
6TiSCH Working Group M. Tiloca
Internet-Draft RISE AB
Intended status: Standards Track S. Duquennoy
Expires: December 12, 2019 Yanzi Networks AB
 G. Dini
 University of Pisa
 June 10, 2019

 Robust Scheduling against Selective Jamming in 6TiSCH Networks
 draft-tiloca-6tisch-robust-scheduling-02

Abstract

 This document defines a method to generate robust TSCH schedules in a
 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4-2015) network, so as
 to protect network nodes against selective jamming attack. Network
 nodes independently compute the new schedule at each slotframe, by
 altering the one originally available from 6top or alternative
 protocols, while preserving a consistent and collision-free
 communication pattern. This method can be added on top of the
 minimal security framework for 6TiSCH.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Tiloca, et al. Expires December 12, 2019 [Page 1]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. Properties of TSCH that Simplify Selective Jamming 4
 3. Selective Jamming Attack 5
 3.1. Adversary Model . 5
 3.2. Attack Example . 6
 4. Building Robust Schedules 7
 5. Adaptation to the 6TiSCH Minimal Security Framework 9
 5.1. Error Handling . 10
 6. Security Considerations 10
 6.1. Effectiveness of Schedule Shuffling 11
 6.2. Renewal of Key Material 11
 6.3. Static Timeslot Allocations 11
 6.4. Network Joining Through Randez-vous Cells 12
 7. IANA Considerations . 12
 7.1. Permutation Key Set 12
 7.2. Permutation Cipher 13
 8. References . 13
 8.1. Normative References 13
 8.2. Informative References 14
 Appendix A. Test Vector . 14
 A.1. Detailed Technique 15
 A.1.1. Data Structures and Schedule Encoding 15
 A.1.2. Pseudo-Random Number Generation 15
 A.1.3. Array Permutation 16
 A.1.4. Schedule Permutation 16
 A.2. Test Configuration 17
 A.3. Example Output . 17
 Acknowledgments . 22
 Authors’ Addresses . 22

1. Introduction

 Nodes in a 6TiSCH network communicate using the IEEE 802.15.4-2015
 standard and its Timeslotted Channel Hopping (TSCH) mode. Some
 properties of TSCH make schedule units, i.e. cells, and their usage
 predictable, even if security services are used at the MAC layer.

Tiloca, et al. Expires December 12, 2019 [Page 2]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 This allows an external adversary to easily derive the communication
 pattern of a victim node. After that, the adversary can perform a
 selective jamming attack, by covertly, efficiently, and effectively
 transmitting over the only exact cell(s) in the victim’s schedule.
 For example, this enables the adversary to jeopardize a competitor’s
 network, while still permitting their own network to operate
 correctly.

 This document describes a method to counteract such an attack. At
 each slotframe, every node autonomously computes a TSCH schedule, as
 a pseudo-random permutation of the one originally available from 6top
 [RFC8480] or alternative protocols.

 The resulting schedule is provided to TSCH and used to communicate
 during the next slotframe. In particular, the new communication
 pattern results unpredictable for an external adversary. Besides,
 since all nodes compute the same pseudo-random permutation, the new
 communication pattern remains consistent and collision-free.

 The proposed solution is intended to operate on slotframes that are
 used for data transmission by current network nodes, and that are not
 used to join the network. In fact, since the TSCH schedule is
 altered at each slotframe, the proposed method cannot be applied to
 slotframes that include a "minimal cell" [RFC8180] and possible other
 randez-vouz cells used for joining the 6TiSCH network.

 This document specifies also how this method can be added on top of
 the minimal security framework for 6TiSCH and its Constrained Join
 Protocol (CoJP) [I-D.ietf-6tisch-minimal-security].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers are expected to be familiar with terms and concepts defined
 in [I-D.ietf-6tisch-minimal-security], [I-D.ietf-6tisch-terminology]
 and [RFC8152].

 This document refers also to the following terminology.

 o Permutation key. A cryptographic key shared by network nodes and
 used to permute schedules. Different keys are used to permute the
 utilization pattern of timeslots and of channelOffsets.

Tiloca, et al. Expires December 12, 2019 [Page 3]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

2. Properties of TSCH that Simplify Selective Jamming

 This section highlights a number of properties of the TSCH cell usage
 that greatly simplify the performance of the selective jamming attack
 described in Section 3.

