
 Transport Services
API for QUIC

 
draft-pauly-quic-interface-00

Tommy Pauly, Eric Kinnear
TAPS

IETF 103, November 2018, Bangkok

 1

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 2

Make it easy to transition clients to QUIC

Racing and fallback provided by implementation

Common API surface between QUIC and TCP-
based solutions

Expose novel transport features (0-RTT,
multistreaming)

Goals for a QUIC API

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 3

Transitioning Clients to QUIC

HTTP Application

HTTP API

TLS

TCP

IP

QUIC

UDP

IP

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 4

Transitioning Clients to QUIC

Foo Application

TLS/DTLS

TCP/UDP

IP

QUIC

UDP

IP

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 5

Transitioning Clients to QUIC

Foo Application

TAPS API

TLS

TCP

IP

QUIC

UDP

IP

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 6

Transitioning Clients to QUIC

HTTP Application

TAPS API

TLS

TCP

IP

QUIC

UDP

IP

HTTP API

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 7

Use only one stream in a connection
Benefit from:
• Faster secure handshake
• 0-RTT support
• Path migration
• Extensible transport parameters
• More complete privacy and authentication

Models for using QUIC
As a TCP-style stream

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 8

Consume a stream for each application message
Benefit from:
• All connection-level benefits
• Eliminating head-of-line blocking between

messages
• Explicit uni-directional vs bi-directional streams

provide “reply” semantics

Models for using QUIC
As a message channel

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 9

Use many long-lived streams
Benefit from:
• Shared security and authentication context

between many streams
• Unreliable extensions can allow parallel

unreliable and reliable data within a connection

Models for using QUIC
As a tunnel for several streams

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 10

“Stream” Mode
Transport connection as QUIC stream

Initiate()

Send(partial)

Receive()

Send(complete)

QUIC Handshake

New Stream

STREAM+FIN

Send STREAM Receive STREAM

RST_STREAM

CONNECTION_CLOSE

Close()

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 11

“Connection” Mode
Transport connection as QUIC connection

Initiate()

Send(partial)

Receive()

Send(complete)

QUIC Handshake

New Stream

STREAM+FIN

Send STREAM Receive STREAM

RST_STREAM

CONNECTION_CLOSE

Close()

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 12

Even if both models may be presented to an API
client, implementation should be the same
“Stream” mode has more complete expressivity

One caveat is implicit stream opening
Generally, build “Connection” on top of “Stream”

Same two models can be used for other multi-
streaming transports, like HTTP/2

Implementation Considerations

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 13

