
 Transport Services
API for WebRTC

Tommy Pauly
TAPS

IETF 103, November 2018, Bangkok

 1

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 2

WebRTC over QUIC proposal has inspired
discussion around applying a transport-
independent API

https://w3c.github.io/webrtc-quic/

Existing low-level APIs are transport-specific
(RTCSctpTransport, RTCDtlsTransport,
RTCIceTransport)

Background

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 3

Is Rendezvous sufficiently specified?

Do the states transitions match?

Does TAPS have any API gaps?

Are the data transfer models compatible?

Raised Questions

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 4

Resolve candidates (RTCIceTransport)

[]Preconnection := Preconnection.Resolve()

Establish Connections (RTCQuicTransport/
RTCSCTPTransport)

Preconnection.Rendezvous()  
Preconnection -> RendezvousDone<Connection>

For established Connections on multi-streaming
protocols, is the delivered Connection a specific
stream?

Rendezvous

WebRTC Interface Mapping - TAPS - T. Pauly - IETF 103 5

State Transitions
Comparing TAPS to WebRTC proposal

TAPS States
(Section 9)

TAPS Events
(Section 11)

QUIC WebRTC
States

Establishing -- Connecting

Established Ready Connected

Closing -- --

Closed Closed Closed

Closed ConnectionError Failed

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 6

WebRTC over QUIC proposes abortReading

A hard shutdown of the ReadableStream.

STOP_SENDING frame in QUIC

TAPS does not currently include this notion

When is this required as opposed to closing both
with RST_STREAM+STOP_SENDING?

API Gaps
Supporting Stop-Sending

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 7

Data Transfer

TAPS provides Message semantics as well as
Cloning connections for multiplexing

RTCQuicTransport presents a Stream abstraction

RTCSctpTransport presents a Data Channel
abstraction

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 8

writable/writeBufferedAmount/writingAborted  
  
write(buffer, length)  
waitForWriteBufferedAmountBelow()  
abortWriting()  
 
dictionary RTCQuicStreamWriteParameters  
{  
 Uint8Array data;  
 boolean finished = false;  
};

Connection.Send( 
 messageData,  
 messageContext,  
 endOfMessage)

TAPS QUIC WebRTC

Data Transfer
Sending Data

QUIC Interface Mapping - TAPS - T. Pauly - IETF 103 9

readable/readableAmount/readingAborted  
  
readInto(buffer, length)->result  
waitForReadable()  
abortReading()  
 
dictionary RTCQuicStreamReadResult  
{  
 unsigned long amount;  
 boolean finished = false;  
};

Connection.Receive( 
 minIncompleteLength,  
 maxLength)

Connection ->
ReceivedPartial<  
 messageData,  
 messageContext,  
 endOfMessage>

TAPS QUIC WebRTC

Data Transfer
Receiving Data

WebRTC Interface Mapping - TAPS - T. Pauly - IETF 103 10