 Given:

 o N_S as the size of slotframes in timeslots;

 o N_C as the number of available channelOffsets;

 o The channel ’f’ to communicate at timeslot ’s’ with ASN and
 channelOffset ’chOff’ computed as f = F[(ASN + chOff) mod N_C];

 And assuming for simplicity that:

 o N_S and N_C are coprime values;

 o The channel hopping sequence is N_C in size and equal to {0, 1,
 ..., N_C - 1};

 Then, the following properties hold:

 o Periodicity property. The sequence of channels used for
 communication by a certain cell repeats with period (N_C x N_S)
 timeslots.

 o Usage property. Within a period, every cell uses all the
 available channels, each of which only once.

 o Offset property. All cells follow the same sequence of channels
 with a certain offset.

 o Predictability property. For each cell, the sequence of channels
 is predictable. That is, by knowing the channel used by a cell in
 a given timeslot, it is possible to compute the remaining channel
 hopping sub-sequence.

 In fact, given a cell active on channel ’f’ and timeslot ’s’ on
 slotframe ’T’, and since ASN = (s + T x N_S), it holds that

 f = [(s + T x N_S + chOff) mod N_C] (Equation 1)

 By solving this equation in ’chOff’, one can predict the channels
 used by the cell in the next sloframes. Note that, in order to do
 that, one does not need to know the absolute number ’T’ of the
 slotframe (and thus the exact ASN) in which timeslot ’s’ uses a

Tiloca, et al. Expires December 12, 2019 [Page 4]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 certain channel ’f’. In fact, one can re-number slotframes
 starting from any arbitrarily assumed "starting-slotframe".

3. Selective Jamming Attack

 This section describes how an adversary can exploit the properties
 listed in Section 2, and determine the full schedule of a victim
 node, even if security services at the MAC layer are used.

 This allows the adversary to selectively jam only the exact cell(s)
 in the victim’s schedule, while greatly limiting the exposure to
 detection. At the same time, the attack is highly effective in
 jeopardizing victim’s communications, and is highly energy-efficient,
 i.e., can be carried out on battery.

 For simplicity, the following description also assumes that a victim
 node actually transmits/receives during all its allocated cells at
 each slotframe.

3.1. Adversary Model

 This specification addresses an adversary with the following
 properties.

 o The adversary is external, i.e. it does not control any node
 registered in the 6TiSCH network.

 o The adversary wants to target precise network nodes and their
 traffic. That is, it does not target the 6TiSCH network as a
 whole, and does not perform a wide-band constant jamming.

 o The adversary is able to target multiple victim nodes at the same
 time. This may require multiple jamming sources and/or multiple
 antennas per jamming source to carry out the attack.

 Furthermore, compared to wide-band constant jamming, the considered
 selective jamming attack deserves special attention to be addressed,
 due to the following reasons.

 o It is much more energy efficient.

 o It minimizes the adversary’s exposure and hence the chances to be
 detected.

 o It has the same effectiveness on the intended victim nodes. That
 is, it achieves the same goal, while avoiding the unnecessarily
 exposure and costs of wide-band constant jamming.

Tiloca, et al. Expires December 12, 2019 [Page 5]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 It is worth noting that a wide-band constant jamming can achieve the
 same result more easily, in the extreme cases where the target
 slotframe is (nearly) fully used by a few nodes only, or the
 adversary has as many antennas as the number of available channels.
 However, this would still come at the cost of high exposure and
 higher energy consumption for the adversary.

3.2. Attack Example

 The following example considers Figure 1, where N_S = 3, N_C = 4, and
 the channel hopping sequence is {0,1,2,3}. The shown schedule refers
 to a network node that uses three cells ’L_1’, ’L_2’ and ’L_3’, with
 {0,3}, {1,1} and {2,0} as pairs {timeslot, channelOffset},
 respectively.

==	===																
Ch	ASN																
	===																
Of	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
==	===																
|0 | | |f=2| | |f=1| | |f=0| | |f=3| | |f=2| | |
|--|---|
|1 | |f=2| | |f=1| | |f=0| | |f=3| | |f=2| | |f=1|
|--|---|
|2 | | | | | | | | | | | | | | | | | |
|--|---|
|3 |f=3| | |f=2| | |f=1| | |f=0| | |f=3| | |f=2| |
|==|===|
 | | | | | | | | | | | | | | | | |
 |s=0|s=1|s=2|s=0|s=1|s=2|s=0|s=1|s=2|s=0|s=1|s=2|s=0|s=1|s=2|s=0|s=1
 | | | | | |
 | T = 0 | T = 1 | T = 2 | T = 3 | T = 4 | T = 5
 |
 __ t = 0

 Figure 1: Attack Example with Slotframe Re-numbering

 1. The adversary starts the attack at absolute slotframe T = 1,
 which is assumed as "starting-slotframe" and thus renamed as
 slotframe t = 0. The renaming is possible due to the offset and
 predictability properties.

 2. The adversary picks a channel ’f*’ at random, and monitors it for
 N_C consecutive slotframes to determine the timeslots in which
 the victim node communicates on that channel. Due to the usage
 property, the number of such timeslots is equal to the number of
 cells assigned to the victim node.

