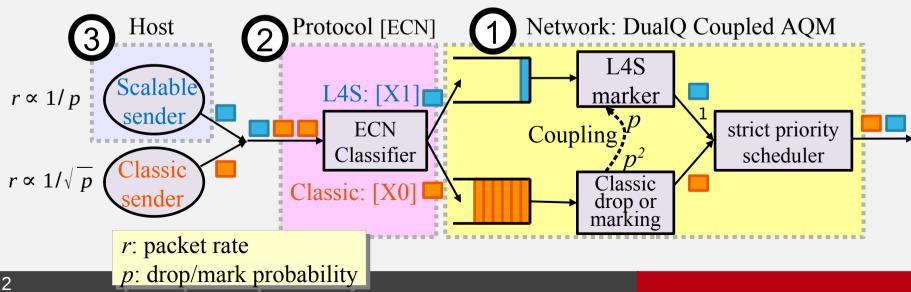
Low Latency Low Loss Scalable Throughput (L4S)

Bob Briscoe, CableLabs[®] Koen De Schepper, **NOKIA** Bell Labs Olga Bondarenko, **simula** Ing-jyh (Inton) Tsang, NOKIA

TSVWG, IETF-102, Jul 2018


<ietf@bobbriscoe.net> <koen.de_schepper@nokia.com> <olgabnd@gmail.com> <ing-jyh.tsang@nokia.com>

L4S Recap

- Motivation
 - Extremely low queuing delay for all Internet traffic, including link saturating
 - already 1-2 orders better than state of the art
 - 500 µs vs 5-15 ms (fq-CoDel or PIE)
- Architecture

L4S draft updates this IETF cycle Made consistent with other 2 drafts

tsvwq

- Three core L4S WG drafts in tsvwg
 - L4S Internet Service: Architecture draft-ietf-tsvwg-l4s-arch-03 (-02) [stable]
 - Identifying Modified ECN Semantics for Ultra-Low Queuing Delay (L4S) draft-ietf-tsvwg-ecn-l4s-id-05 (-03)
 - DualQ Coupled AQMs for L4S draft-ietf-tsvwg-aqm-dualq-coupled-08 (-06)
- L4S-related individual drafts in tsvwg
 - Identifying and Handling Non-Queue-Building Flows in a bottleneck link draft-white-tsvwg-ngb-00 [new]
 - Interactions between L4S and Diffserv draft-briscoe-tsvwg-l4s-diffserv-02 (-01)

Outside tsvwg

• tcpm, implementation, etc

TCP-RACK-like requirement (previous cycle) Extra normative requirements Fixed rigour of maths Management requirement details Generalized L4S AQM: step to ramp Shared vs. dedicated buffers Later talk

Comprehensive rework of 'Other IDs'

Complete restructure

Later talk

Various Heads-ups

3

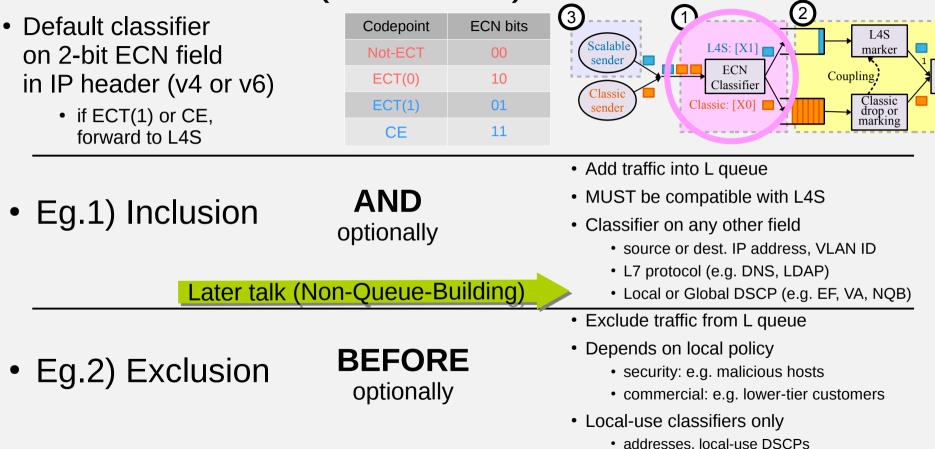
Identifying Modified ECN Semantics for Ultra-Low Queuing Delay (L4S)

draft-ietf-tsvwg-ecn-l4s-id-05

draft-ietf-tsvwg-ecn-I4s-id-05 **Complete restructure (-03 to -04)**

BEFORE:

