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Make it easy to transition clients to QUIC 

Racing and fallback provided by implementation  

Common API surface between QUIC and TCP-
based solutions 

Expose novel transport features (0-RTT, 
multistreaming)

Goals for a QUIC API 
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Use only one stream in a connection 
Benefit from: 
• Faster secure handshake 
• 0-RTT support 
• Path migration 
• Extensible transport parameters 
• More complete privacy and authentication

Models for using QUIC 
As a TCP-style stream
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Consume a stream for each application message 
Benefit from: 
• All connection-level benefits 
• Eliminating head-of-line blocking between 

messages 
• Explicit uni-directional vs bi-directional streams 

provide “reply” semantics

Models for using QUIC 
As a message channel
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Use many long-lived streams 
Benefit from: 
• Shared security and authentication context 

between many streams 
• Unreliable extensions can allow parallel 

unreliable and reliable data within a connection

Models for using QUIC 
As a tunnel for several streams
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“Stream” Mode 
Transport connection as QUIC stream
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“Connection” Mode 
Transport connection as QUIC connection
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Even if both models may be presented to an API 
client, implementation should be the same 
“Stream” mode has more complete expressivity 

One caveat is implicit stream opening 
Generally, build “Connection” on top of “Stream” 

Same two models can be used for other multi-
streaming transports, like HTTP/2

Implementation Considerations 
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