
anima Working Group M. Richardson
Internet-Draft Sandelman Software Works
Updates: 8995, 9148 (if approved) P. van der Stok
Intended status: Standards Track vanderstok consultancy
Expires: 4 September 2024 P. Kampanakis
 Cisco Systems
 E. Dijk
 IoTconsultancy.nl
 3 March 2024

 Constrained Bootstrapping Remote Secure Key Infrastructure (cBRSKI)
 draft-ietf-anima-constrained-voucher-24

Abstract

 This document defines the Constrained Bootstrapping Remote Secure Key
 Infrastructure (cBRSKI) protocol, which provides a solution for
 secure zero-touch onboarding of resource-constrained (IoT) devices
 into the network of a domain owner. This protocol is designed for
 constrained networks, which may have limited data throughput or may
 experience frequent packet loss. cBRSKI is a variant of the BRSKI
 protocol, which uses an artifact signed by the device manufacturer
 called the "voucher" which enables a new device and the owner’s
 network to mutually authenticate. While the BRSKI voucher data is
 encoded in JSON, cBRSKI uses a compact CBOR-encoded voucher. The
 BRSKI voucher data definition is extended with new data types that
 allow for smaller voucher sizes. The Enrollment over Secure
 Transport (EST) protocol, used in BRSKI, is replaced with EST-over-
 CoAPS; and HTTPS used in BRSKI is replaced with DTLS-secured CoAP
 (CoAPS). This document Updates RFC 8995 and RFC 9148.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
 https://datatracker.ietf.org/doc/draft-ietf-anima-constrained-
 voucher/.

 Discussion of this document takes place on the anima Working Group
 mailing list (mailto:anima@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/anima/. Subscribe at
 https://www.ietf.org/mailman/listinfo/anima/.

 Source for this draft and an issue tracker can be found at
 https://github.com/anima-wg/constrained-voucher.

Richardson, et al. Expires 4 September 2024 [Page 1]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 4 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 5
 2. Terminology . 6
 3. Requirements Language . 6
 4. Overview of Protocol . 7
 5. Updates to RFC 8995 and RFC 9148 8
 6. BRSKI-EST Protocol . 9
 6.1. DTLS Connection . 10
 6.1.1. DTLS Version . 10
 6.1.2. TLS Client Certificates: IDevID authentication . . . 10
 6.1.3. DTLS Handshake Fragmentation Considerations 10
 6.1.4. Registrar and the Server Name Indicator (SNI) 11
 6.1.5. Registrar Server Certificate Requirements 12
 6.2. cBRSKI Join Proxy . 12
 6.3. Request URIs, Resource Discovery and Content Formats . . 12
 6.3.1. RFC8995 Telemetry Returns 14

Richardson, et al. Expires 4 September 2024 [Page 2]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 6.3.2. CoAP Resources Table 14
 6.4. CoAP Responses . 15
 6.5. Extensions to EST-coaps 15
 6.5.1. Pledge enrollment procedure 16
 6.5.2. Renewal of CA certificates 17
 6.5.3. Change of domain trust anchor(s) 17
 6.5.4. Re-enrollment procedure 17
 6.5.5. Multipart Content Format for CA certificates (/crts)
 Resource . 19
 6.6. Registrar Extensions 20
 7. BRSKI-MASA Protocol . 20
 7.1. Protocol and Formats 20
 7.2. Registrar Voucher Request 21
 7.3. MASA and the Server Name Indicator (SNI) 21
 7.4. Registrar Client Certificate Requirement 22
 8. Pinning in Voucher Artifacts 22
 8.1. Registrar Identity Selection and Encoding 22
 8.2. MASA Pinning Policy 23
 8.3. Pinning of Raw Public Keys 24
 8.4. Considerations for use of IDevID-Issuer 25
 9. Artifacts . 26
 9.1. Example Artifacts . 27
 9.1.1. Example Pledge voucher request (PVR) artifact 27
 9.1.2. Example Registrar voucher request (RVR) artifact . . 27
 9.1.3. Example voucher artifacts 28
 9.2. Signing voucher and voucher request artifacts with
 COSE . 29
 9.2.1. Signing of Registrar Voucher Request (RVR) 30
 9.2.2. Signing of Pledge Voucher Request (PVR) 31
 9.2.3. Signing of voucher by MASA 32
 10. Extensions to Discovery 33
 10.1. Discovery Operations by a Pledge 34
 10.1.1. Examples . 35
 10.2. Discovery Operations by a Join Proxy 36
 11. Deployment-specific Discovery Considerations 36
 11.1. 6TiSCH Deployments 36
 11.2. IP networks using GRASP 36
 11.3. IP networks using mDNS 37
 11.4. Thread networks using Mesh Link Establishment (MLE) . . 37
 12. Design and Implementation Considerations 37
 12.1. Voucher Format and Encoding 38
 12.2. Use of cBRSKI with HTTPS 38
 13. Raw Public Key Variant 39
 13.1. Introduction and Scope 39
 13.2. The Registrar Trust Anchor 40
 13.3. The Pledge Voucher Request 40
 13.4. The Voucher Response 40
 13.5. The Enrollment Phase 41

Richardson, et al. Expires 4 September 2024 [Page 3]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 14. Pledge Discovery of Onboarding and Enrollment Options 41
 14.1. Pledge Discovery Query for All BRSKI Resources 41
 14.2. Pledge Discovery Query for the Root BRSKI Resource . . . 43
 14.3. Usage of ct Attribute 43
 14.4. EST-coaps Resource Discovery 44
 15. Security Considerations 45
 15.1. Duplicate serial-numbers 45
 15.2. IDevID security in Pledge 46
 15.3. Security of CoAP and UDP protocols 47
 15.4. Registrar Certificate may be self-signed 48
 15.5. Use of RPK alternatives to proximity-registrar-cert . . 48
 15.6. MASA support of CoAPS 48
 16. IANA Considerations . 49
 16.1. Resource Type Link Target Attribute Values Registry . . 49
 16.2. Media Types Registry 49
 16.2.1. application/voucher+cose 50
 16.3. CoAP Content-Format Registry 50
 16.4. Update to BRSKI Parameters Registry 50
 16.5. Structured Syntax Suffixes Registry 51
 17. Acknowledgements . 52
 18. Changelog . 53
 19. References . 54
 19.1. Normative References 54
 19.2. Informative References 57
 Appendix A. Library Support for BRSKI 60
 A.1. OpensSSL . 61
 A.2. mbedTLS . 62
 Appendix B. cBRSKI Message Examples 63
 B.1. enrollstatus . 63
 B.2. voucher_status . 65
 Appendix C. COSE-signed Voucher (Request) Examples 66
 C.1. Pledge, Registrar and MASA Keys 66
 C.1.1. Pledge IDevID private key 66
 C.1.2. Registrar private key 66
 C.1.3. MASA private key 67
 C.2. Pledge, Registrar, Domain CA and MASA Certificates . . . 67
 C.2.1. Pledge IDevID Certificate 67
 C.2.2. Registrar Certificate 69
 C.2.3. Domain CA Certificate 71
 C.2.4. MASA Certificate 73
 C.3. COSE-signed Pledge Voucher Request (PVR) 75
 C.4. COSE-signed Registrar Voucher Request (RVR) 76
 C.5. COSE-signed Voucher from MASA 79
 Appendix D. Generating Certificates with OpenSSL 81
 Appendix E. Pledge Device Class Profiles 85
 E.1. Minimal Pledge . 85
 E.2. Typical Pledge . 86
 E.3. Full-featured Pledge 86

Richardson, et al. Expires 4 September 2024 [Page 4]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 E.4. Comparison Chart of Pledge Classes 86
 Authors’ Addresses . 88

1. Introduction

 Secure enrollment of new nodes into constrained networks with
 constrained nodes presents unique challenges. As explained in
 [RFC7228], such networks may have limited data throughput or may
 experience frequent packet loss. In addition, its nodes may be
 constrained by energy availability, memory space, and code size.