Tiloca, et al. Expires December 12, 2019 [Page 6]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 With reference to Figure 1, if, for example, f* = 1, the
 adversary determines that the victim node uses channel ’f*’ in
 timeslots s = 1 and s = 2 of slotframe t = 0 and in timeslot s =
 0 of slotframe t = 1. The adversary can then deduce that the
 victim node uses three different cells ’L_1’, ’L_2’ and ’L_3’, in
 timeslots 0, 1 and 2, respectively.

 3. The adversary determines the channels on which the victim node is
 going to transmit in the next slotframes, by exploiting the
 predictability property.

 That is, by instantiating Equation 1 for cell L_1, timeslot s = 0
 and slotframe t = 1, one gets [1 = (3 + chOff_1) mod 4], which
 has solution for chOff_1 = 2. Hence, the function to predict the
 channel ’f_1’ to be used by cell ’L_1’ in a slotframe ’t’, t >=
 1, is f_1 = [(2 + 3 x t) mod 4], which produces the correct
 periodic sequence of channels {1, 0, 3, 2}. Similarly, one can
 instantiate Equation 1 for cells ’L_2’ and ’L_3’, so producing
 the respective periodic sequence of channels {1,0,3,2} and
 {1,0,3,2}.

 4. The adversary has discovered the full schedule of the victim node
 and can proceed with the actual selective jamming attack. That
 is, according to the found schedule, the adversary transmits over
 the exact cells used by the victim node for transmission/
 reception, while staying quiet and saving energy otherwise. This
 results in a highly effective, highly efficient and hard to
 detect attack against communications of network nodes.

4. Building Robust Schedules

 This section defines a method to protect network nodes against the
 selective jamming attack described in Section 3. The proposed method
 alters the communication pattern of all network nodes at every
 slotframe, in a way unpredictable for the adversary.

 At each slotframe ’T’, network nodes autonomously compute the
 communication pattern for the next slotframe ’T+1’ as a pseudo-random
 permutation of the one originally available. In order to ensure that
 the new communication pattern remains consistent and collision-free,
 all nodes compute the same permutation of the original one. In
 particular, at every slotframe, each node separately and
 independently permutes its timeslot utilization pattern (optionally)
 as well as its channelOffset utilization pattern.

 To perform the required permutations, all network nodes rely on a
 same secure pseudo-random number generator (SPRNG) as shown in
 Figure 2, where E(x,y) denotes a cipher which encrypts a plaintext

Tiloca, et al. Expires December 12, 2019 [Page 7]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 ’y’ by means of a key ’x’. Network nodes MUST support the AES-CCM-
 16-64-128 algorithm.

 unsigned random(unsigned K, unsigned z) {
 unsigned val = E(K,z);
 return val;
 }

 Figure 2: Secure Pseudo-Random Number Generator

 All network nodes share the same following pieces of information.

 o K_s, a permutation key used to permute the timeslot utilization
 pattern, and used as input to the random() function in Figure 2.
 K_s is provided upon joining the network, and MAY be provided as
 described in Section 5.

 o K_c, a permutation key used to permute the channelOffset
 utilization pattern, and used as input to the random() function in
 Figure 2. K_c is provided upon joining the network, and MAY be
 provided as described in Section 5.

 o z_s, a counter used to permute the timeslot utilization pattern,
 and used as input to the random() function in Figure 2. At the
 beginning of each slotframe, z_s is equal to [(N_S - 1) x
 floor(ASN* / N_S)], where ASN* is the ASN value of the first
 timeslot of that slotframe. Then, z_s grows by (N_S - 1) from the
 beginning of a slotframe to the beginning of the next one.

 o z_c, a counter used to permute the channelOffset utilization
 pattern, and used as input to the random() function in Figure 2.
 At the beginning of each slotframe, z_c is equal to [(N_C - 1) x
 floor(ASN* / N_S)], where ASN* is the ASN value of the first
 timeslot of that slotframe. Then, z_c grows by (N_C - 1) from the
 beginning of a slotframe to the beginning of the next one.

 Then, at every slotframe, each network node takes the following
 steps, and generates its own permuted communication schedule to be
 used at the following slotframe. The actual permutation of cells
 relies on the well-known Fisher-Yates algorithm, that requires to
 generate (n - 1) pseudo-random numbers in order to pseudo-randomly
 shuffle a vector of n elements.

 1. First, a pseudo-random permutation is performed on the timeslot
 dimension of the slotframe. This requires (N_S - 1) invocations
 of random(K,z), consistently with the Fisher-Yates algorithm. In
 particular, K = K_s, while z_s is passed as second argument and
 is incremented by 1 after each invocation. The result of this

Tiloca, et al. Expires December 12, 2019 [Page 8]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 step is a permuted timeslot utilization pattern, while the
 channelOffset utilization pattern is not permuted yet.

