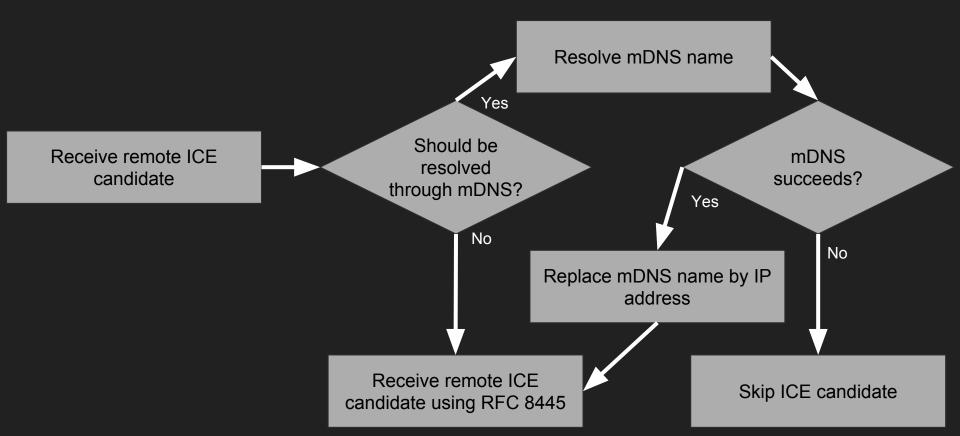
mDNS ICE Candidates Draft

- Active development on GitHub
 - https://github.com/youennf/mdns-ice-candidates

Candidate Generation

When to Use mDNS for Host Candidates?

- Concealment is not needed for public IP addresses
- IPv4/IPv6 STUN servers to the rescue
 - Send mDNS candidates as soon as possible
 - Also send server-reflexive candidates when computed
 - Even if the mDNS candidate conceals the public IP address exposed by the server-reflexive candidate
- Possibility to store whether an address is public or private from past interactions


mDNS Name Reuse

- mDNS names should be limited in time and scope
 - Otherwise these names might become even better fingerprints than the IP addresses they conceal
- Solution
 - Scope by origin of the web page
 - Limit lifetime to the life of the web page

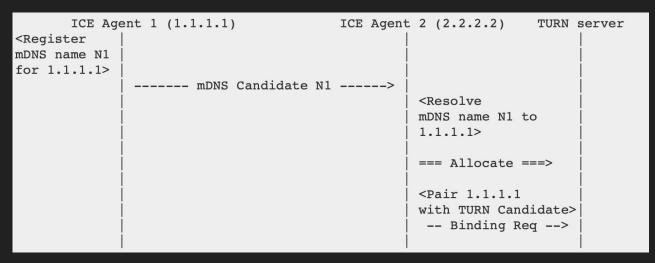
Candidate Generation Additional Points

- Implementation target
 - o Browsers
 - Endpoints wary of exposing information about their network
- Consistent concealment
 - o mDNS names should be used consistently in ICE Candidates, SDP, WebRTC stats
 - Server-reflexive candidates should be filtered
 - (rdar, rport) = (0.0.0.0, 0)

Candidate Resolution

Candidate Resolution Additional Points

- Implementation target
 - All endpoints implementing ICE
- When to use mDNS resolution.
 - Name ending with '.local'
 - May be restricted to only version 4 UUID names
- Multiple IPs for a single mDNS name?
 - Proposed behavior
 - Select a single address, first IPv6 if available
 - Should not happen in practice
 - Registration mandates one name per IP address


WebRTC Stats IP Leakage

Exposure of peer-reflexive IP addresses through RTCIceCandidateStats

- No exposure of peer-reflexive candidate addresses in WebRTC stats
 - Unless already known by web application

TURN Server IP Leakage

- Destination IP addresses are sent to relay servers when generating relay candidate pairs
 - This would defeat mDNS obfuscation

- Solution
 - Do not use remote mDNS candidates to pair relay candidates
 - No impact on connectivity

Network Interface Enumeration

- Number of mDNS candidates as a fingerprinting method
 - Not an issue if limited to default route candidates
- Proposal
 - Reconsider this issue if/when exposing non-default route mDNS candidates
 - Limit the number and/or variability of candidates

mDNS Message Flooding

- Flooding with mDNS traffic by web pages
 - Both registration and resolution
- Proposal
 - Limit resolution requests as per RFC 6762
 - Make browsers throttle registrations

mDNS Name Denial

- Malicious endpoints in the local network can break mDNS registration/resolution
 - May limit direct connectivity
- Proposal
 - Outside of the scope of this document

Reduced Connectivity

- mDNS resolution might fail
 - Networks not supporting mDNS
 - Endpoints too far away on the same large network
- Proposal
 - Gather experimental data to fully assess the severity of the issue
 - Investigate solutions in addition to NAT hairpinning and TURN
 - Bypass mDNS concealment for IPv6 RFC 4941/7217 addresses
 - DNS-SD mDNS relays

Connection Setup Latency

- Registration & resolution might affect connection setup latency
- Proposal
 - Gather experimental data
 - Local network should be fast in most cases
 - Implementations may decide to not wait for registration success to send the corresponding ICE candidate
 - Possibility to pre-register mDNS names

Backward Compatibility

- Legacy endpoints might not resolve mDNS ICE Candidates
 - Or resolve them through DNS
- But
 - Legacy endpoints will probably expose their host candidates which should allow direct connection

Implementation Support

- LibWebRTC
 - Full support of registration and resolution
- WebKit/Safari Technology Preview
 - Full support of registration and resolution, the latter based on libwebrtc
 - Experimental feature turned off by default
- Chrome
 - Full support of registration and resolution
 - Available in Canary Windows & Linux
 - Enable using chrome://flags

Empirical Data Gathering plan

- Measure the drop in connection success
 - Gather success rate for mDNS-enabled to mDNS-enabled connections
 - Gather success rate for mDNS-disabled to mDNS-disabled connections
 - Compare the two success rates
 - Need to make sure that there is an even distribution of mDNS-enabled/mDNS-disabled endpoints
- Measure connection latency increase

IP Handling v2

- Main target
 - New mode(s) between mode 2 and mode 3
 - https://tools.ietf.org/html/draft-uberti-ip-handling-ex-mdns-00
- Potential future target
 - New mode(s) between mode 1 and mode 2
 - Expose non-default route candidates
 - Need to investigate potential fingerprinting issues