 The Bootstrapping Remote Secure Key Infrastructure (BRSKI) protocol
 described in [RFC8995] provides a solution for secure zero-touch
 (automated) onboarding of new (unconfigured) devices. In it, these
 new devices are called "pledges", equipped with a factory-installed
 Initial Device Identifier (IDevID) (see [ieee802-1AR]). Using the
 IDevID the pledges are securely enrolled into a network.

 The BRSKI solution described in [RFC8995] was designed to be modular,
 and this document describes a version scaled to the constraints of
 IoT deployments.

 Therefore, this document uses the constrained voucher artifact and
 voucher request artifact defined in [RFC8366bis] and specifies a
 constrained version of the BRSKI protocol: cBRSKI. The cBRSKI
 protocol uses the CoAP-based version of EST (EST-coaps from
 [RFC9148]) rather than the EST over HTTPS [RFC7030]. cBRSKI is
 itself scalable to multiple resource levels through the definition of
 optional functions. Appendix E illustrates this.

 In BRSKI, the [RFC8366] voucher data is by default serialized to JSON
 with a signature in CMS [RFC5652]. This document uses the new CBOR
 [RFC8949] voucher data serialization, as defined by [RFC8366bis], and
 applies a new COSE [RFC9052] signature format as defined in
 Section 9.

 This COSE-signed CBOR-encoded voucher is transported using both
 secured CoAP and HTTPS. The CoAP connection (between Pledge and
 Registrar) is to be protected by DTLS (CoAPS). The HTTP connection
 (between Registrar and MASA) is to be protected using TLS (HTTPS).

 Section 4 to Section 10 define the default cBRSKI protocol, by means
 of additions to and modifications of regular BRSKI. Section 11
 considers some variations of the protocol, specific to particular
 deployments or IoT networking technologies. Next in Section 12, some
 considerations for the design and implementation of cBRSKI components
 are provided.

Richardson, et al. Expires 4 September 2024 [Page 5]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Section 13 introduces a variant of cBRSKI for the most-constrained
 Pledges: the use of Raw Public Keys (RPK). This variant achieves
 smaller sizes of data objects and avoids doing certain costly PKIX
 verification operations on the Pledge.

 Section 14 provides more details on how a Pledge may discover the
 various onboarding/enrollment options that a Registrar provides.
 Implementing these methods is optional for a Pledge.

2. Terminology

 The following terms are defined in [RFC8366bis], and are used
 identically as in that document: artifact, domain, Join Registrar/
 Coordinator (JRC), malicious Registrar, Manufacturer Authorized
 Signing Authority (MASA), Pledge, Registrar, Onboarding, Owner,
 Voucher Data and Voucher.

 The following terms from [RFC8995] are used identically as in that
 document: Domain CA, enrollment, IDevID, Join Proxy, LDevID,
 manufacturer, nonced, nonceless, PKIX.

 The following terms from [RFC7030] are used identically as in that
 document: Explicit Trust Anchor (TA), Explicit TA database, Third-
 party TA.

 The term Pledge Voucher Request, or acronym PVR, is introduced to
 refer to the voucher request between the Pledge and the Registrar.

 The term Registrar Voucher Request, or acronym RVR, is introduced to
 refer to the voucher request between the Registrar and the MASA.

 This document uses the term "PKIX Certificate" to refer to the
 X.509v3 profile described in [RFC5280].

 In code examples, the string "<CODE BEGINS>" denotes the start of a
 code example and "<CODE ENDS>" the end of the code example. The
 ellipsis ("...") in a CBOR diagnostic notation byte string denotes a
 further sequence of bytes that is not shown for brevity. This
 notation is defined in [I-D.ietf-cbor-edn-literals].

3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Richardson, et al. Expires 4 September 2024 [Page 6]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

4. Overview of Protocol

 [RFC8366bis] defines a voucher that can assert proximity,
 authenticates the Registrar, and can offer varying levels of anti-
 replay protection. The proximity proof provided by a voucher is an
 assertion that the Pledge and the Registrar are believed to be close
 together, from a network topology point of view. Similar to BRSKI
 [RFC8995], proximity is proven by making a DTLS connection between a
 Pledge and a Registrar. The Pledge initiates this connection using a
 link-local source address.

 The secure DTLS connection is then used by the Pledge to make a
 Pledge Voucher Request (PVR). The Registrar then includes the PVR
 into its own Registrar Voucher Request (RVR), sent to an agent (MASA)
 of the Pledge’s manufacturer. The MASA verifies the PVR and RVR and
 issues a signed voucher. The voucher provides an authorization
 statement from the manufacturer indicating that the Registrar is the
 intended owner of the Pledge. The voucher refers to the Registrar
 through pinning of the Registrar’s identity.

 After verification of the voucher, the Pledge enrolls into the
 Registrar’s domain by obtaining a certificate using the EST-coaps
 [RFC9148] protocol, suitable for constrained devices. Once the
 Pledge has obtained its domain identity (LDevID) in this manner, it
 can use this identity to obtain network access credentials, to join
 the local IP network. The method to obtain such credentials depends
 on the particular network technology used and is outside the scope of
 this document.

 This document does not make any extensions to the semantic meaning of
 vouchers, though a new signature method based on COSE [RFC9052] is
 defined to optimize for constrained devices and networks.

 The two main parts of the BRSKI protocol are named separately in this
 document: BRSKI-EST (Section 6) for the protocol between Pledge and
 Registrar, and BRSKI-MASA (Section 7) for the protocol between the
 Registrar and the MASA.

 Time-based vouchers are supported, but given that constrained devices
 are unlikely to have accurate time, their use will be uncommon. Most
 Pledges using constrained vouchers will be online during enrollment
 and will use live nonces to provide anti-replay protection rather
 than expiry times.

 [RFC8366bis] defines the CBOR voucher data encoding for the
 constrained voucher and the constrained voucher request, which are
 used by cBRSKI.

Richardson, et al. Expires 4 September 2024 [Page 7]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 The constrained voucher request MUST be signed by the Pledge. COSE
 [RFC9052] is used for signing as defined in Section 9.2. It signs
 using the private key associated with its IDevID certificate.

 The constrained voucher MUST be signed by the MASA. Also in this
 case, COSE is used for signing.

 For the constrained voucher request (PVR) the default method for the
 Pledge to identify the Registrar is using the Registrar’s full PKIX
 certificate. But when operating PKIX-less as described in
 Section 13, the Registrar’s Raw Public Key (RPK) is used for this.

 For the constrained voucher the default method to indicate ("pin") a
 trusted domain identity is the domain’s PKIX CA certificate, but when
 operating PKIX-less instead the RPK of the Registrar is pinned.

 For certificates, cBRSKI currently uses the X.509 format, like BRSKI.
 The protocol and data formats are defined such that future extension
 to other certificate formats is enabled. For example, CBOR-encoded
 and COSE-signed C509 certificates ([I-D.ietf-cose-cbor-encoded-cert])
 may provide data size savings as well as code sharing benefits with
 CBOR/COSE libraries, when applied to cBRSKI.

 The BRSKI architecture mandates that the MASA be aware of the
 capabilities of the Pledge. This is not a drawback as a Pledge is
 constructed by a manufacturer which also arranges for the MASA to be
 aware of the inventory of devices. The MASA therefore knows if the
 Pledge supports PKIX operations, or if it is limited to RPK
 operations only. Based upon this, the MASA can select which
 attributes to use in the voucher data for certain operations, like
 the pinning of the Registrar or domain identity.