 2. Second, a pseudo-random permutation is performed on the
 channelOffset dimension of the slotframe. This requires (N_C -
 1) invocations of random(K,z), consistently with the Fisher-Yates
 algorithm. In particular, K = K_c, while z_c is passed as second
 argument and is incremented by 1 after each invocation. The
 result of this step is a fully shuffled communication pattern.

 The resulting schedule is then provided to TSCH and considered for
 sending/receiving traffic during the next slotframe.

 As further discussed in Section 6.3, it is possible to skip step 1
 above, and hence permute only the channelOffset utilization pattern,
 while keeping a static timeslot utilization pattern.

 Note for implementation: the process described above can be
 practically implemented by using two vectors, i.e. one for shuffling
 the timeslot utilization pattern and one for shuffling the
 channelOffset utilization pattern.

5. Adaptation to the 6TiSCH Minimal Security Framework

 The security mechanism described in this specification can be added
 on top of the minimal security framework for 6TiSCH
 [I-D.ietf-6tisch-minimal-security].

 That is, the two permutation keys K_s and K_c can be provided to a
 pledge when performing the Constrained Join Protocol (CoJP) defined
 in Section 8 of [I-D.ietf-6tisch-minimal-security].

 To this end, the Configuration CBOR object [RFC7049] used as payload
 of the Join Response Message and defined in Section 8.4.2 of
 [I-D.ietf-6tisch-minimal-security] is extended with two new CoJP
 parameters defined in this specification, namely ’permutation key
 set’ and ’permutation cipher’. The resulting payload of the Join
 Response message is as follows.

 Configuration = {
 ? 2 : [+Link_Layer_Key], ; link-layer key set
 ? 3 : Short_Identifier, ; short identifier
 ? 4 : bstr, ; JRC address
 ? 6 : [*bstr], ; blacklist
 ? 7 : uint, ; join rate
 ? TBD : [+Permutation_Key], ; permutation key set
 ? TBD : Permutation_Cipher ; permutation cipher
 }

Tiloca, et al. Expires December 12, 2019 [Page 9]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 The parameter ’permutation key set’ is an array encompassing one or
 two permutation keys encoded as byte strings. That is, the encoding
 of each individual permutation key is as follows.

 Permutation_Key = (
 key_value : bstr
 (

 If the 6TiSCH network uses the security mechanism described in this
 specification, the parameter ’permutation key set’ MUST be included
 in the CoJP Join Response message and the pledge MUST interpret it as
 follows.

 o In case only one permutation key is present, it is used as K_c to
 permute the channelOffset utilization pattern, as per Section 4.

 o In case two permutation keys are present, the first one is used as
 K_s to permute the timeslot utilization pattern, while the second
 one is used as K_c to permute the channelOffset utilization
 pattern, as per Section 4. The two keys MUST have the same
 length.

 The parameter ’permutation cipher’ indicates the encryption algorithm
 used for the secure pseudo-random number generator as per Figure 2 in
 Section 4. The value is one of the encryption algorithms defined for
 COSE [RFC8152], and is taken from Tables 9, 10 and 11 of [RFC8152].
 In case the parameter is omitted, the default value of AES-CCM-
 16-64-128 (COSE algorithm encoding: 10) MUST be assumed.

5.1. Error Handling

 In case ’permutation key set’ includes two permutation keys with
 different length or more than two permutation keys, the pledge
 considers ’permutation key set’ not valid and MUST signal the error
 as specified in Section 8.3.1 of [I-D.ietf-6tisch-minimal-security].

 The pledge MUST validate that keys included in ’permutation key set’
 are appropriate for the encryption algorithm specified in
 ’permutation cipher’ or assumed as default. In case of failed
 validation, the pledge MUST signal the error as specified in
 Section 8.3.1 of [I-D.ietf-6tisch-minimal-security].

6. Security Considerations

 With reference to Section 3.9 of [RFC7554], this specification
 achieves an additional "Secure Communication" objective, namely it
 defines a mechanism to build and enforce a TSCH schedule which is

Tiloca, et al. Expires December 12, 2019 [Page 10]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 robust against selective jamming attack, while at the same time
 consistent and collision-free.

 Furthermore, the same security considerations from the minimal
 security framework for 6TiSCH [I-D.ietf-6tisch-minimal-security] hold
 for this document. The rest of this section discusses a number of
 additional security considerations.

6.1. Effectiveness of Schedule Shuffling

 The countermeasure defined in Section 4 practically makes each node’s
 schedule look random to an external observer. Hence, it prevents the
 adversary from performing the attack described in Section 3.

