TCP Usage Guidance in the Internet of Things

draft-ietf-lwig-tcp-constrainednode-networks-04

Carles Gomez

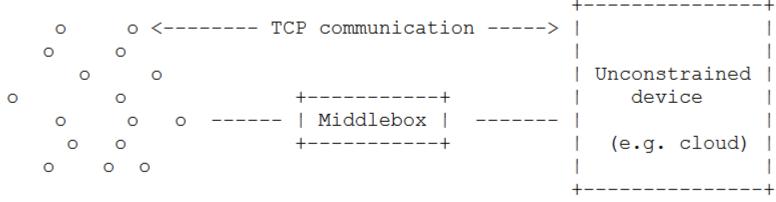
Universitat Politècnica de Catalunya Jon Crowcroft University of Cambridge Michael Scharf Hochschule Esslingen

IETF 103 – Bangkok, November 2018

Status

- Initial version presented in IETF 96

 TCPM and LWIG
- Presented since then at LWIG


 IETF 97, 98, 99, 100, 101, 102 (103 planned)
- Became an LWIG WG document after IETF 99
- TCPM WG has been in the loop through the ML – Heads-up given in IETF 102
- Last revision is -04
 - WGLC request

Section 1. Introduction

- TCP has often been criticized for IoT
 - Some of the reasons not valid
 - Consequence: TCP has sometimes been neglected for IoT
- However, TCP is being used in IoT
 HTTP, CoAP (over TCP, now available), MQTT, etc.
- Goal of the document
 - Providing guidance on how TCP can be used/configured/implemented in IoT scenarios

Section 3. Characteristics of CNNs relevant for TCP

- 3.1. Network and link properties
 - Constrained devices: processing, memory, energy
 - Links: low bit rate, high loss rate, variable link quality
 - Multihop topology in many scenarios
- 3.2 and 3.3. Usage scenarios and traffic patterns – Unidirectional transfers, request-response, bulk

Section 4. TCP implementation and configuration in CNNs

• Organization

4.1. Path properties	6
	_
<u>4.1.1</u> . Maximum Segment Size (MSS)	
4.1.2. Explicit Congestion Notification (ECN)	7
4.1.3. Explicit loss notifications	8
4.2. TCP guidance for small windows and buffers	8
4.2.1. Single-MSS stacks - benefits and issues	8
4.2.2. TCP options for single-MSS stacks	
4.2.3. Delayed Acknowledgments for single-MSS stacks	9
4.2.4. RTO estimation for single-MSS stacks	10^{-1}
4.3. General recommendations for TCP in CNNs	10
4.3.1. Error recovery and congestion/flow control	10
4.3.2. Selective Acknowledgments (SACK)	11
4.3.3. Delayed Acknowledgments	11

Section 4.1. Path properties

- MSS
 - An adaptation layer (including fragmentation) required to support IPv6 over some link layers
 - Define an MTU of 1280 bytes
 - Other links support larger MTUs
 - Generally desirable to limit the MTU to 1280 bytes
 - Set the MSS not larger than 1220 bytes
- ECN
 - Beneficial in CNNs: reduce packet losses, sometimes only detected after an RTO expiration
- ELN
 - Mostly experimental, not standardized, not widely deployed

Section 4.2. TCP guidance for small windows

- Single-MSS send and receive window
 - Very simple congestion and flow control
 - Often sufficient for IoT (e.g. CoAP)
 - Not so good for bulk transfers
 - Many TCP options not required
 - Window scale, timestamps, SACK...
- Delayed ACKs
 - A single-MSS receiver would add unnecessary delay
 - A single-MSS sender would suffer unnecessary delay
 - Workaround: "split hack" avoids delay (but adds overhead)
- RTO algorithm
 - Larger impact on performance if small sender window size
 - Tuning may be considered

Section 4.3. General recommendations for TCP in CNNs

- Fast Retransmit and Fast Recovery
 - Require large enough window size (e.g. 5 MSS)
- SACK
 - May avoid unnecessary retransmissions
 - Save energy, bandwidth; reduce latency
- Delayed ACKs
 - For small messages (< 1 MSS) or request/response: disabling delayed ACKs recommended (if possible)
 - For bulk transfers, delayed ACKs reduces number of ACKs

Section 5. TCP usage recommendations in CNNs

- 5.1. TCP connection initiation
 - Typically, initiated by the constrained device
- 5.2. Number of concurrent connections
 - Being conservative, recommended
 - RAM consumption, harmful in congested networks
- 5.3. TCP connection lifetime
 - Long TCP connection desirable
 - Not always possible: middleboxes (e.g. firewalls)
 - Alternative: short TCP connections
 - Message overhead
 - TCP Fast Open (TFO)
 - Application-level idempotency not always guaranteed
 - Other alternatives
 - Application-layer heartbeats
 - TCP Keep-alives (if used, Keep-alive interval trade-off)

Section 6. Security considerations

- Best current practice applies
 - E.g. Use of TLS if applicable
- TCP security options
 - TCP MD5 signature, TCP-AO
 - Additional 18 bytes, 16-20 bytes (respectively)
- Shrew DoS attacks
 - One or more sources generate packets to coincide with consecutive retry attempts of a victim node, triggered by RTO expiration
 - Small window size senders are potential victims
 - Mitigation
 - RTO randomization
 - Attack blocking by routers, based on traffic patterns

Annex. TCP implementations for IoT

	-	uIP	lwIP orig	lwIP 2.0		_		++ uC/OS
Memory	Code size(kB) 	(a)		~40 (b)	<7	N/A		N/A
· ·	Win size(MSS)			Mult.	1	Mult.	Mult.	Mult.
	Slow start			Yes	No	Yes	No	Yes
	Fast rec/retx 	No	Yes		No	Yes	No	Yes
	Keep-alive	No	No	Yes	No	No	Yes	Yes
	Win. Scale	No	No	Yes	No		Yes	No
	TCP timest.		No	Yes	No	No	Yes	No
	SACK	No		Yes	No	No	Yes	No
	Del. ACKs	No	Yes	Yes	No	No	Yes	Yes
	Socket	No	No	Optional	(I)	Subset	Yes	Yes
 +	Concur. Conn.	Yes	Yes	Yes	Yes	Yes	Yes	Yes +

- (T1) = TCP-only, on x86 and AVR platforms
- (T2) = TCP-only, on ARM Cortex-M platform
- (a) = includes iP, iCMP and iCP on x86 and AVR platter (b) = the shell must call stack on wheel
- (b) = the whole protocol stack on mbed
- (I) = interface inspired by POSIX
- Mult. = Multiple
- N/A = Not Available

Post-cutoff comments

- Yoshifumi Nishida (TCPM co-chair)
 - Comments:
 - Section 4.2.4. Cite draft-ietf-tcpm-rto-consider
 - Section 4.3.1. Need to clarify need of window size of 5 MSS to get 3 duplicate ACKs
 - Section 5.3. A typo
 - Section 5.3. TFO deviation from TCP semantics
 - Section 5.3. Discuss reducing TCP keep-alive interval

WGLC?

IETF 103 – Bangkok, November 2018