5. Updates to RFC 8995 and RFC 9148

 This section details the ways in which this document updates other
 RFCs. The terminology for Updates, Amends and Extends is taken from
 [I-D.kuehlewind-update-tag].

 This document Updates [RFC8995]. It Amends [RFC8995] because it:

 * clarifies how pinning in vouchers is done (Section 8),

 * adopts clearer explanation of the TLS Server Name Indicator (SNI)
 in Section 6.1.4 and Section 7.3,

 * clarifies when new trust anchors should be retrieved by a Pledge
 (Section 6.5.1),

Richardson, et al. Expires 4 September 2024 [Page 8]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 * clarifies what kinds of Extended Key Usage attributes are
 appropriate for each certificate (Section 6.1.5, Section 7.4).

 It Extends [RFC8995] as follows:

 * defines the use of CoAP for the BRSKI protocol,

 * makes some messages optional if the results can be inferred from
 other validations (Section 6.5),

 * extends the BRSKI-EST protocol (Section 6, Section 9.2) to carry
 the new "application/voucher+cose" format.

 * extends the BRSKI-MASA protocol (Section 7, Section 9.2) to carry
 the new "application/voucher+cose" format.

 This document Updates [RFC9148]. It Amends [RFC9148] because it:

 * defines stricter DTLS requirements (Section 6.1)),

 * details how an EST-coaps client handles certificate renewal and
 re-enrollment (Section 6.5),

 * details how an EST-coaps server processes a "CA certificates"
 request for content format 287 ("application/pkix-cert")
 (Section 6.6).

 It Extends [RFC9148] as follows:

 * adds enrollment status telemetry to the certificate renewal
 procedure (Section 6.5.4),

 * adds a new media type for the CA certificates (/crts) resource
 (Section 6.5.5).

6. BRSKI-EST Protocol

 This section describes the extensions to both BRSKI [RFC8995] and
 EST-coaps [RFC9148] protocol operations between Pledge and Registrar.
 The extensions are targeting low-resource networks with small
 packets, based on CoAP and DTLS.

Richardson, et al. Expires 4 September 2024 [Page 9]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

6.1. DTLS Connection

 A DTLS connection is established between the Pledge and the
 Registrar, similar to the TLS connection described in Section 5.1 of
 [RFC8995]. This may occur via a Join Proxy as described in
 Section 6.2. Regardless of the Join Proxy presence or particular
 mechanism used, the DTLS connection should operate identically. The
 cBRSKI and EST-coaps requests and responses for onboarding are
 carried over this DTLS connection.

6.1.1. DTLS Version

 DTLS version 1.3 [RFC9147] SHOULD be used in any implementation of
 this specification. An exception case where DTLS 1.2 [RFC6347] MAY
 be used is in a Pledge that uses a software platform where a DTLS 1.3
 client is not available (yet). This may occur for example if a
 legacy device gets software-upgraded to support cBRSKI. For this
 reason, a Registrar MUST by default support both DTLS 1.3 and DTLS
 1.2 client connections. However, for security reasons the Registrar
 MAY be administratively configured to support only a particular DTLS
 version or higher.

 An EST-coaps server [RFC9148] (as a separate entity from above
 Registrar) that implements this specification also MUST support both
 DTLS 1.3 and DTLS 1.2 client connections by default. However, for
 security reasons the EST-coaps server MAY be administratively
 configured to support only a particular DTLS version or higher.

6.1.2. TLS Client Certificates: IDevID authentication

 As described in Section 5.1 of [RFC8995], the Pledge makes a
 connection to the Registrar using a TLS Client Certificate for
 authentication. This is the Pledge’s IDevID certificate.

 Subsequently the Pledge will send a Pledge Voucher Request (PVR).
 Further elements of Pledge authentication may be present in the PVR,
 as detailed in Section 9.2.

6.1.3. DTLS Handshake Fragmentation Considerations

 DTLS includes a mechanism to fragment handshake messages. This is
 described in Section 4.4 of [RFC9147]. cBRSKI will often be used with
 a Join Proxy, described in Section 6.2, which relays each DTLS
 message to the Registrar. A stateless Join Proxy will need some
 additional space to wrap each DTLS message inside a CoAP request,
 while the wrapped result needs to fit in the maximum IPv6 MTU
 guaranteed on 6LoWPAN networks, which is 1280 bytes.

Richardson, et al. Expires 4 September 2024 [Page 10]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 For this reason it is RECOMMENDED that a PMTU of 1024 bytes be
 assumed for the DTLS handshake and appropriate DTLS fragmentation is
 used. It is unlikely that any Packet Too Big indications ([RFC4443])
 will be relayed by the Join Proxy back to the Pledge.

 During the operation of the EST-coaps protocol, the CoAP Block-wise
 transfer mechanism [RFC7959] will be automatically used when message
 sizes exceed the PMTU. A Pledge/EST-client on a constrained network
 MUST use the (D)TLS maximum fragment length extension
 ("max_fragment_length") defined in Section 4 of [RFC6066] with the
 maximum fragment length set to a value of either 2^9 or 2^10, when
 operating as a DTLS 1.2 client.

 A Pledge/EST-client operating as DTLS 1.3 client, MUST use the (D)TLS
 record size limit extensions ("record_size_limit") defined in
 Section 4 of [RFC8449], with RecordSizeLimit set to a value between
 512 and 1024.

6.1.4. Registrar and the Server Name Indicator (SNI)

 The SNI issue described below affects [RFC8995] as well, and is
 reported in errata: https://www.rfc-editor.org/errata/eid6648

 As the Registrar is discovered by IP address, and typically connected
 via a Join Proxy, the name of the Registrar is not known to the
 Pledge. The Pledge will not know what the hostname for the Registrar
 is, so it cannot do DNS-ID validation ([RFC9525]) on the Registrar’s
 certificate. Instead, it must do validation using the voucher.

 As the Pledge does not know the name of the Registrar, the Pledge
 cannot put any reasonable value into the [RFC6066] Server Name
 Indicator (SNI). Threfore the Pledge SHOULD omit the SNI extension
 as per Section 9.2 of [RFC8446].

 In some cases, particularly while testing BRSKI, a Pledge may be
 given the hostname of a particular Registrar to connect to directly.
 Such a bypass of the discovery process may result in the Pledge
 taking a different code branch to establish a DTLS connection, and
 may result in the SNI being inserted by a library. The Registrar
 MUST ignore any SNI it receives from a Pledge.

 A primary motivation for making the SNI ubiquitous in the public web
 is because it allows for multi-tenant hosting of HTTPS sites on a
 single (scarce) IPv4 address. This consideration does not apply to
 the server function in the Registrar because:

 * it uses DTLS and CoAP, not HTTPS

Richardson, et al. Expires 4 September 2024 [Page 11]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 * it typically uses IPv6, often [RFC4193] Unique Local Address,
 which are plentiful

 * the server port number is typically discovered, so multiple
 tenants can be accomodated via unique port numbers.

6.1.5. Registrar Server Certificate Requirements

 As per Section 3.6.1 of [RFC7030], the Registrar certificate MUST
 have the Extended Key Usage (EKU) id-kp-cmcRA. This certificate is
 also used as a TLS Server Certificate, so it MUST also have the EKU
 id-kp-serverAuth.

 See Appendix C.2.2 for an example of a Registrar certificate with
 these EKUs set. See Section 6.1.5 for Registrar client certificate
 requirements.

6.2. cBRSKI Join Proxy

 [I-D.ietf-anima-constrained-join-proxy] specifies the details for a
 stateful and stateless constrained Join Proxy which is equivalent to
 the Proxy defined in [RFC8995], Section 4. See also Section 10 for
 more details on discovery of a Join Proxy by a Pledge, and discovery
 of a Registrar by a Join Proxy.

