T2TRG: Thing-to-Thing Research Group

IETF 103, November 6, 2018, Bangkok, TH

Chairs: Carsten Bormann & Ari Keränen
Note Well

- You may be recorded

- The IPR guidelines of the IETF apply: see http://irtf.org/ipr for details.
Administrivia (I)

- Pink Sheet
- Note-Takers
- Off-site (Jabber, Hangout?)
 - `xmpp:t2trg@jabber.ietf.org?join`
- Mailing List: `t2trg@irtf.org` — subscribe at: https://www.ietf.org/mailman/listinfo/t2trg
- Repo: https://github.com/t2trg/2018-ietf103
Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Who</th>
<th>Subject</th>
<th>Docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:10</td>
<td>Chairs</td>
<td>Intro, RG Status</td>
<td>draft-irtf-t2trg-iot-seccons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>draft-irtf-t2trg-rest-iot</td>
</tr>
<tr>
<td>16:20</td>
<td>Chairs, various</td>
<td>Report from WISHI and Hackathon</td>
<td></td>
</tr>
<tr>
<td>16:45</td>
<td>Michael Koster</td>
<td>brief iot.schema.org update</td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td>Matthias Kovatsch</td>
<td>W3C WoT update</td>
<td></td>
</tr>
<tr>
<td>17:15</td>
<td>Chairs, various</td>
<td>core-apps, CoRAL — division of work</td>
<td></td>
</tr>
<tr>
<td>17:45</td>
<td>Chairs, various</td>
<td>Intro to Friday’s work meeting</td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>Chairs</td>
<td>Meeting Planning, Wrapup</td>
<td></td>
</tr>
<tr>
<td>18:10</td>
<td></td>
<td>end of meeting</td>
<td></td>
</tr>
</tbody>
</table>
T2TRG scope & goals

• Open research issues in turning a true "Internet of Things" into reality
 • Internet where low-resource nodes ("things", "constrained nodes") can communicate among themselves and with the wider Internet

• Focus on issues with opportunities for IETF standardization
 • Start at the IP adaptation layer
 • End at the application layer with architectures and APIs for communicating and making data and management functions, including security
IRTF and IETF?

CoRE: protocol engineering for RESTful environments

T2TRG: open research issues with IETF potential

LWIG: Informational guidance for implementers
Recent activities

• Work on IoT/Semantic Hypermedia Interoperability (WISHI): bi/tri-weekly calls and hackathons

• Semiphysical/WebEx sessions with OCF on CoRE technologies
Next meetings

• Work meeting this Friday (with Breakouts)
• Regular WISHI calls (~ monthly)
• Virtual meetings with OCF
• Virtual meetings with OMA SpecWorks (LwM2M & IPSO)
• Prague IETF 104
 • WISHI hackathon?
• Co-locating with academic conferences 2019?
RG Doc Status

- “State-of-the-Art and Challenges for the IoT Security” ready
- “RESTful Design for IoT” (next slides)
- Upcoming:
 - Document(s) to be shaped from CoRAL and CoRE Apps?
 - Inter-network Coexistence in IoT?
RESTful Design for IoT

New in -02:

- FETCH/(i)PATCH method considerations
- Caching considerations
- CoRE Apps draft for more details on how to define IoT hypermedia apps in a structured way
- And a bunch of IoT details discussed in Montreal
RESTful Design for IoT next steps

- Experiences from building IoT systems with (constrained) RESTful+ methods
 - W3C Web of Things?
 - OMA SpecWorks LwM2M?
 - OCF?
 - IoT platforms?
- More outside (of IRTF/IETF) reviews
- Ready for publication by IETF 105?
WISHI

- Four Web meetings since IETF102, discussing e.g.:
 - `iot.schema.org` definitions for semantic annotation
 - Semantic Style Sheets: adding semantics to existing instances of data
 - Declarative Data Conversion for JSON
 - LwM2M-WoT integration with `iot.schema.org` semantics
 - `iot.schema.org` with IPSO/LwM2M and OCF models
 - Notes on Semantics and Engineering principles
WISHI hackathon results

• 4th WISHI IETF Hackathon
• 8 participants (2 remotely)
• Connecting things from different ecosystems using shared semantics and hypermedia
What got done