 Then, a still available strategy for the adversary is to jam a number
 of cells selected at random, possibly on a per-slotframe basis. This
 considerably reduces the attack effectiveness in successfully
 jeopardizing victims’ communications.

 At the same time, nodes using different cells than the intended
 victims’ would experience an overall slightly higher fraction of
 corrupted messages. In fact, the communications of such accidental
 victims might be corrupted by the adversary, when they occur during a
 jammed timeslot and exactly over the channelOffset chosen at random.

6.2. Renewal of Key Material

 It is RECOMMENDED that the two permutation keys K_s and K_c are
 revoked and renewed every time a node leaves the network. This
 prevents a leaving node to keep the permutation keys, which may be
 exploited to selectively jam communications in the network.

 This rekeying operation is supposed to be performed anyway upon every
 change of network membership, in order to preserve backward and
 forward security. In particular, new IEEE 802.15.4 link-layer keys
 are expected to be distributed before a new pledge can join the
 network, or after one or more nodes have left the network.

 The specific approach to renew the two permutation keys, possibly
 together with other security material, is out of the scope of this
 specification.

6.3. Static Timeslot Allocations

 As mentioned in Section 4 and Section 5, it is possible to permute
 only the channelOffset utilization pattern, while preserving the
 originally scheduled timeslot utilization pattern. This can be
 desirable, or even unavoidable in some scenarios, in order to

Tiloca, et al. Expires December 12, 2019 [Page 11]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 guarantee end-to-end latencies in multi-hop networks, as per
 accordingly designed schedules.

 However, preserving a static timeslot utilization pattern would
 considerably increase the attack surface for a random jammer
 adversary. That is, the adversary would immediately learn the
 timeslot utilization pattern of a victim node, and would have a
 chance to successfully jam a victim’s cell equal to (1 / N_C).

6.4. Network Joining Through Randez-vous Cells

 As described in [I-D.ietf-6tisch-minimal-security], a pledge joins a
 6TiSCH network through a Join Proxy (JP), according to the
 Constrained Join Protocol (CoJP) and based on the information
 conveyed in broadcast Enhanced Beacons (EBs). In particular, the
 pledge will communicate with the JP over randez-vous cells indicated
 in the EBs.

 In practice, such cells are commonly part of a separate slotframe,
 which includes one scheduled "minimal cell" [RFC8180], typically used
 also for broadcasting EBs. Such slotframe, i.e. Slotframe 0, usually
 differs from the slotframe(s) used for both EBs and data
 transmission.

 In order to keep the join process feasible and deterministic, the
 solution described in this specification is not applied to Slotframe
 0 or any other slotframes that include randez-vous cells for joining.
 As a consequence, an adversary remains able to selectively jam the
 "minimal cell" (or any randez-vous cell used for joining), so
 potentially jeopardizing the CoJP and preventing pledges to join the
 network altogether.

7. IANA Considerations

 This document has the following actions for IANA.

7.1. Permutation Key Set

 IANA is asked to enter the following value into the "Constrained Join
 Protocol Parameters Registry" defined in
 [I-D.ietf-6tisch-minimal-security] and within the "IPv6 over the TSCH
 mode of IEEE 802.15.4e (6TISCH) parameters" registry.

Tiloca, et al. Expires December 12, 2019 [Page 12]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 +-------------+-------+-------+------------------------+------------+
 | Name | Label | CBOR | Description | Reference |
 | | | type | | |
 +-------------+-------+-------|------------------------+------------|
permutation	TBD	array	Identifies the array	[[this
key set			including one or two	document]]
			permutation keys to	
			alter cell utilization	
 +-------------|-------+-------+------------------------+------------|

7.2. Permutation Cipher

 IANA is asked to enter the following value into the "Constrained Join
 Protocol Parameters Registry" defined in
 [I-D.ietf-6tisch-minimal-security] and within the "IPv6 over the TSCH
 mode of IEEE 802.15.4e (6TISCH) parameters" registry.

 +-------------+-------+---------+-----------------------+------------+
 | Name | Label | CBOR | Description | Reference |
 | | | type | | |
 +-------------+-------+---------|-----------------------+------------|
permutation	TBD	integer	Identifies the cipher	[[this
cipher			used for generating	document]]
			pseudo-random numbers	
			to alter cell	
			utilization	
 +-------------|-------+---------+-----------------------+------------|

8. References

8.1. Normative References

 [I-D.ietf-6tisch-minimal-security]
 Vucinic, M., Simon, J., Pister, K., and M. Richardson,
 "Minimal Security Framework for 6TiSCH", draft-ietf-
 6tisch-minimal-security-10 (work in progress), April 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Tiloca, et al. Expires December 12, 2019 [Page 13]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)",
 RFC 8152, DOI 10.17487/RFC8152, July 2017,
 <https://www.rfc-editor.org/info/rfc8152>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

8.2. Informative References

 [I-D.ietf-6tisch-terminology]
 Palattella, M., Thubert, P., Watteyne, T., and Q. Wang,
 "Terms Used in IPv6 over the TSCH mode of IEEE 802.15.4e",
 draft-ietf-6tisch-terminology-10 (work in progress), March
 2018.