6.3. Request URIs, Resource Discovery and Content Formats

 cBRSKI operates using CoAP over DTLS, with request URIs using the
 coaps scheme. The Pledge operates in CoAP client role. To keep the
 protocol messages small the EST-coaps and cBRSKI request URIs are
 shorter than the respective EST and BRSKI URIs.

 During the BRSKI onboarding on an IPv6 network these request URIs
 have the following form:

 coaps://[<link-local-ipv6>]:<port>/.well-known/brski/<short-name>
 coaps://[<link-local-ipv6>]:<port>/.well-known/est/<short-name>

 where <link-local-ipv6> is the discovered link-local IPv6 address of
 a Join Proxy, and <port> is the discovered port of the Join Proxy
 that is used to offer the BRSKI proxy functionality.

 <short-name> is the short resource name for the cBRSKI and EST-coaps
 resources. For EST-coaps, Section 5.1 of [RFC9148] defines the CoAP
 <short-name> resource names. For cBRSKI, this document defines the
 short resource names based on the [RFC8995] long HTTP resource names.
 See Table 1 for a summary of these resource names.

Richardson, et al. Expires 4 September 2024 [Page 12]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Section 11 details how the Pledge discovers a Join Proxy link-local
 address and port in different deployment scenarios.

 The request URI formats defined above enable the Pledge to perform
 onboarding/enrollment without requiring to perform any discovery of
 the available onboarding options, voucher formats, BRSKI/EST
 resources, enrollment protocols, and so on. This is helpful for a
 majority of constrained Pledges that would support only a single set
 of options. However, for Pledges that do support multiple options,
 sending CoAP discovery queries to the Registrar is supported as
 defined in Section 14.

 Because a Pledge only has indirect access to the Registrar via a
 single port on the Join Proxy, the Registrar MUST host all BRSKI/EST-
 coaps resources on the same (UDP) server IP address and port. This
 is the address and port where a Join Proxy would relay DTLS records
 from the Pledge to.

 Although the request URI templates include IP address, scheme and
 port, in practice the CoAP request sent over the secure DTLS
 connection only encodes the request URI. For example, a Pledge that
 skips resource discovery operations just sends the initial CoAP
 voucher request as follows:

 REQ: POST /.well-known/brski/rv
 Content-Format: 836
 Payload : (COSE-signed Pledge Voucher Request, PVR)

 Note that only Content-Format 836 ("application/voucher+cose") is
 defined in this document for the payload sent to the voucher request
 resource (/rv). Content-Format 836 MUST be supported by the
 Registrar for the /rv resource and it MAY support additional formats.
 The Pledge MAY also indicate in the request the desired format of the
 (voucher) response, using the Accept Option. An example of using
 this option in the request is as follows:

 REQ: POST /.well-known/brski/rv
 Content-Format: 836
 Accept : 836
 Payload : (COSE-signed Pledge Voucher Request, PVR)

 If the Accept Option is omitted in the request, the response format
 follows from the request payload format (which is 836).

Richardson, et al. Expires 4 September 2024 [Page 13]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Note that this specification allows for voucher+cose format requests
 and vouchers to be transmitted over HTTPS, as well as for voucher-
 cms+json and other formats yet to be defined over CoAP. The burden
 for this flexibility is placed upon the Registrar. A Pledge on
 constrained hardware is expected to support a single format only.

 The Pledge and MASA need to support one or more formats (at least
 format 836) for the voucher and for the voucher request. The MASA
 needs to support all formats that the Pledge supports.

6.3.1. RFC8995 Telemetry Returns

 [RFC8995] defines two telemetry returns from the Pledge which are
 sent to the Registrar. These are the BRSKI Status Telemetry
 [RFC8995], Section 5.7 and the Enrollment Status Telemetry [RFC8995],
 Section 5.9.4. These are two CoAP POST request made the by Pledge at
 two key steps in the process.

 [RFC8995] defines the content of these POST operations in CDDL, which
 are serialized as JSON. This document extends this with an
 additional CBOR format, derived using the CDDL rules from [RFC8610].

 The new CBOR format has CoAP Content-Format 60 ("application/cbor")
 and MUST be supported by the Registrar for both the /vs and /es
 resources. The existing JSON format has CoAP Content-Format 50
 ("application/json") and also MUST be supported by the Registrar. A
 Pledge MUST support at least the new CBOR format and it MAY support
 the JSON format.

6.3.2. CoAP Resources Table

 This document inherits EST-coaps [RFC9148] functions: specifically,
 the mandatory Simple (Re-)Enrollment (/sen and /sren) and
 Certification Authority certificates request (/crts). Support for
 CSR Attributes Request (/att) and server-side key generation (/skg,
 /skc) remains optional for the EST-coaps server.

 Table 1 summarizes the resources used in cBRSKI. It includes both
 the short-name BRSKI resources and the EST-coaps resources.

Richardson, et al. Expires 4 September 2024 [Page 14]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 +=================+====================+===============+============+
BRSKI + EST	cBRSKI + EST-coaps	Well-known	Required
	<short-name>	URI	for
		namespace	Registrar?
+=================+====================+===============+============+			
/enrollstatus	/es	brski	MUST
+-----------------+--------------------+---------------+------------+			
/requestvoucher	/rv	brski	MUST
+-----------------+--------------------+---------------+------------+			
/voucher_status	/vs	brski	MUST
+-----------------+--------------------+---------------+------------+			
/cacerts	/crts	est	MUST
+-----------------+--------------------+---------------+------------+			
/csrattrs	/att	est	MAY
+-----------------+--------------------+---------------+------------+			
/simpleenroll	/sen	est	MUST
+-----------------+--------------------+---------------+------------+			
/simplereenroll	/sren	est	MUST
+-----------------+--------------------+---------------+------------+			
/serverkeygen	/skg	est	MAY
+-----------------+--------------------+---------------+------------+			
/serverkeygen	/skc	est	MAY
 +-----------------+--------------------+---------------+------------+

 Table 1: BRSKI/EST resource name mapping to cBRSKI/EST-coaps
 short resource name

6.4. CoAP Responses

 [RFC8995], Section 5 defines a number of HTTP response codes that the
 Registrar is to return when certain conditions occur.

 The 401, 403, 404, 406 and 415 response codes map directly to CoAP
 codes 4.01, 4.03, 4.04, 4.06 and 4.15.

 The 202 Retry process which occurs in the voucher request, is to be
 handled in the same way as the Section 5.7 of [RFC9148] process for
 Delayed Responses.

6.5. Extensions to EST-coaps

 This section defines extensions to EST-coaps for Pledges (during
 initial onboarding), EST-coaps clients (after initial onboarding) and
 Registrars (that implement an EST-coaps server). Note that a device
 that is already onboarded is not called "Pledge" in this section: it
 now acts in the role of an EST-coaps client.

Richardson, et al. Expires 4 September 2024 [Page 15]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

6.5.1. Pledge enrollment procedure

 This section defines optimizations for the EST-coaps protocol as used
 by a Pledge. These aim to reduce payload sizes and the number of
 messages (round-trips) required for the initial EST enrollment.

 A Pledge SHOULD NOT perform the optional EST-coaps "CSR attributes
 request" (/att). Instead, the Pledge selects the attributes to
 include in the CSR as specified below.

 One or more Subject Distinguished Name fields MUST be included in the
 CSR. If the Pledge has no specific information on what attributes/
 fields are desired in the CSR, which is the common case, it MUST use
 the Subject Distinguished Name fields from its IDevID unmodified.
 Note that a Pledge MAY receive such specific information via the
 voucher data (encoded in a vendor-specific way) or via some other,
 out-of-band means.

 A Pledge uses the following optimized EST-coaps procedure:

 1. If the voucher, that validates the current Registrar, contains a
 single pinned domain CA certificate, the Pledge provisionally
 considers this certificate as the EST trust anchor, as if it were
 the result of a "CA certificates request" (/crts) to the
 Registrar.

