

Name-Based Service Function Forwarder (nSFF) component within SFC framework

https://www.ietf.org/internet-drafts/draft-trossen-sfc-name-based-sff-01.txt

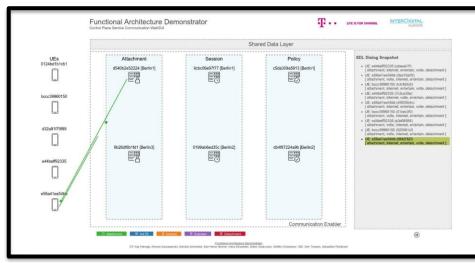
Dirk Trossen, Debashish Purkayastha, Akbar Rahman IETF-103, SFC WG, November 2018

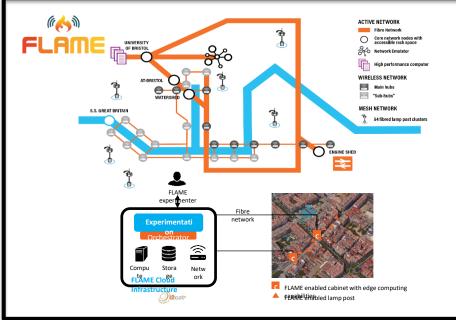
Recap

- 5G SBA Use Case illustrates, in distributed data centers (virtualized) service end points are created/recreated frequently
 - Requires the SFC framework to reconfigure the existing chain
 - Reconfiguration, using information of the new relationships, cause overhead in many components, such as Orchestrator
- **Rev 00** of the draft, proposes to
 - lift the chaining relationship from Layer 2 and 3 information to that of service function 'names'
 - extend major concepts of SFCs based on such named relations
 - nSFP : Name based Service Function Path
 - nNLM: Name based Network Locator Map
 - nSFF: Name based SFF which extends SFF operations to act on such name based information

Main Idea

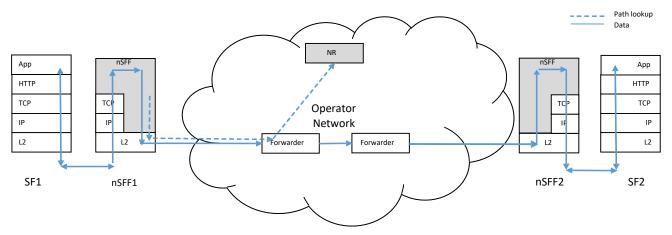
++ SF1	SF2
++ () ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++-+ ++ ++-+ ++ ++	+ rder nSFF2
	Boundary node
	++


Figure 5: High-level architecture


- Extend relationships between SFs from L2/L3 to names, expressed through e.g., URIs
- Extend SFC concepts with name relation in mind
 - nSFP: Extended Service Function Path to include 'name-based interactions'
 - nNLM: Extended Network Locator
 Maps to include 'name-based next hops'
 - nSFF: Extended Service Function
 Forwarder operation to act on such
 name-based information
 - NR (Name Resolver): capable of identifying the execution end points, where a "named SF" is running.

Main Idea

- The extended operations in nSFF is only invoked when the next hop in the NLM is described as a name, e.g. URI
- If the next hop information is described as L2/L3 identifier, then normal SFF operations are executed.
- This will be clarified in the next update of the draft.


Deployment/Trial examples

- Demonstration of the 5G SBA
 Use Case at NGMN Forum April
 2018, jointly with DT
- Shows control plane executed as HTTP-based services
- Flame platform : Validation through Urban Scale Trials & Experiments
- Focus on media scenarios, e.g., VR, AR, MR
- Ecosystem partners
 - 5 operator infrastructures
 - 25+ customer trials

Main Comments Addressed in Update

- Description of operations in the nSFF, between nSFF and NR to forward to remote SF, specifically considering
 - Avoid delay in forwarding by saving forwarding information previously obtained
 - Avoid staleness of forwarding information by periodically updating the saved information

nSFF Operation details

- The detailed operations described in the draft include:
 - Forwarding between nSFFs and nSFF-NR.
 - Service Function (SF) Registration
 - Forwarding to a local SF
 - Forwarding to a remote SF
 - Remote SF Discovery
 - Maintaining Forwarding Information at Local nSFF
 - Updating Forwarding Information at nSFF

Minimize latency of forwarding

- The discovery operation of remote SF may introduce latency in forwarding at nSFF
- To minimize latency in discovery, the following steps are executed
 - Response to a discovery request is saved in nSFF
 - Any future forwarding request to the same remote SF is resolved locally
- First time requests, which cannot be resolved locally, may still experience certain latency
 - Could be resolved through pre-population as described in draft on optimized chaining (see <u>https://datatracker.ietf.org/doc/draft-khalili-</u> <u>sfc-optimized-chaining/</u>)

Avoid staleness of forwarding information

- NR maintains a table of discovery requests
- It maps discovered (hash of) FQDN to the nSFF_id that requested it and the pathID that is being calculated for remote nSFF forwarding
- Information at NR is updated
 - If an SF is not reachable
 - A new SF has become available
 - SF is unreachable as link has gone down
- May lead to re-discovery at nSFF for remote SF whose pathID has been updated

Future work

- Defining transport protocol between nSFFnSFF and nSFF-NR
- Handling HTTP responses
- Security (TLS handling)
- Addressing nits identified by readers

Next steps

- Collect feedback from the WG
 - On the **general validity** of this extension to SFC, i.e., its scope within the SFC WG
 - On this **solution** specifically

- We will work on aligning solutions, being deployed for trials, fully with this draft
 - Contribute to work in NGMN SBA WG on performance evaluation of message routing (which could be realized via nSFF)