• Key achievements
 • Turned a lamp on (and off) – hands off
 • Semantic interop for data and actions between LwM2M clients, Philips Hue lights, CoMI Toaster (kind of)
 • New Tiny Thing Directory implementation
 • Improved RD implementation
• Good discussions
 • Adding semantics to binary data
 • Hypermedia safety for IoT
 • Semantics and engineering principles; semantic uncertainty and usable semantics
What we learned

• Semantics is hard(er than you think)

• Setting up and testing stuff even more beforehand helps a lot – but we're getting better

• Bunch of new potential research topics for T2TRG
iot.schema.org

T2TRG Review
November 6, 2018
Overview and status

• SSN Workshop
• Charter
• Explainer and introductory slides
• Integration with schema.org
• Developer tools
• Work on modeling target ecosystems
• Work on automating consumed and exposed APIs
• Developer-user tools
• Going forward
SSN Workshop at ICSW2018

• Presented iot.schema.org at the SSN Workshop last week

• Presentation is in the teleconferences folder

• Discussion:
 • Action, Event, Property terms are badly overloaded
 • When will the definitions be available on schema.org?
 • How do we create and use definitions?
 • What tools are available for definitions and annotation
 • How do we use definitions with existing device ecosystems?
SSN Workshop (contd)

• Presentations on Automotive, Building Management, Home Care use cases

• Clear focus on Feature of Interest concepts

• Gap analysis for Semantic IoT
 • Taxonomy of Observable Properties
 • FoI Vocabularies
 • Sensor/Actuator Vocabulary
 • Vocabulary for processes and procedures
Organization

- W3C CG Charter
- Introductory materials
 - Explainer
 - Slide set for introduction
 - SSN workshop slides
- Integration with schema.org
 - May not be a sub-domain, e.g. become part of schema.org
 - We need to enable the schema browser for iotschema definitions
Developer tools

- How to create and maintain definitions
- How to use definitions in deployed systems
- How to apply definitions to existing device ecosystems and FoI definitions
 - OMA LWM2M
 - OCF
 - W3C WOT Thing Description
 - Genivi VSS
 - Haystack/Brick
 - What about Amazon Alexa, SmartThings, etc.
 - Other APIs using OAS/Swagger, HAL, JSON Hyperschema
Applying iot.schema.org
definitions to existing ecosystems

• Existing definitions in some machine-readable format
 • XML, JSON-Schema, JSON, others e.g. YAML

• Annotate the definitions with Semantic terms to describe affordances
 • JSON-LD schema can be annotated as in WOT TD
 • Other annotation techniques (WISHI Research)
 • Use existing definition or create new definitions

• Generate hypermedia controls from the annotated definitions
 • TD Generator
 • Other annotations of instances
Process

Diagram:
- Discovery Result
- TD Gen
- Rules and Templates
- Thing Description
- Ecosystem Schema
- Semantic Annotation

Legend:
- Description
- Result
- Rules and Templates
- TD Gen
Annotation of a JSON Schema fragment using JSON-LD

```json
{
  "type": "object",
  "properties": {
    "name": "bri",
    "@type": ["iot:LevelData"],
    "type": "integer",
    "min": 0,
    "max": 254
  }
}
```

• Annotated schema is used to generate hypermedia controls for instances
• E.g. a link with a target attribute containing the annotation
Work on API automation

• Abstraction to semantic annotation
• Consumed and exposed APIs
• Abstract interactions
 • Property – read, write
 • Action – invoke
 • Event – subscribe, unsubscribe
• Programmatic abstract API
• Node-RED examples
Semantic API Examples

// Semantic Lookup returns instances capable of semantic lookup
thing = local-directory.lookup-by-simple-template;
light = thing({"@type": ["iot:Light", "BinarySwitchCapability"] })
switch = light.property({"@type": "iot:BinarySwitch"})
rgbcolor = light.property({"@type": "iot:RGBColor"})
turnon = light.action({"@type": "iot:TurnOnAction"})
setlevel = light.action({"@type": "iot:SetLevelAction"})

// read() function with and without DataItem filter
>>> console.log(switch.read({"@type": "iot:BinarySwitchData"})
true

>>> console.log(switch.read())
[{
 "@type": "iot:BinarySwitchData",
 "value": true
},
 {
 "@type": "iot:ApplicationTypeData",
 "value": "tester"
}]

// write() function
switch.write({"@type": "iot:ApplicationTypeData", "value": "Light"})
Semantic API Examples (2)