 2. Using this CA certificate as trust anchor it proceeds with EST
 simple enrollment (/sen) to obtain a provisionally trusted LDevID
 certificate.

 3. If the Pledge determines that the pinned domain CA is (1) a root
 CA certificate and (2) signer of the LDevID certificate, the
 Pledge accepts the pinned domain CA certificate as the legitimate
 trust anchor root CA for the Registrar’s domain. It also accepts
 the LDevID certificate as its new LDevID identity. And steps 4
 and 5 are skipped.

 4. Otherwise, if the step 3 condition was not met, the Pledge MUST
 perform a "CA certificates request" (/crts) to the EST server to
 obtain the full set of EST CA trust anchors. It then MUST
 attempt to chain the LDevID certificate to one of the CAs in the
 set.

 5. If the Pledge cannot obtain the set of CA certificates, or it is
 unable to create the chain as defined in step 4, the Pledge MUST
 abort the enrollment process and report the error using the
 enrollment status telemetry (/es).

Richardson, et al. Expires 4 September 2024 [Page 16]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

6.5.2. Renewal of CA certificates

 An EST-coaps client that has an idea of the current time (internally,
 or via Network Time Protocol) SHOULD consider the validity time of
 the trust anchor CA(s), and MAY begin requesting new trust anchor
 certificates(s) using the /crts request when the CA has 50% of it’s
 validity time (notAfter - notBefore) left. A client without access
 to the current time cannot decide if trust anchor CA(s) have expired,
 and SHOULD poll periodically for a new trust anchor certificate(s)
 using the /crts request at an interval of approximately 1 month. An
 EST-coaps server SHOULD include the CoAP ETag Option in every
 response to a /crts request, to enable clients to perform low-
 overhead validation whether their trust anchor CA is still valid.
 The EST-coaps client SHOULD store the ETag resulting from a /crts
 response in memory and SHOULD use this value in an ETag Option in its
 next GET /crts request.

6.5.3. Change of domain trust anchor(s)

 The domain trust anchor(s) may change over time. Such a change may
 happen due to relocation of the client device to a new domain, a new
 subdomain, or due to a key update of a trust anchor as described in
 [RFC4210], Section 4.4.

 From the client’s viewpoint, a trust anchor change happens during
 EST-coaps re-enrollment: since a change of domain CA requires all
 devices operating under the old domain CA to acquire a new LDevID
 certificate issued by the new domain CA. A client’s re-enrollment
 may be triggered by various events, such as an instruction to re-
 enroll sent by a domain entity, or an imminent expiry of its LDevID
 certificate, or other. How the re-enrollment is explicitly triggered
 on the client by a domain entity, such as a commissioner or a
 Registrar, is out of scope of this specification.

 The mechanism described in [RFC7030], Section 4.1.3 and [RFC4210],
 Section 4.4 for Root CA key update requires four certificates:
 OldWithOld, OldWithNew, NewWithOld, and NewWithNew. Of these four,
 the OldWithOld certificate is already stored in the client’s Explicit
 TA database. The other certificates will be provided to the client
 in a /crts response, during the EST-coaps re-enrollment procedure.

6.5.4. Re-enrollment procedure

 For re-enrollment, the EST-coaps client MUST support the following
 EST-coaps procedure. During this procedure the EST-coaps server MAY
 re-enroll the client into a new domain or into a new sub-CA within a
 domain.

Richardson, et al. Expires 4 September 2024 [Page 17]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 1. The client connects with DTLS to the EST-coaps server, and
 authenticates with its present domain certificate (LDevID) as
 usual. The EST-coaps server authenticates itself with its domain
 RA certificate that is currently trusted by the client, i.e. it
 chains to a trust anchor CA that the client has stored in its
 Explicit TA database. This is the OldWithOld trust anchor. The
 client checks that the server is a Registration Authority (RA) of
 the domain as required by Section 3.6.1 of [RFC7030] before
 proceeding.

 2. The client performs the simple re-enrollment request (/sren) and
 upon success it obtains a new LDevID certificate.

 3. The client verifies the new LDevID certificate against its
 Explicit TA database. If the new LDevID chains successfully to a
 TA, this means trust anchors did not significantly change and the
 client MAY skip retrieving the current CA certificates using the
 "CA certificates request" (/crts). If it does not chain
 successfully, it means trust anchor(s) were changed significantly
 and the client MUST retrieve the new domain trust anchors using
 the "CA certificates request" (/crts).

 4. If the client retrieved new trust anchor(s) in step 3, then it
 MUST verify that the new LDevID certificate it obtained in step 2
 chains with the new trust anchor(s). If it chains successfully,
 the client stores the new trust anchor(s) in its Explicit TA
 database, accepts the new LDevID certificate and stops using its
 prior LDevID certificate. If it does not chain successfully, the
 client MUST NOT update its LDevID certificate, and it MUST NOT
 update its Explicit TA database, and the client MUST abort the
 enrollment process and MUST attempt to report the error to the
 EST-coaps server using enrollment status telemetry (/es).

 Note that even though the EST-coaps client may skip the /crts request
 in step 3 at this time, it SHOULD still support retrieval of the
 trust anchors periodically as detailed in Section 6.5.2.

 Note that an EST-coaps server that is also a Registrar will already
 support the enrollment status telemetry resource (/es) in step 4,
 while an EST-coaps server that purely implements [RFC9148], and not
 the present specification, will not support this resource.

Richardson, et al. Expires 4 September 2024 [Page 18]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

6.5.5. Multipart Content Format for CA certificates (/crts) Resource

 In EST-coaps [RFC9148] the PKCS#7 container format is used for CA
 certificates distribution. Because the PKCS#7 format is only used as
 a certificate container and no additional security is applied on the
 container, it becomes attractive to replace this format by something
 simpler, on a constrained Pledge: so that additional PKCS#7 code is
 avoided. Therefore, this document defines a container format using
 the [RFC8710] "application/multipart-core" media type (CoAP Content-
 Format 62). This is beneficial since a Pledge necessarily already
 supports CBOR parsing, so there is little code overhear to support
 this CBOR-based container format.

 A Registrar or EST-coaps server MUST support Content-Format 62 for
 the /crts resource. The multipart collection MUST contain the
 individual CA certificates, each encoded as an "application/pkix-
 cert" (287) representation. Future documents may define other
 certificate formats: the multipart collection can handle any future
 types. The order of CA certificates MUST be in the CA hierarchy
 order starting from the issuer of the client’s LDevID first, up to
 the highest-level domain CA, then optionally followed by any further
 CA certificates that are not part of this hierarchy. These further
 CA certificates may be Third-party TAs as defined in [RFC7030]. The
 highest-level domain CA may or may not be a root CA certificate.

 As an example, for the two-level CA domain PKI of Figure 1 the
 multipart container will contain two representations:

 [<domain sub-CA cert (2)> , <domain CA cert (1)>]

 Encoded as an "application/multipart-core" CBOR array this is (shown
 in CBOR diagnostic notation):

 [287, h’3082’ ... ’d713’, 287, h’3082’ ... ’a034’]

 The total number of CA certificates SHOULD be 1, 2 or 3 and not
 higher to prevent constrained Pledges from running out of memory for
 the trust anchor storage (Explicit TA database). However if a domain
 operator can guarantee that any Pledges enrolled in its network can
 support larger sets of CA certificates, the total number MAY be
 configured as higher than 3. To facilitate a reliable transfer of
 large payloads over constrained networks, the server MUST support
 CoAP Block-wise transfer for the /crts response. The server MUST
 also support the Size2 Option [RFC7959] to provide the total resource
 length in bytes, when requested by a client.