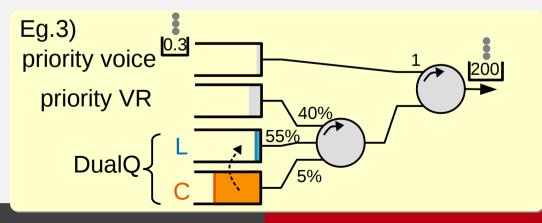
2	•	L4S	Packet Identifier
	2	.1.	Consensus Choice of L4S Packet Identifier: Requirements
	2	.2.	L4S Packet Identification at Run-Time
	2	.3.	Interaction of the L4S Identifier with other Identifiers
	2	.4.	Pre-Requisite Transport Layer Behaviour
		2.4	1. Pre-Requisite Congestion Response
		2.4	2. Pre-Requisite Transport Feedback
	2	.5.	Exception for L4S Packet Identification by Network Nodes
			with Transport-Layer Awareness


2.6. The Meaning of L4S CE Relative to Drop \ldots

- Only structure changes
 - Text unchanged (except to introduce structure)

2.	Con	sensus Choice of L4S Packet Identifier: Requirements		
3.	L4S	Packet Identification at Run-Time		
4.	Pre	requisite Transport Layer Behaviour		
	4.1.	Prerequisite Codepoint Setting		
	4.2.	Prerequisite Transport Feedback		
	4.3.	Prerequisite Congestion Response		
5. Prerequisite Network Node Behaviour				
!	5.1.	Prerequisite Classification and Re-Marking Behaviour $\ .$		
!	5.2.	The Meaning of L4S CE Relative to Drop		
!	5.3.	Exception for L4S Packet Identification by Network Nodes		
		with Transport-Layer Awareness		
ļ	5.4.	Interaction of the L4S Identifier with other Identifiers		

- Collected together:
 - Transport Requirements
 - Network Requirements


Other Identifiers (-04 to -05)

Other Identifiers: within a Diffserv queuing hierarchy

- Previous examples split Default class (BE) into two
- Operator may want to offer additional bandwidth priority services
 - not usually necessary for public Internet
 - beyond scope of core L4S drafts
- For ecn-l4s-id, the important points are:
 - Global or Local-use DSCPs
 - Two main classification types:
 - -PHBs before DualQ (eg.3)
 - -PHBs after one of the DualQs

-or both

Later talk (l4s-diffserv)

5th Requirement for L4S senders

- 'TCP Prague' Requirements (for all transports, not just TCP) draft-ietf-tsvwg-ecn-l4s-id-05#section-4.3
- to use ECT(1), a scalable congestion control MUST detect loss:
 - by counting in units of time
 - not in units of packets

like TCP RACK like the TCP 3DupACK rule

- Then link technologies that support L4S can
 remove head-of-line blocking delay
 - see talk in tsvwg-IETF-102 or tcpm later today (or Appendix A.1.7)
- This has raised a more general deployment question...

Could L4S Get Stuck on DCTCP?

- MUST comply with TCP Prague requirements for public Internet
 - for everyone to gain benefits
- But claimed that L4S can be tested / trialled with DCTCP (non-compliant on #2-#5)
- So how does a network move from trial (with DCTCP) to production (without)?
- Various possible answers
 - gradually?
 - deploy queue protection / policing?
 - · depends on the requirement
- Specifically
 - 1) Fall back to Reno-friendly on drop
 - 2) Fall back to Reno-friendly on Classic ECN AQM Flow throughput 'fairness' issues (deploy policers?)
 - 3) Remove RTT bias
 - 4) Scale cwnd below 2 SMSS Queuing delay issue (deploy queue protection?)
 - 5) Detect loss in units of time If links turn off resequencing to scale, more DCTCP spurious re-xmts