// Write of multiple DataItems in a structured DataInstance
rgbcolor.write([
 {"@type": "iot:RedColorData", "value": 255},
 {"@type": "iot:GreenColorData", "value": 255},
 {"@type": "iot:BlueColorData", "value": 255}])

// invoke() function
turnon.invoke()

setlevel.invoke([{"@type": "iot:LevelData", "value": 170},
 {"@type": "iot:TransitionTimeData", "value": 100}])

// chained semantic references
>>> console.log(thing({"@type": ["iot:Light","BinarySwitchCapability"]})
 .property({"@type": "iot:BinarySwitch"})
 .read({"@type": "iot:BinarySwitchData"}))
true
Enriching the device models with iot.schema.org Semantics

Type 2 Nodes

```json
"@type": ["Thing", "iot:Thermostat"],
"id":
"urn:dev:wot:panasonic:airconditioner",
"security": [{"scheme": "basic"}],
"iot:isAssociatedWith": {"@id": "Room1",
"@type": "iot:Room"},
"properties": {
  "temperature": {
    "@type": "iot:Temperature",
    "iot:capability":
    {"@id": "iot:Thermostat"},
    "io:isPropertyOf": {
      "@id": "Room1",
      "@type": "iot:Room"
    },
    "type": "object",
    "properties": {
      "temperatureValue": {
        "type":
        "number",
        "minimum": 10.0,
        "maximum": 40.0,
        "iot:unitCode": "iot:Celsius"
      },
      "writable": false,
      "observable": true
    }
  }
}```
Semantic Integration of Existing Things with iot.schema.org
Type 2 Nodes

```
{
celsius: 25,
timestamp:13:00
}

Datatype adaptor
(Int to float)
{
 input: {
celsius: 25,
timestamp:13:00
 },
 output: {
celsius: 25.0,
timestamp:13:00
 }
}

UnitCode adaptor
{
 value: 77.0,
 unit: fahrenheit,
 timestamp: 13:00
}

Output1:
{
 TemperatureShape,
}

Output2:
{
 value: 77.0,
 iot:unitCode: fahrenheit,
 timestamp: 13:00
}
```
Recipe Flow Creation
Application Creation

**Recipe**: A template that defines orchestration of Things.
- Models Things required for orchestration
- Describes how Things should interact

**Node-RED Node**: Recipe ingredient
**Node-RED Wire**: Recipe interaction

**Use Cases**:
- Create a Recipe as Node-RED flow.
- Add context to flow JSON description
- Store Recipe to Thing Directory
Going Forward

• Set up the CG
• schema.org integration
• Accept definitions for target ecosystems
  • LWM2M/IPSO (Ericsson), OCF, SmartThings
• Work with IIC to create testbeds for semantic interoperability
Upcoming Teleconferences

• Dr. Amelie Gyrard – Semantic Web of Things
  • Industry-wide survey of existing definitions

• Bruce Nordman – Lawrence Berkeley Laboratory
  • Device descriptions for energy monitoring
SSN Workshop
Exit Keynote
(condensed)

ISCW 2018
October 9, 2018
This is the Problem being solved:

Source: https://xkcd.com/927/
Problem being solved – Semantic Interoperability for IoT

• Acknowledge the diversity of IoT device ecosystems
  • Not another device standard
  • Adaptive to diverse protocol, language, and data models
  • Distill the common and stable operational features
  • Second "narrow waist" for systems above IP networks

• Address the ease of use of Semantic Web for IoT and use of IoT for Semantic Web
  • Not another IoT ontology
  • A conceptual layer that models connected things in relation to existing ontologies
Narrow Waist in System Design

Many Applications.
Local and Remote

Common Infrastructure
(Protocols, Formats, and Meta Models)

Many Devices, Different Ecosystems

Web of Things

Semantic Interoperability
(Software Adaptation)

Internet of Things

IP Networks LAN/WAN (WiFi, Thread)

App
App
App
App

Fairhair
OCF
dotdot
LWM2M

36
Diverse Devices and Applications, Common Protocols and Semantics

- **Applications**
- **Semantic Vocab**
- **Thing Description**
- **Protocol Binding**
- **Device Ecosystems**
- **Protocols, Formats**
- **Transport**
- **Networks**

**Internet of Things**
Narrow Waist of Protocols

**Web of Things**
Narrow Waist of Semantics

**Diverse Devices**

**Diverse Applications**

**Interoperable Applications**

**W3C Thing Description**

**IETF CoAP, CBOR, Link-Format**

**OCF, OMA, Zigbee, Fairhair**

**iot.schema.org**

**UDP/TCP**

**WiFi, IPV6, Bluetooth**
Integration with other Ontologies

Enables Well-Characterized interactions with Physical Entities

- Feature of Interest, O&M
- Situation, Provenance

iot.schema.org
Definition

- Quantities, Units, Shapes, Property Value Constraint

Software Affordances
Connect things to the real world

"Lock Security Doors and Check" Action

- **Door Lock** Capability
  - ActuateLock Interaction
  - ActuateUnlock Interaction
  - GetState Interaction -> LockState Data

- Is Associated With

- Door
  - Is A Front Door
  - Opens To Outside
  - Is A Security Door

- iot.schema.org

- other ontologies
W3C Web of Things Update

IETF 103, T2TRG, Bangkok, Thailand, Nov 2018
W3C WoT Working Group

• Mission
  – Counter the fragmentation in the IoT by adopting Web technologies to **describe** and **complement** existing ecosystems

• Deliverables
  – WoT Architecture
  – WoT Thing Description ("TD")
  – WoT Binding Templates (informative)
  – WoT Scripting API
  – Security & Privacy Guidelines (informative)
WoT Thing Description — a JSON-based Format