Richardson, et al. Expires 4 September 2024 [Page 19]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Implementation notes: a client that receives the first block of
 payload data from the server, can already inspect the total number of
 CA certificates by decoding the first byte of the payload. In CBOR
 encoding, the respective first bytes 0x81-0x97 represent an array
 with length 1-23, respectively. Furthermore, the length in bytes of
 the first CA certificate can be already determined by decoding the
 first bytes of the second element, because the CBOR encoding for
 binary string includes the length of this string. A client that
 requires an estimate of the total resource size (to be returned as
 part of the first Block2 response from the server) can use a Size2
 Option with value 0 in its request. Knowing the overall progress of
 the data transfer may be helpful in certain cases, e.g. when a Pledge
 provides visual progress information on the onboarding progress.

6.6. Registrar Extensions

 The Content-Format 60 ("application/cbor") MUST be supported by the
 Registrar for the /vs and /es resources.

 Content-Format 836 ("application/voucher+cose") MUST be supported by
 the Registrar for the /rv resource for CoAP POST requests, both as
 request payload and as response payload.

 Content-Format 287 ("application/pkix-cert") MUST be supported by the
 Registrar as a response payload for the /sen and /sren resources.

 When a Registrar receives a "CA certificates request" (/crts) request
 with a CoAP Accept Option with value 287 ("application/pkix-cert") it
 MUST return only the single CA certificate that is the envisioned or
 actual CA authority for the current, authenticated Pledge making the
 request. An exception to this rule is when the domain has been
 configured to operate with multiple CA trust anchors only: then the
 Registrar returns a 4.06 Not Acceptable error to signal to the client
 that it needs to request another Content Format that supports
 retrieval of multiple CA certificates.

7. BRSKI-MASA Protocol

 This section describes extensions to and clarifications of the BRSKI-
 MASA protocol between Registrar and MASA.

7.1. Protocol and Formats

 Section 5.4 of [RFC8995] describes a connection between the Registrar
 and the MASA as being a normal TLS connection using HTTPS. This
 document does not change that. The Registrar MUST use the format
 "application/voucher+cose" in its voucher request to MASA, when the
 Pledge uses this format in its request to the Registrar.

Richardson, et al. Expires 4 September 2024 [Page 20]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 The MASA only needs to support formats for which it has constructed
 Pledges that use that format.

 The Registrar MUST use the same format for the RVR as the Pledge used
 for its PVR. The Registrar indicates the voucher format it wants to
 receive from MASA using the HTTP Accept header. This format MUST be
 the same as the format of the PVR, so that the Pledge can parse it.

 At the moment of writing the creation of coaps based MASAs is deemed
 unrealistic. The use of CoAP for the BRSKI-MASA connection can be
 the subject of another document. Some consideration was made to
 specify CoAP support for consistency, but:

 * the Registrar is not expected to be so constrained that it cannot
 support HTTPS client connections.

 * the technology and experience to build Internet-scale HTTPS
 responders (which the MASA is) is common, while the experience
 doing the same for CoAP is much less common.

 * a Registrar is likely to provide onboarding services to both
 constrained and non-constrained devices. Such a Registrar would
 need to speak HTTPS anyway.

 * a manufacturer is likely to offer both constrained and non-
 constrained devices, so there may in practice be no situation in
 which the MASA could be CoAP-only. Additionally, as the MASA is
 intended to be a function that can easily be oursourced to a
 third-party service provider, reducing the complexity would also
 seem to reduce the cost of that function.

 * security-related considerations: see Section 15.6.

7.2. Registrar Voucher Request

 If the PVR contains a proximity assertion, the Registrar MUST
 propagate this assertion into the RVR by including the "assertion"
 field with the value "proximity". This conforms to the example in
 Section 3.3 of [RFC8995] of carrying the assertion forward.

7.3. MASA and the Server Name Indicator (SNI)

 A TLS/HTTPS connection is established between the Registrar and MASA.

 Section 5.4 of [RFC8995] explains this process, and there are no
 externally visible changes. A MASA that supports the unconstrained
 voucher formats should be able to support constrained voucher formats
 equally well.

Richardson, et al. Expires 4 September 2024 [Page 21]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 There is no requirement that a single MASA be used for both
 constrained and unconstrained voucher requests: the choice of MASA is
 determined by the id-mod-MASAURLExtn2016 extension contained in the
 IDevID.

 The Registrar MUST do DNS-ID checks ([RFC9525]) on the contents of
 the certificate provided by the MASA.

 In constrast to the Pledge/Registrar situation, the Registrar always
 knows the name of the MASA, and MUST always include an [RFC6066]
 Server Name Indicator. The SNI is optional in TLS1.2, but common.
 The SNI it considered mandatory with TLS1.3.

 The presence of the SNI is needed by the MASA, in order for the
 MASA’s server to host multiple tenants (for different customers).

7.4. Registrar Client Certificate Requirement

 The Registrar SHOULD use a TLS Client Certificate to authenticate to
 the MASA per Section 5.4.1 of [RFC8995]. If the certificate that the
 Registrar uses is marked as a id-kp-cmcRA certificate, via Extended
 Key Usage, then it MUST also have the id-kp-clientAuth EKU attribute
 set.

 In summary for typical Registrar use, where a single Registrar
 certificate is used, then the certificate MUST have EKU of: id-kp-
 cmcRA, id-kp-serverAuth, id-kp-clientAuth.

8. Pinning in Voucher Artifacts

 The voucher is a statement by the MASA for use by the Pledge that
 provides the identity of the Pledge’s owner. This section describes
 how the owner’s identity is determined and how it is specified within
 the voucher.

8.1. Registrar Identity Selection and Encoding

 Section 5.5 of [RFC8995] describes BRSKI policies for selection of
 the owner identity. It indicates some of the flexibility that is
 possible for the Registrar, and recommends the Registrar to include
 only certificates in the voucher request (CMS) signing structure that
 participate in the certificate chain that is to be pinned.

 The MASA is expected to evaluate the certificates included by the
 Registrar in its voucher request, forming them into a chain with the
 Registrar’s (signing) identity on one end. Then, it pins a
 certificate selected from the chain. For instance, for a domain with
 a two-level certification authority (see Figure 1), where the voucher

Richardson, et al. Expires 4 September 2024 [Page 22]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 request has been signed by "Registrar", its signing structure
 includes two additional CA certificates. The arrows in the figure
 indicate the issuing of a certificate, i.e. author of (1) issued (2)
 and author of (2) issued (3).

 .------------------.
 | domain CA (1) |
 | trust anchor |
 ’------------------’
 |
 v
 .------------.
 | domain (2) |
 | Sub-CA |
 ’------------’
 |
 |
 v
 .----------------.
 | domain |
 | Registrar (3) |
 | EE certificate |
 ’----------------’

 Figure 1: Two-Level CA PKI

 When the Registrar is using a COSE-signed constrained voucher request
 towards MASA, instead of a regular CMS-signed voucher request, the
 COSE_Sign1 object contains a protected and an unprotected header.
 The Registrar MUST place all the certificates needed to validate the
 signature chain from the Registrar on the RVR in an "x5bag" attribute
 in the unprotected header as defined in [RFC9360].

 The "x5bag" attribute is very important as it provides the required
 signals from the Registrar to control what identity is pinned in the
 resulting voucher. This is explained in the next section.

8.2. MASA Pinning Policy

 The MASA, having assembled and verified the chain in the signing
 structure of the voucher request needs to select a certificate to
 pin. (For the case that only the Registrar’s End-Entity certificate
 is included, only this certificate can be selected and this section
 does not apply.) The BRSKI policy for pinning by the MASA as
 described in Section 5.5.2 of [RFC8995] leaves much flexibility to
 the manufacturer.

Richardson, et al. Expires 4 September 2024 [Page 23]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 The present document adds the following rules to the MASA pinning
 policy to reduce the network load on the constrained network side:

 1. for a voucher containing a nonce, it SHOULD select the most
 specific (lowest-level) CA certificate in the chain.