 [RFC7554] Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using
 IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the
 Internet of Things (IoT): Problem Statement", RFC 7554,
 DOI 10.17487/RFC7554, May 2015,
 <https://www.rfc-editor.org/info/rfc7554>.

 [RFC8180] Vilajosana, X., Ed., Pister, K., and T. Watteyne, "Minimal
 IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH)
 Configuration", BCP 210, RFC 8180, DOI 10.17487/RFC8180,
 May 2017, <https://www.rfc-editor.org/info/rfc8180>.

 [RFC8480] Wang, Q., Ed., Vilajosana, X., and T. Watteyne, "6TiSCH
 Operation Sublayer (6top) Protocol (6P)", RFC 8480,
 DOI 10.17487/RFC8480, November 2018,
 <https://www.rfc-editor.org/info/rfc8480>.

 [Test-Implementation]
 "Test Implementation in C with OpenSSL", May 2019,
 <https://gitlab.com/crimson84/draft-tiloca-6tisch-robust-
 scheduling/tree/master/test>.

Appendix A. Test Vector

 This appendix provides a test vector for an example where the method
 proposed in this document is used to generate robust TSCH schedules.

 The example focuses on one network node and considers the schedule in
 Figure 1 as the original schedule to permute at each slotframe.

 The results shown in this example have been produced using the
 implementation available at [Test-Implementation].

Tiloca, et al. Expires December 12, 2019 [Page 14]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

A.1. Detailed Technique

 In this example, the permutation of the timeslot utilization pattern
 and of the channelOffset utilization pattern occurs as follows.

A.1.1. Data Structures and Schedule Encoding

 Each network node maintains two vectors X_s and X_c, each composed of
 N_S unsigned integer values. At the beginning of each slotframe, X_s
 and X_c indicate the node’s original schedule. In particular:

 o X_s indicates the usage of timeslots in the slotframe. That is,
 the element X_s[i] refers to the i-th timeslot of the slotframe.

 o X_c indicates the usage of channelOffsets at each timeslot in the
 slotframe. That is, X_c[i] refers to the channelOffset value used
 in the i-th timeslot of the slotframe.

 Then, the two vectors encode the schedule information as follows:

 o If the i-th timeslot is not used, X_s[i] = 0 and X_c[i] = N_C.

 o If the i-th timeslot is used to transmit with channelOffset ’c’,
 X_s[i] = 1 and X_c[i] = c.

 o If the i-th timeslot is used to receive with channelOffset ’c’,
 X_s[i] = 2 and X_c[i] = c.

 Note that optimized implementations can achieve the same goal with
 permutation vectors of smaller size.

A.1.2. Pseudo-Random Number Generation

 When invoking E() within the random() function in Figure 2:

 o The second parameter has 5 bytes in size like the ASN, and is
 provided as plaintext to the permutation cipher.

 o A copy of the second parameter is left-padded with 8 octects with
 value 0x00. The result is provided as 13-byte nonce to the
 permutation cipher, i.e. AES-CCM-16-64-128 in this example.

 o No additional authenticated data are provided to the permutation
 cipher.

 The unsigned value returned by E() and random() is the computed
 ciphertext left-padded with 3 octects with value 0x00. That is, the
 returned value is 8 bytes in size.

Tiloca, et al. Expires December 12, 2019 [Page 15]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

A.1.3. Array Permutation

 To produce the required permutations, this example considers the
 Fisher-Yates modern version in Figure 3, which requires (n - 1) swaps
 to shuffle an array of n elements.

 // Shuffle an array ’a’ of ’n’ elements (indices 0, ... , n - 1)
 for i from (n - 1) down to 1 do {
 j = random integer such that 0 <= j <= i;
 exchange a[j] and a[i];
 }

 Figure 3: Fisher-Yates algorithm

 At each step of the loop, ’j’ is computed as r % (i + 1), where ’%’
 is the modulo operator, and ’r’ is the value returned by the function
 random() in Figure 2, as described in Appendix A.1.2.

A.1.4. Schedule Permutation

 At each slotframe, the original schedule is considered as starting
 point to produce the permuted schedule for the following slotframe.

 In particular, the permuted schedule for the following slotframe is
 computed according to the following steps.