```json
{
 "@context": [
 "https://w3c.github.io/wot/w3c-wot-td-context.jsonld",
 { "iot": "http://iotschema.org/" }
],
 "@type": ["Thing"],
 "id": "MyLEDThing",
 "name": "urn:dev:wot:example-thing",
 "security": [{
 "scheme": "OAuth2",
 "as": "https://authority-issuing.example.org"
 }],
 "properties": {
 "status": {
 "@type": "iot:SwitchStatus",
 "readOnly": false,
 "observable": true,
 "type": "boolean",
 "forms": [...]
 }
 },
 "actions": {
 "fadeIn": {
 "@type": "iot:TurnOn",
 "input": {
 "@type": "iot:Duration",
 "type": "integer",
 "unit": "ms"
 }
 }
 },
 "events": {
 "criticalCondition": {
 "@type": "iot:Alert",
 "type": "string",
 "forms": [...]
 }
 },
 "links": {
 "href": "power-meter",
 "rel": "iot:Component",
 "type": "application/td+json"
 }
}
```

- **Semantic Annotations**
  - Linked Data for machine-understandable metadata
  - **JSON-LD** processing for Semantic Web tooling, e.g., reasoning, semantic queries (SPARQL)
  - Raw JSON processing for programmatic handling, e.g., embedded devices, user interfaces, scripts

- **Data Schema**
  - **JSON Schema** vocabulary in Linked Data
  - Compatible with existing validator implementations

- **Hypermedia Controls**
  - Links to express relations to additional metadata and related Things (e.g., to model complex system)
  - Forms to express how to construct requests that are understood by existing IoT devices
WoT Thing Description – a JSON-based Format