 2. for a nonceless voucher, it SHOULD select the least-specific
 (highest-level) CA certificate in the chain that is allowed under
 the MASA’s policy for this specific domain.

 The rationale for 1. is that in case of a voucher with nonce, the
 voucher is valid only in scope of the present DTLS connection between
 Pledge and Registrar anyway, so there is no benefit to pin a higher-
 level CA. By pinning the most specific CA the constrained Pledge can
 validate its DTLS connection using less crypto operations. The
 rationale for pinning a CA instead of the Registrar’s End-Entity
 certificate directly is based on the following benefit on constrained
 networks: the pinned certificate in the voucher can in common cases
 be re-used as a Domain CA trust anchor during the EST enrollment and
 during the operational phase that follows after EST enrollment, as
 explained in Section 6.5.1.

 The rationale for 2. follows from the flexible BRSKI trust model for,
 and purpose of, nonceless vouchers (Sections 5.5.* and 7.4.1 of
 [RFC8995]).

 Refering to Figure 1 of a domain with a two-level certification
 authority, the most specific CA ("Sub-CA") is the identity that is
 pinned by MASA in a nonced voucher. A Registrar that wished to have
 only the Registrar’s End-Entity certificate pinned would omit the
 "domain CA" and "Sub-CA" certificates from the voucher request.

 In case of a nonceless voucher, depending on the trust level, the
 MASA pins the "Registrar" certificate (low trust in customer), or the
 "Sub-CA" certificate (in case of medium trust, implying that any
 Registrar of that sub-domain is acceptable), or even the "domain CA"
 certificate (in case of high trust in the customer, and possibly a
 pre-agreed need of the customer to obtain flexible long-lived
 vouchers).

8.3. Pinning of Raw Public Keys

 Specifically for the most-constrained use cases, the pinning of the
 raw public key (RPK) of the Registrar is also supported in the
 constrained voucher, instead of a PKIX certificate. This is used by
 the RPK variant of cBRSKI described in Section 13, but it can also be
 used in the default cBRSKI flow as a means to reduce voucher size.

Richardson, et al. Expires 4 September 2024 [Page 24]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 For both cases, if an RPK is pinned, it MUST be the RPK of the
 Registrar.

 When the Pledge is known by MASA to support the RPK variant only, the
 voucher produced by the MASA pins the RPK of the Registrar in either
 the "pinned-domain-pubk" or "pinned-domain-pubk-sha256" field of the
 voucher data. This is described in more detail in [RFC8366bis] and
 Section 13.

 When the Pledge is known by MASA to support PKIX certificates, the
 "pinned-domain-cert" field present in a voucher normally pins a
 domain certificate. That can be either the End-Entity certificate of
 the Registrar, or the certificate of a domain CA of the Registrar’s
 domain as specified in Section 8.2. However, if the Pledge is known
 by MASA to also support RPK pinning and the MASA intends to pin the
 Registrar in the voucher (and not the CA), then MASA SHOULD pin the
 RPK (RPK3 in Figure 2) of the Registrar instead of the Registrar’s
 End-Entity certificate to save space in the voucher.

 .-------------.
 .------------. | private |
 | pub-CA (1) | | root-CA (1) |
 ’------------’ ’-------------’
 | |
 v .-------------. v
 .------------. | private | .------------.
 | sub-CA (2) | | root-CA (1) | | sub-CA (2) |
 ’------------’ ’-------------’ ’------------’
 | | |
 v v v
 .--------------. .--------------. .--------------.
 | Registrar(3) | | Registrar(3) | | Registrar(3) |
 | RPK3 | | RPK3 | | RPK3 |
 ’--------------’ ’--------------’ ’--------------’

 Figure 2: Raw Public Key (RPK) pinning examples

8.4. Considerations for use of IDevID-Issuer

 [RFC8366bis] and [RFC8995] define the idevid-issuer attribute for
 voucher and voucher-request (respectively), but they summarily
 explain when to use it.

 The use of idevid-issuer is provided so that the serial-number to
 which the issued voucher pertains can be relative to the entity that
 issued the devices’ IDevID. In most cases there is a one to one
 relationship between the trust anchor that signs vouchers (and is
 trusted by the pledge), and the Certification Authority that signs

Richardson, et al. Expires 4 September 2024 [Page 25]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 the IDevID. In that case, the serial-number in the voucher data must
 refer to the same device as the serial-number that is in the IDevID
 certificate.

 However, there situations where the one to one relationship may be
 broken. This occurs whenever a manufacturer has a common MASA, but
 different products (on different assembly lines) are produced with
 identical serial numbers. A system of serial numbers which is just a
 simple counter is a good example of this. A system of serial numbers
 where there is some prefix relating the product type does not fit
 into this, even if the lower digits are a counter.

 It is not possible for the Pledge or the Registrar to know which
 situation applies. The question to be answered is whether or not to
 include the idevid-issuer in the PVR and the RVR. A second question
 arises as to what the format of the idevid-issuer contents are.

 Analysis of the situation shows that the pledge never needs to
 include the idevid-issuer in it’s PVR, because the pledge’s IDevID
 certificate is available to the Registrar, and the Authority Key
 Identifier is contained within that IDevID certificate. The pledge
 therefore has no need to repeat this.

 For the RVR, the Registrar has to examine the pledge’s IDevID
 certificate to discover the serial number for the Registrar’s Voucher
 Request (RVR). This is clear in Section 5.5 of [RFC8995]. That
 section also clarifies that the idevid-issuer is to be included in
 the RVR.

 Concerning the Authority Key Identifier, [RFC8366bis] specifies that
 the entire object i.e. the extnValue OCTET STRING is to be included:
 comprising the AuthorityKeyIdentifier, SEQUENCE, Choice as well as
 the OCTET STRING that is the keyIdentifier.

9. Artifacts

 The YANG ([RFC7950]) module and CBOR serialization for the
 constrained voucher as used by cBRSKI are described in [RFC8366bis].
 That document also assigns SID values to YANG elements in accordance
 with [I-D.ietf-core-sid]. The present section provides some examples
 of these artifacts and defines a new signature format for these,
 using COSE.

 Compared to the first voucher request definition done in [RFC8995],
 the constrained voucher request adds the fields proximity-registrar-
 pubk and proximity-registrar-pubk-sha256. One of these is optionally
 used to replace the proximity-registrar-cert field, for a smaller
 voucher data size - useful for the most constrained cases.

Richardson, et al. Expires 4 September 2024 [Page 26]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 The constrained voucher adds the fields pinned-domain-pubk and
 pinned-domain-pubk-sha256. One of these is optionally used instead
 of the pinned-domain-cert field, for a smaller voucher data size.

9.1. Example Artifacts

9.1.1. Example Pledge voucher request (PVR) artifact

 Below, example voucher data from a constrained voucher request (PVR)
 from a Pledge to a Registrar is shown in CBOR diagnostic notation.
 Long CBOR byte strings have been shortened for readability, using the
 ellipsis ("...") to indicate elided bytes. This notation is defined
 in [I-D.ietf-cbor-edn-literals]. The enum value of the assertion
 field is 2 for the "proximity" assertion as defined in Section 6.3 of
 [RFC8366bis].

 {
 2501: { / SID=2501, ietf-voucher-request:voucher|voucher /
 1: 2, / SID=2502, assertion 2 = "proximity"/
 7: h’831D5198A6CA2C7F’, / SID=2508, nonce /
 12: h’30593013’ ... ’9A54’, / SID=2513, proximity-registrar-pubk /
 13: "JADA123456789" / SID=2514, serial-number /
 }
 }

 The Pledge has included the item proximity-registrar-pubk which
 carries the public key of the Registrar, instead of including the
 full Registrar certificate in a proximity-registrar-cert item. This
 is done to reduce the size of the PVR. Also note that the Pledge did
 not include the created-on field since it lacks an internal real-time
 clock and has no knowledge of the current time at the moment of
 performing the onboarding.