 1. The same pseudo-random permutation is performed on both vectors
 X_s and X_c, by using the Fisher-Yates algorithm in Figure 3.
 This requires (N_S - 1) invocations of random(K,z). In
 particular, K = K_s, while z_s is passed as second argument and
 is incremented by 1 after each invocation. As a result, X_s
 specifies the permuted timeslot utilization pattern, whereas X_c
 specifies a consistent while temporary channelOffset utilization
 pattern.

 2. A vector Y of size N_C is produced, as a permutation of {0, 1,
 ..., N_C - 1} performed by using the Fisher-Yates algorithm in
 Figure 3. This requires (N_C - 1) invocations of random(K,z).
 In particular, K = K_c, while z_c is passed as second argument
 and is incremented by 1 after each invocation.

 3. The vector X_c is updated as follows. Each element X_c[i] that
 refers to a non active timeslot, i.e. X_c[i] = N_C, is left as
 is. Otherwise, X_c[i] takes as value Y[j], where j = X_c[i].

 As a result, the two permuted vectors X_s and X_c together provide a
 full communication pattern to use during the next slotframe.

Tiloca, et al. Expires December 12, 2019 [Page 16]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

A.2. Test Configuration

 N_S = 3 // Slotframe size, in timeslots

 N_C = 4 // Available channel offsets

 Channel hopping sequence = {0, 1, 2, 3}

 X_s = {1, 1, 2} // Original timeslot utilization pattern {Tx, Tx, Rx}

 X_c = {3, 1, 0} // Original channelOffset utilization pattern

 Starting ASN = 0

 Permutation cipher: AES-CCM-16-64-128

 K_s = { 0xce, 0xb0, 0x09, 0xae, 0xa4, 0x45, 0x44, 0x51,
 0xfe, 0xad, 0xf0, 0xe6, 0xb3, 0x6f, 0x45, 0x55 }

 K_c = { 0xce, 0xb0, 0x09, 0xae, 0xa4, 0x45, 0x44, 0x51,
 0xfe, 0xad, 0xf0, 0xe6, 0xb3, 0x6f, 0x45, 0x56 }

A.3. Example Output

 ******************* ******************* *******************

 START ROUND 1 of 2

 The slotframe starts with: ASN = 0; z_s = 0; z_c = 0

 ******************* ******************* *******************

 -- Start shuffling the time offsets --

 ---------- ---------- ----------

 Counter (z_s): 0

 Plaintext: 0x0000000000 (5 bytes)

 Cipher nonce: 0x00000000000000000000000000 (13 bytes)

 Ciphertext: 0xbedca72db3 (5 bytes)

 Padded ciphertext: 0x000000bedca72db3 (8 bytes)

 Fisher-Yates swap index i: 2

Tiloca, et al. Expires December 12, 2019 [Page 17]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 Fisher-Yates swap-index j: 0

 ---------- ---------- ----------

 Counter (z_s): 1

 Plaintext: 0x0000000001 (5 bytes)

 Cipher nonce: 0x00000000000000000000000001 (13 bytes)

 Ciphertext: 0x23d36801f1 (5 bytes)

 Padded ciphertext: 0x00000023d36801f1 (8 bytes)

 Fisher-Yates swap index i: 1

 Fisher-Yates swap-index j: 1

 ---------- ---------- ----------

 -- Intermediate schedule --

 Timeslot utilization pattern X_s = {2, 1, 1}

 ChannelOffset utilization pattern X_c = {0, 1, 3}

 ---------- ---------- ----------

 -- Start shuffling the channel offset schedule --

 ---------- ---------- ----------

 Counter (z_c): 0

 Plaintext: 0x0000000000 (5 bytes)

 Cipher nonce: 0x00000000000000000000000000 (13 bytes)

 Ciphertext: 0x1e957fe44d (5 bytes)

 Padded ciphertext: 0x0000001e957fe44d (8 bytes)

 Fisher-Yates swap index i: 3

 Fisher-Yates swap-index j: 1

 ---------- ---------- ----------

Tiloca, et al. Expires December 12, 2019 [Page 18]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 Counter (z_c): 1

 Plaintext: 0x0000000001 (5 bytes)

 Cipher nonce: 0x00000000000000000000000001 (13 bytes)

 Ciphertext: 0x6e2b990263 (5 bytes)

 Padded ciphertext in bytes: 0x0000006e2b990263 (8 bytes)

 Fisher-Yates swap index i: 2

 Fisher-Yates swap-index j: 2

 ---------- ---------- ----------

 Counter (z_c): 2

 Plaintext: 0x0000000002 (5 bytes)

 Cipher nonce: 0x00000000000000000000000002 (13 bytes)

 Ciphertext: 0x4fae2cfe22 (5 bytes)

 Padded ciphertext: 0x0000004fae2cfe22 (8 bytes)

 Fisher-Yates swap index i: 1

 Fisher-Yates swap-index j: 0

 ---------- ---------- ----------

 Next slotframe starting with ASN = 3 will use:

 o Shuffled timeslot schedule {2, 1, 1}, i.e. {Rx, Tx, Tx}.

 o Shuffled channel offset schedule {3, 0, 1}.

 o Shuffled frequencies schedule {2, 0, 2}.