```
{
 "@context": [
 "https://w3c.github.io/wot/w3c-wot-td-context.jsonld",
 { "iot": "http://iotschema.org/" }
],
 "@type": ["Thing"],
 "id": "MyLEDThing",
 "name": "urn:dev:wot:example-thing",
 "security": { ["scheme": "OAuth2", "as": "https://authority-issuing.example.org"] },
 "properties": { "status": { "@type": "iot:SwitchStatus", "readOnly": false, "observable": true, "type": "boolean", "forms": [...] } },
 "actions": { "fadeIn": { "@type": "iot:TurnOn", "input": { "@type": "iot:Duration", "type": "integer", "unit": "ms" } }, "forms": [...] } },
 "events": { "criticalCondition": { "@type": "iot:Alert", "type": "string", "forms": [...] } },
 "links": { ["href": "power-meter", "rel": "iot:Component", "type": "application/td+json"] }
}
```

**TD extension points**

- Pluggable domain vocabularies (cf. Linked Data)
  - Refine TD to have meaning within application context
  - Existing, e.g., SSN, SAREF
  - Collaborative, e.g., schema.org / iot.schema.org
  - Converted, e.g., OPC UA Companion Standards

- WoT Binding Templates
  - Describe concrete operations of Interactions using Web forms with information how to construct messages (e.g., method, headers)
  - IoT available, e.g., HTTP, CoAP, MQTT, OCF, LWM2M
  - Industrial to do, e.g., Modbus, BACnet, OPC UA

**Thing Metadata**

- List of possible Interactions with their data model
- Links
Recent Changes

• Features
  – Event parameterization (subscription, data, and cancellation subnodes in Event)
  – URI Templates

• Term alignment
  – writable → readOnly (JSON Schema compatibility, typo avoidance)
  – label → title
  – form mediaType → contentType (to define required media type parameters)
  – from rel → op (to much pushback on "form relation types", now operations)

• New terms
  – version, created, lastModified, safe, idempotent, unit (UCUM)
W3C WoT Roadmap

Dec 2016
WoT Interest Group
- Liaisons and outreach
- PlugFests (interop testing)
- Exploration

Jan 2019
Re-Charter

Jul 2019
W3C WoT Workshop
May 2019
- SMART Cities Business G.
- iot.schema.org Community Group

Jun 2021

WoT Working Group
- Deliverables

Mar 2018
JSON-LD 1.1

Jun 2021
Candidate REC
Jun 2021
Proposed REC
Jun 2021
REC
Next Steps and At-Risk Features

• Todos
  – Algorithm to transform JSON-LD 1.1 syntax to JSON-LD 1.0 REC
    (JSON-LD 1.1 is still in draft phase, "@container": "@path" feature missing)
  – WoT Arch and TD Candidate Recommendations (CR)
  – Definition of test cases
  – Implementation of Test Suite (good existing basis due to PlugFests)
  – WoT IG Proposed Charter

• Features still under discussion
  – Meta-Interactions
    (read all Properties, write multiple, list active Events, ...)
  – URI Template abstraction (integration into Action input)
Contact

Matthias Kovatsch
matthias.kovatsch@siemens.com
CoRE Applications

• Convention and template for application designers building hypermedia-driven application interfaces in a structure way
  • draft-hartke-core-apps-08

• Goal: implementors can easily build interoperable clients and servers; others can re-use components more easily
CoRE app API Components

• Communication protocols, identified by URI schemes
• Representation formats, identified by Internet media types
• Link relation types
• Form relation types
• Template variables in templated links
• Form field names in forms
• Well-known locations

in-band instructions to a client for interfacing with a given application
Template for CoRE Apps

• Human-readable information about API components (see previous slide) and other useful information:

  • Application name
  • Interoperability considerations
  • Security considerations
  • Contact person
  • Change controller / author
Working on CORAL in IRTF and IETF?

- CoRE: engineering the CORAL format; CoRE applications (RD, PS?)
- T2TRG: how to use CORAL for new applications; work with W3C WoT
- LWIG: Maybe later

Core-apps
CoRAL

The Constrained RESTful Application Language

Klaus Hartke
CoRAL is a hypermedia representation format for the hypermedia model described in draft-hartke-core-apps:

• Links
  change application state.
  “{context} has a {link relation type} resource at {target URI}, which has {target attributes}”

• Forms
  change resource state.
  “To {form relation type} the {context}, make a {method} request to {target URI}”
CoRAL aims to reduce the cost of hypermedia:

- **Reduce size of representations**
  - Encode links and forms in a compact, binary format
  - Use numbers instead of strings
  - Use sensible default values
  Most links and forms can be expressed in a few bytes

- **Reduce number of roundtrips**
  - Embed a representation of the link target and forms manipulating the link target at the link source

- **Simplify implementations**
