
QUIC
Loss Detection & Congestion Control

draft-ietf-quic-recovery

TCPM, IETF 103

Discuss QUIC loss recovery mechanisms

No slides on congestion control, but can discuss
(it’s just NewReno)

Learn about egregious errors and blind spots
TCPM has the right experts

Increase engagement with TCPM
can do an update again at the next IETF

Goals

Re-design mechanisms

Re-litigate constants

Re-litigate QUIC’s use of TCP standards
6298 and 5681 are non-normative references

… these things can be done, just don’t do them right now

Non-Goals (for the next hour)

Some relevant QUIC details

Recovery mechanisms

Potential improvements / Open questions

Overview

QUIC

Monotonically increasing 62-bit packet numbers
(caveat: multiple PN spaces during connection setup)

Packet number DOES NOT indicate delivery ordering

QUIC Packet Numbers

ACK frame is encrypted and carried within QUIC packets

ACK frame contains:
largest acked
one or more ack ranges
“ack delay”: T(ack send) - T(largest acked packet received)
3 ECN counts: #ECT(0), #ECT(1), #CE

QUIC Acknowledgements

SHOULD ACK every other packet
subject to 25ms delayed ack timer

SHOULD ACK immediately if:
Received packet number != largest received + 1
CE codepoint received

MAY process more packets before ACK
allows less frequent acking

Generating ACKs

Packet: PN X
packet with Packet Number X

Ack Frame: A X(K-L)(M-N)
largest acked of X
ack ranges K-L and M-N
(Note: X > K, L, M, N)

Notation

Loss Detection
fast retransmit, early retransmit
tail loss probe, RTO
spurious RTO detection

Congestion Control
NewReno, but largest_acked ends recovery period

Same, but different

Recovery Mechanisms

Fast Retransmit (Packet threshold)

RS

PN: 1
PN: 2
PN: 3
PN: 4
PN: 5

A: 3 (1-1)
A: 4 (3-3) (1-1)
A: 5 (4-3) (1-1)

 PN: 6
(rtx frames
from PN 2)

A: 6 (5-3) (1-1)

Fast Retransmit (FACK)

RS

PN: 1
PN: 2
PN: 3
PN: 4
PN: 5

A: 3 (1-1)
A: 4 (3-3) (1-1)
A: 5 (4-3) (1-1)

 PN: 6
(rtx frames
from PN 2)

A: 6 (5-3) (1-1)

9/8
x

max(sRTT, latest RTT)

Fast Retransmit (Time threshold)

RS

PN: 1
PN: 2
PN: 3 A: 3 (1-1)

A: 4 (3-3) (1-1)
A: 5 (4-3) (1-1)

 PN: 7
(rtx frames
from PN 2)

A: 7 (6-3) (1-1)

PN: 4
PN: 5
PN: 6 A: 6 (5-3) (1-1)

9/8
x

max(sRTT, latest RTT)

Fast Retransmit (Time threshold)

RS

PN: 1
PN: 2
PN: 3 A: 3 (1-1)

A: 4 (3-3) (1-1)
A: 5 (4-3) (1-1)

PN: 4
PN: 5
PN: 6 A: 6 (5-3) (1-1)

Time threshold allows reordering tolerance in packet space

A: 6 (5-1)

9/8
x

max(sRTT, latest RTT)

Early Retransmit
RS

PN: 1
PN: 2
PN: 3 A: 3 (1-1)

 PN: 4
(rtx frames
from PN 2)

A: 4 (3-3) (1-1)

Small delay allows for some reordering

RTT is RFC 6298, except for RTT sample:
rtt = now - largest_acked.sent_time - ack.ack_delay

max_ack_delay
declared by both endpoints during handshake

Timeouts:
RTO = srtt + 4 * rttvar + max_ack_delay (min: 200ms)
TLP = 1.5 * srtt + max_ack_delay (min: 10ms)

RTT and Timeouts

3/2 * SRTT +
max_ack_delay

TLP
RS

PN: 1
PN: 2
PN: 3 A: 2

 PN: 4
(TLP: send new

data or retx)

A: 4 (2-1)

TLP always includes max_ack_delay

3/2 * SRTT +
max_ack_delay

2 TLPs RS

PN: 1
PN: 2
PN: 3 A: 2

 PN: 4
(TLP)

 PN: 5
(TLP)

3/2 * SRTT +
max_ack_delay

A: 5 (2-1)

max(SRTT + 4*RTTVar +
MaxAckDelay, MinRTO)

RTO RS

PN: 4
(TLP)

 PN: 6
PN: 7

A: 6 (3-1)

PN: 5
(TLP)

RTO

Spurious RTO Detection

RS

PN: 5

 PN: 6
PN: 7

A: 6 (3-1)

RTO verified!

Spurious RTO Detection

RS

PN: 4

 PN: 5
A: 4

RTO spurious!
 PN: 6

RTO

No congestion control actions on RTO

If any packet sent prior to RTO is newly acked
declare RTO as spurious
nothing more to be done

If all packets acked are ones sent after RTO
declare RTO as verified
congestion control actions

(open issue: #1966)

Spurious RTO

https://github.com/quicwg/base-drafts/issues/1966

Set aggressively
before RTT sample: 200 ms
after RTT sample: 2 x smoothed RTT
set to max(timeout, kMinTLPTimeout)

Exponential backoff on consequent timeouts

Retransmit all outstanding crypto packets on timeout

Crypto Timeout

Potential Improvements
(NOT IN DRAFT!)

SHOULD be sent immediately upon receipt of a second packet
wireless drivers, middleboxes compress TCP acks
should QUIC generate acks less frequently by default?

Generating fewer ACKs

MaxAckDelay is explicitly communicated in the handshake

TCP’s minRTO was to avoid spurious RTOs (RFC 6298)
primary cost is bandwidth collapse when timer fires
spurious RTO detection eliminates this cost

QUIC could remove the MinRTO
since spurious RTOs have substantially lower cost

Removing MinRTO (#1017)

https://github.com/quicwg/base-drafts/issues/1017

Combine TLP and RTO
both are similar, but no practical difference in QUIC

Issue
TLP is commonly spurious

Why different than TCP
cost of spurious RTO and TLP is low in QUIC

Potential Timeout Simplification

Should we do adaptive time thresholding?

How do we best use both packet and time thresholds?
working on this now

Fast retransmit