 ******************* ******************* *******************

 START ROUND 2 OF 2

 The slotframe starts with: ASN = 3; z_s = 2; z_c = 3

 ******************* ******************* *******************

Tiloca, et al. Expires December 12, 2019 [Page 19]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 -- Start shuffling the time offsets --

 ---------- ---------- ----------

 Counter (z_s): 2

 Plaintext: 0x0000000002 (5 bytes)

 Cipher nonce: 0x00000000000000000000000002 (13 bytes)

 Ciphertext: 0xd9a0c0f8eb (5 bytes)

 Padded ciphertext: 0x000000d9a0c0f8eb (8 bytes)

 Fisher-Yates swap index i: 2

 Fisher-Yates swap-index j: 2

 ---------- ---------- ----------

 Counter (z_s): 3

 Plaintext: 0x0000000003 (5 bytes)

 Cipher nonce: 0x00000000000000000000000003 (13 bytes)

 Ciphertext: 0x7aabd818ac (5 bytes)

 Padded ciphertext: 0x0000007aabd818ac (8 bytes)

 Fisher-Yates swap index i: 1

 Fisher-Yates swap-index j: 0

 ---------- ---------- ----------

 -- Intermediate schedules --

 Timeslot utilization pattern X_s = {1, 1, 2}

 ChannelOffset utilization pattern X_c = {1, 3, 0}

 ---------- ---------- ----------

 -- Start shuffling the channel offset schedule --

 ---------- ---------- ----------

Tiloca, et al. Expires December 12, 2019 [Page 20]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 Counter (z_c): 3

 Plaintext: 0x0000000003 (5 bytes)

 Cipher nonce: 0x00000000000000000000000003 (13 bytes)

 Ciphertext: 0x947cf7c1d4 (5 bytes)

 Padded ciphertext: 0x000000947cf7c1d4 (8 bytes)

 Fisher-Yates swap index i: 3

 Fisher-Yates swap-index j: 0

 ---------- ---------- ----------

 Counter (z_c): 4

 Plaintext: 0x0000000004 (5 bytes)

 Cipher nonce: 0x00000000000000000000000004 (13 bytes)

 Ciphertext: 0xa9255744e7 (5 bytes)

 Padded ciphertext: 0x000000a9255744e7 (8 bytes)

 Fisher-Yates swap index i: 2

 Fisher-Yates swap-index j: 1

 ---------- ---------- ----------

 Counter (z_c): 5

 Plaintext: 0x0000000005 (5 bytes)

 Cipher nonce: 0x00000000000000000000000005 (13 bytes)

 Ciphertext: 0xa70a456e9e (5 bytes)

 Padded ciphertext: 0x000000a70a456e9e (8 bytes)

 Fisher-Yates swap index i: 1

 Fisher-Yates swap-index j: 0

 ---------- ---------- ----------

Tiloca, et al. Expires December 12, 2019 [Page 21]

Internet-Draft Robust Scheduling in 6TiSCH Networks June 2019

 Next slotframe starting with ASN = 6 will use:

 o Shuffled timeslot schedule {1, 1, 2}, i.e. {Tx, Tx, Rx}.

 o Shuffled channel offset schedule {3, 0, 2}.

 o Shuffled frequencies schedule {1, 3, 2}.

Acknowledgments

 The authors sincerely thank Tengfei Chang, Michael Richardson,
 Yasuyuki Tanaka, Pascal Thubert and Malisa Vucinic for their comments
 and feedback.

 The work on this document has been partly supported by the EIT-
 Digital High Impact Initiative ACTIVE, and by the VINNOVA and Celtic-
 Next project CRITISEC.

Authors’ Addresses

 Marco Tiloca
 RISE AB
 Isafjordsgatan 22
 Kista SE-16440 Stockholm
 Sweden

 Email: marco.tiloca@ri.se

 Simon Duquennoy
 Yanzi Networks AB
 Isafjordsgatan 32C
 Kista SE-16440 Stockholm
 Sweden

 Email: simon.duquennoy@yanzinetworks.com

 Gianluca Dini
 University of Pisa
 Largo L. Lazzarino 2
 Pisa 56122
 Italy

 Email: gianluca.dini@unipi.it

Tiloca, et al. Expires December 12, 2019 [Page 22]