  - Same option concept as CoAP
  This simplifies URI parsing and reference resolution a lot
CoRAL

A language for the description of typed connections between resources on the Web ("links") and possible operations on such resources ("forms") as well as simple resource metadata for automated software agents.

* Data and interaction model

* Compact, binary format
  -- suitable for constrained environments

* Lightweight, textual format
  -- easy to read and write by humans
CoRAL Examples: Textual format

- Interchange format is binary (CBOR)
- Could use CBOR diagnostic notation to discuss
- “Ready to munch” format (including CIRIs) gets tedious quick
- Instead: Use separate textual format
  - **Danger**: textual format can shape thinking away from actual data
  - **Danger**: textual format can acquire “syntactic processing” that is not actually part of the binary format
- Keep these dangers in mind ➔ textual format best way to discuss
<!-- HTML5 -->
<link rel="stylesheet" href="/style.css">
<link rel="icon" href="/favicon.png">
<link rel="license" href="/license">

// CoRAL
stylesheet  <style.css>
icon       </favicon.png>
license   </license>

link relation type  link target (IRI)
// representation of \texttt{<coap://robbie.robot/>}

\begin{verbatim}

id     354675
name   "Robbie the robot"
lives  \texttt{<coap://susie.robot/>}
lives  \texttt{<coap://nikki.robot/>}  \{  
   lives \texttt{<coap://chris.robot/>}  
\}

\end{verbatim}

link target (literal)

link from nikki to chris
// representation of <coap://susie.robot/>

id 827446
name "Susie"

power-led </leds/power1>
power-led </leds/power2>
status-led </leds/status>
headlight </leds/head> {
    update -> PUT <> [accept "example/boolean"]
}
// representation of <coap://susie.robot/tasks>

item </tasks/1> { 
    description "Pick up the kids"
}

item </tasks/2> { 
    description "Return books to the library"
}

create POST <> [accept "example/task+coral"]
// representation of <coap://susie.robot/tasks/3>

description "Take out the trash"
collection </tasks>
update -> PUT </tasks/3>
delete -> DELETE </tasks/3>
Working on CORAL in IRTF and IETF?

- **T2TRG**: how to use CORAL for new applications; work with W3C WoT
- **CoRE**: engineering the CORAL format; CoRE applications (RD, PS?)
- **LWIG**: Maybe later
- **T2TRG**: Core-apps
Friday Work Meeting

- 8:30 to 13:20, room Boromphimarn 4
- Breakouts from 10:00 to 12:00
- E.g., Edge computing, Security, Hypermedia
- Also: COIN (Computing in the Network, room Boromphimarn 3) side meeting, relevant to IoT
# Friday Work Meeting

<table>
<thead>
<tr>
<th>Time</th>
<th>Presenter(s)</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>Chairs</td>
<td>Welcome &amp; Short Introduction. T2TRG/IETF work.</td>
</tr>
<tr>
<td>8:40</td>
<td>Various</td>
<td>Plenary</td>
</tr>
<tr>
<td></td>
<td>Jungha Hong</td>
<td>Problem Statement of IoT integrated with Edge Computing</td>
</tr>
<tr>
<td></td>
<td>Erik Nordmark</td>
<td>Computing at the Edge</td>
</tr>
<tr>
<td></td>
<td>Thorsten Dahm</td>
<td>Automated IoT Security</td>
</tr>
<tr>
<td></td>
<td>Mohit Sethi</td>
<td>Enabling Network Access for IoT devices from the Cloud</td>
</tr>
<tr>
<td>9:40</td>
<td></td>
<td>Breakout planning</td>
</tr>
<tr>
<td>9:50</td>
<td></td>
<td>Break for breakouts</td>
</tr>
<tr>
<td>10:00</td>
<td>Various</td>
<td>Breakouts (see below)</td>
</tr>
<tr>
<td>12:00</td>
<td></td>
<td>Plenary (discussion, next steps)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consolidating results from the breakouts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Consolidating results from the hypermedia discussions</td>
</tr>
<tr>
<td>13:20</td>
<td></td>
<td>meeting ends</td>
</tr>
</tbody>
</table>
Problem Statement of IoT integrated with Edge Computing

• New challenges for IoT services originated from the changes in the IoT environment
• Edge computing as an emerging technology in IoT
• Use cases of Edge computing in IoT (two demo videos)
  • Smart constructions utilizing EdgeX
  • Real-time control system by Rotary Inverted Pendulum system
Friday: Computing at the edge

draft-nordmark-t2trg-computing-edge-00

Look at edge computing from a compute perspective (cpu, memory, storage, connectivity) to determine network needs.

Consider e.g., applications deployed in cloud (as containers or VMs) and what it would mean to deploy them at the edge.
Automated IoT Security

- Automating Risk Analysis, Vulnerability Assessment ➔ Secure Configuration
- Automating continuous monitoring and audit

Solving the mismatch between

- The security capabilities and settings with which IoT devices are designed / manufactured / deployed
- The actual security requirements of the IoT devices in different environments over time