DualQ Coupled AQMs for L4S

draft-ietf-tsvwg-aqm-dualq-coupled-08

draft-ietf-tsvwg-aqm-dualq-coupled-08 Extra normative requirements

- Previous normative requirements were necessary but not sufficient
- A Dual Queue Coupled AQM implementation MUST utilize two queues, each with an AQM algorithm.*
- The AQM algorithm for the low latency (L) queue MUST apply ECN marking.
- A DualQ Coupled AQM MUST apply ECN marking to traffic in the L queue that is no lower than that derived from the likelihood of drop (or ECN marking) in the Classic queue using Eqn. (1).**
- a parameter for typical or target queuing delay in each queue [...] MUST be expressed in units of time.
 - * Can be part of a larger queuing hierarchy

** Equations have been re-worked: Previously instantaneous marking was equated to stationary marking

draft-ietf-tsvwg-aqm-dualq-coupled-08

Management Requirements: Added Details

• Queue delay measurement

To facilitate comparative evaluation of different implementations and approaches, an implementation SHOULD allow mean and 99th percentile queue delay to be derived

- Suggested coarse histogram method with configurable bin edges
- Overload reporting
 - Suggested a hysteresis method to prevent flapping in and out of overload causing event storms
- Checked against RFC5706 (Ops & Mgmt req's for experiments)

draft-ietf-tsvwg-aqm-dualq-coupled-08 DualPI2 Pseudocode Appendix

- L4S AQM: generalized from step to ramp
 - Initial experiments no worse than step
 - Will enable experiments with faster convergence of 'TCP Prague'
- Dedicated buffers vs. shared: Pros and Cons
 - better isolation from tail drop due to large C bursts
 - less memory efficient (given L rarely uses much)

L4S status update (1/2)

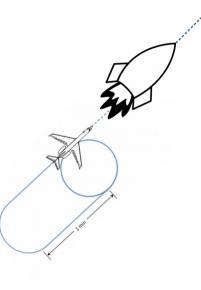
Landing page for code, specs, papers

https://riteproject.eu/dctth/

- Source Code
 - Dual Queue Coupled AQM, DualPI2 for Linux [UPDATE] new API (parameter independence), overload protection, in non-overload conditions no performance impact
 - Data Centre TCP (DCTCP) for Linux traced rounding bug in EWMA fix to be posted
 - Accurate ECN TCP Feedback for Linux [testing needed]
- Implementations
 - DualQ Coupled AQM: in at least one chipset aimed at DC environment [availability TBA]
 - L4S Scalable congestion control: rmcat SCReAM
 - BBRevo, evolution of BBR with L4S support
 - Whole L4S system in ns3 [complete but evolving]

L4S status update: IETF specs (2/2) Deltas since last IETF in Red

tsvwg


- L4S Internet Service: Architecture <draft-ietf-tsvwg-l4s-arch-03> [stable]
- Identifying Modified ECN Semantics for Ultra-Low Queuing Delay (L4S) <draft-ietf-tsvwg-ecn-l4s-id-05> [2 UPDATES]
- DualQ Coupled AQMs for L4S: : <draft-ietf-tsvwg-aqm-dualq-coupled-08> [2 UPDATES]
- Interactions of L4S with Diffserv <draft-briscoe-tsvwg-l4s-diffserv-02> [UPDATE]
- Identifying and Handling Non-Queue-Building Flows in a bottleneck link draft-white-tsvwg-nqb-00 [NEW]
- enabled by <RFC8311> [RFC published]

tcpm

- scalable TCP algorithms, e.g. Data Centre TCP (DCTCP) <RFC8257>, TCP Prague
- Accurate ECN: <draft-ietf-tcpm-accurate-ecn-07>
- ECN++ Adding ECN to TCP control packets: <draft-ietf-tcpm-generalized-ecn-03> [UPDATE] Other
- ECN support in trill <draft-ietf-trill-ecn-support-07>, motivated by L4S [RFC Ed Q]
- ECN in QUIC <draft-ietf-quic-transport-16>, [motivated by L4S 3 Updates, but not ECN part]
- ECN and Congestion Feedback Using the Network Service Header (NSH) <draft-eastlake-sfc-nsh-ecn-support-02> [UPDATE] [supports L4S-ECN]

Next Steps for 3 core L4S drafts

- Can now leave holding pattern
 - sufficient progress on TCP Prague requirements within the stable architecture
- Tidied up 3 years of piecemeal changes
- Invited reviews in progress need more
- Ready for WGLC
 - target Dec'18 or Jan'19

