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WebRTC over QUIC proposal has inspired 
discussion around applying a transport-
independent API  

https://w3c.github.io/webrtc-quic/ 

Existing low-level APIs are transport-specific 
(RTCSctpTransport, RTCDtlsTransport, 
RTCIceTransport)

Background 
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Is Rendezvous sufficiently specified? 

Do the states transitions match? 

Does TAPS have any API gaps? 

Are the data transfer models compatible?

Raised Questions 
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Resolve candidates (RTCIceTransport) 

[]Preconnection := Preconnection.Resolve()

Establish Connections (RTCQuicTransport/
RTCSCTPTransport) 

Preconnection.Rendezvous()  
Preconnection -> RendezvousDone<Connection>

For established Connections on multi-streaming 
protocols, is the delivered Connection a specific 
stream?

Rendezvous 
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State Transitions 
Comparing TAPS to WebRTC proposal

TAPS States 
(Section 9)

TAPS Events
(Section 11)

QUIC WebRTC
States

Establishing -- Connecting

Established Ready Connected

Closing -- --

Closed Closed Closed

Closed ConnectionError Failed
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WebRTC over QUIC proposes abortReading  

A hard shutdown of the ReadableStream.  

STOP_SENDING frame in QUIC 

TAPS does not currently include this notion 

When is this required as opposed to closing both 
with RST_STREAM+STOP_SENDING?

API Gaps 
Supporting Stop-Sending



QUIC Interface Mapping - TAPS - T. Pauly - IETF 103  7

Data Transfer 

TAPS provides Message semantics as well as 
Cloning connections for multiplexing 

RTCQuicTransport presents a Stream abstraction 

RTCSctpTransport presents a Data Channel 
abstraction
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writable/writeBufferedAmount/writingAborted  
  
write(buffer, length)  
waitForWriteBufferedAmountBelow()  
abortWriting()  
 
dictionary RTCQuicStreamWriteParameters  
{  
   Uint8Array data;  
   boolean finished = false;  
};

Connection.Send(  
   messageData,  
   messageContext,  
   endOfMessage)

TAPS QUIC WebRTC

Data Transfer 
Sending Data
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readable/readableAmount/readingAborted  
  
readInto(buffer, length)->result  
waitForReadable()  
abortReading()  
 
dictionary RTCQuicStreamReadResult  
{  
   unsigned long amount;  
   boolean finished = false;  
};

Connection.Receive(  
   minIncompleteLength,  
   maxLength)

Connection -> 
ReceivedPartial<  
   messageData,  
   messageContext,  
   endOfMessage>

TAPS QUIC WebRTC

Data Transfer 
Receiving Data
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