RIFT: Routing In Fat Trees

Jeffrey Zhang Routing Area Open Meeting, IETF 103

Why RIFT?

- DC Underlay routing evolution: IGP \rightarrow eBGP \rightarrow RIFT
 - For scaling, convergence and Opex considerations
- Issues with IGP
 - Failure Impact Scope (aka Blast Radius)
 - A small change (e.g. a single link up/down on a leaf) is flooded everywhere, triggering SPF recalculation on every node
 - Rich connections make flooding unnecessarily redundant and inefficient

Issues with eBGP

- Cannot take advantages of well defined network topology
 - E.g. ideally a leaf (tier-3) node only needs a default route, and a tier-2 node only needs a default route and routes for destinations south of it
 - This cannot be done due to black-holing upon link failure
- A node needs to keep all paths learnt from different peers
 - A leaf node connecting to 32 tier-2 nodes needs to keep 32 paths for each of all the prefixes in the DC

Northbound LSR

- Link State flooded northbound to the top tier
 - With flooding reduction
 - Each node has full view of the southbound topology
 - A top tier node has full set of prefixes from the SPF calculation
 - A middle tier node has only information necessary for its level
 - All destinations south of the node, from its SPF calculation
 - Default route (next slide)
 - Potential disaggregated routes (next slide)
- Fast convergence and ECMP benefits of LSR

Southbound Distance Vector Routing

- Default route and automatically disaggregated routes (when needed) advertised one-hop southbound
 - When a level-2 node A detects that another level-2 node B cannot reach one of A's south destinations P, it advertises P via southbound DVR
 - That way a south level-3 node will route P traffic only towards A (via the more specific route) not towards B (via the default route)
- A node's local link state is advertised one-hop southbound and then reflected one-hop northbound
 - So that node A can detect if node B can reach A's south destinations
 - Other than that, link state is not propagated south, greatly reducing impact scope

AUTOMATIC DE-AGGREGATION

Zero Touch Provisioning

- Only top tier nodes need to be configured
 - Nodes that must be leaves or have leaf-leaf connection may be configured
 - Nodes with specific configuration can be mixed with others
- Upon connection nodes will fully auto-configure themselves and form adjacencies in a well defined north/south topology
 - With optional east-west connections
- ZTP makes DC fabric like RAM banks
 - No one configures RAM banks and CAS/RAS manually in a laptop
 - DC fabric HW is largely commodity already
 - DC fabric OPEX must and will commoditize
 - RIFT enables that

Other Features of RIFT

- Optimal Reduction and Load-Balancing of Flooding
- Mobility Support
 - Built-in support for rapid prefix moving from one leaf to another
- Key/Value Store
- Fabric Bandwidth Balancing
 - Northbound: modify the distance of default route received from a neighbor based on available BW through that neighbor
 - Southbound: during SPF consider available BW through lower level nodes
- Weighted all paths routing (RIFT is loop-free)
- Segment Routing Support
- Leaf-to-leaf Procedures
 - Allow E-W traffic strictly for local prefixes
- Policy Guided Prefixes
 - Moved to a separate draft

Summary of RIFT Advantages

- Advantages of Link-State <u>and</u> Distance Vector
 - Fastest Possible Convergence
 - Automatic Detection of Topology
 - Minimal Routes/Info on TORs
 - High Degree of ECMP
 - Fast De-comissioning of Nodes
 - Maximum Propagation Speed with Flexible # Prefixes in an Update
- No Disadvantages of Link-State <u>or</u> Distance Vector
 - Reduced and Balanced Flooding
 - Automatic Neighbor Detection

- Unique RIFT Advantages
 - True ZTP
 - Minimal Blast Radius on Failures
 - Can Utilize All Paths Through Fabric Without Looping
 - Automatic Disaggregation on Failures
 - Simple Leaf Implementation that Can Scale Down to Servers
 - Key-Value Store
 - Horizontal Links Used for Protection Only
 - Supports Non-Equal Cost Multipath and Can Replace MC-LAG
 - Optimal Flooding Reduction and Load-Balancing