9.1.2. Example Registrar voucher request (RVR) artifact

 Next, example voucher data from a constrained voucher request (RVR)
 from a Registrar to a MASA is shown in CBOR diagnostic notation. The
 Registrar has created this request triggered by the reception of the
 Pledge voucher request (PVR) of the previous example. Again, long
 CBOR byte strings have been shortened for readability.

Richardson, et al. Expires 4 September 2024 [Page 27]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 {
 "ietf-request-voucher:voucher": {
 "assertion": 2,
 "created-on": "2022-12-05T19:19:19.536Z",
 "nonce": h’831D5198A6CA2C7F’,
 "idevid-issuer": h’04183016’ ... ’1736C3E0’,
 "serial-number": "JADA123456789",
 "prior-signed-voucher-request": h’A11909’ ... ’373839’
 }
 }

 Note that the Registrar uses here the string data type for all key
 names, instead of the more compact SID integer keys. This is fine
 for any use cases where the network between Registrar and MASA is an
 unconstrained network where data size is not critical. The
 constrained voucher request format supports both the string and SID
 key types.

9.1.3. Example voucher artifacts

 Below, an example of constrained voucher data is shown in CBOR
 diagnostic notation. It was created by a MASA in response to
 receiving the Registrar Voucher Request (RVR) shown in Section 9.1.2.
 The enum value of the assertion field is set to 2, to acknowledge to
 both the Pledge and the Registrar that the proximity of the Pledge to
 the Registrar is considered proven.

 {
 2451: { / SID = 2451, ietf-voucher:voucher|voucher /
 1: 2, / SID = 2452, assertion "proximity" /
 2: "2022-12-05T19:19:23Z", / SID = 2453, created-on /
 3: false, / SID = 2454, domain-cert-revocation-checks /
 7: h’831D5198A6CA2C7F’, / SID = 2508, nonce /
 8: h’308201’ ... ’8CFF’, / SID = 2459, pinned-domain-cert /
 11: "JADA123456789" / SID = 2462, serial-number /
 }
 }

 While the above example voucher data includes the nonce from the PVR,
 the next example is for a nonce-less voucher. Instead of a nonce, it
 includes an expires-on field with the date and time on which the
 voucher expires. Because the MASA did not verify the proximity of
 the Pledge and Registrar in this case, the assertion field contains a
 weaker assertion of "verified" (0). This indicates that the MASA
 verified the domain’s ownership of the Pledge via some other means.
 The enum value of the assertion field for "verified" is calculated to
 be 0 by following the algorithm described in section 9.6.4.2 of
 [RFC7950].

Richardson, et al. Expires 4 September 2024 [Page 28]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 {
 2451: { / SID = 2451, ietf-voucher:voucher|voucher /
 1: 0, / SID = 2452, assertion "verified" /
 2: "2022-12-06T10:15:32Z", / SID = 2453, created-on /
 3: false, / SID = 2454, domain-cert-revocation-checks /
 4: "2022-12-13T10:15:32Z", / SID = 2455, expires-on /
 8: h’308201F8’ ... ’FF’, / SID = 2459, pinned-domain-cert /
 11: "JADA123456789" / SID = 2462, serial-number /
 }
 }

 The voucher is valid for one week. To verify the voucher’s validity,
 the Pledge would either need an internal real-time clock or some
 external means of obtaining the current time, such as Network Time
 Protocol (NTP) or a radio time signal receiver.

9.2. Signing voucher and voucher request artifacts with COSE

 The COSE_Sign1 structure is discussed in Section 4.2 of [RFC9052].
 The CBOR object that carries the body, the signature, and the
 information about the body and signature is called the COSE_Sign1
 structure. It is used when only one signature is used on the body.

 Support for ECDSA with SHA2-256 using curve secp256r1 (aka
 prime256k1) is RECOMMENDED. Most current low power hardware has
 support for acceleration of this algorithm. Future hardware designs
 could omit this in favour of a newer algorithms. This is the ES256
 keytype from Table 1 of [RFC9053]. Support for curve secp256k1 is
 OPTIONAL.

 Support for EdDSA using Curve 25519 is RECOMMENDED in new designs if
 hardware support is available. This is keytype EDDSA (-8) from
 Table 2 of [RFC9053]. A "crv" parameter is necessary to specify the
 Curve, which from Table 18. The ’kty’ field MUST be present, and it
 MUST be ’OKP’. (Table 17)

 A transition towards EdDSA is occurring in the industry. Some
 hardware can accelerate only some algorithms with specific curves,
 other hardware can accelerate any curve, and still other kinds of
 hardware provide a tool kit for acceleration of any eliptic curve
 algorithm.

 In general, the Pledge is expected to support only a single
 algorithm, while the Registrar, usually not constrained, is expected
 to support a wide variety of algorithms: both legacy ones and up-and-
 coming ones via regular software updates.

Richardson, et al. Expires 4 September 2024 [Page 29]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 An example of the supported COSE_Sign1 object structure containing a
 Pledge Voucher Request (PVR) is shown in Figure 3.

 18(/ tag for COSE_Sign1 /
 [
 h’A10126’, / protected COSE header encoding: {1: -7} /
 / which means { "alg": ES256 } /
 {}, / unprotected COSE header parameters /
 h’A119’ ... ’3839’, / voucher-request binary content (in CBOR)/
 h’4567’ ... ’1234’ / voucher-request binary Sign1 signature /
]
)

 Figure 3: COSE_Sign1 PVR example in CBOR diagnostic notation

 The [COSE-registry] specifies the integers/encoding for the "alg"
 field in Figure 3. The "alg" field restricts the key usage for
 verification of this COSE object to a particular cryptographic
 algorithm.

9.2.1. Signing of Registrar Voucher Request (RVR)

 A Registrar MUST include a COSE "x5bag" structure in the RVR as
 explained in Section 8.1. Figure 4 shows an example Registrar
 Voucher Request (RVR) that includes the x5bag as an unprotected
 header parameter (32). The bag contains two certificates in this
 case.

 18(/ tag for COSE_Sign1 /
 [
 h’A10126’, / protected COSE header encoding: {1: -7} /
 / which means { "alg": ES256 } /
 {
 32: [h’308202’ ... ’20AE’, h’308201’ ... ’8CFF’] / x5bag /
 },
 h’A178’ ... ’7FED’, / voucher-request binary content (in CBOR)/
 h’E1B7’ ... ’2925’ / voucher-request binary Sign1 signature /
]
)

 Figure 4: COSE_Sign1 RVR example in CBOR diagnostic notation

 A "kid" (key ID) field is optionally present in the unprotected COSE
 header parameters map of a COSE object. If present, it identifies
 the public key of the key pair that was used to sign the COSE
 message. The value of the key identifier "kid" parameter may be in
 any format agreed between signer and verifier. Usually a hash of the
 public key is used to identify the public key; but the choice of key

Richardson, et al. Expires 4 September 2024 [Page 30]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 identifier method is vendor-specific. If "kid" is not present, then
 a verifying party needs to use other context information to retrieve
 the right public key to verify the COSE_Sign1 object against.

 By default, a Registrar does not include a "kid" parameter in the RVR
 since the signing key is already identified by the signing
 certificates included in the COSE "x5bag" structure. A Registrar
 nevertheless MAY use a "kid" parameter in its RVR to identify its
 signing key/identity.

 The method of generating such "kid" value is vendor-specific and
 SHOULD be configurable in the Registrar to support commonly used
 methods. In order to support future business cases and supply chain
 integrations, a Registrar using the "kid" field MUST be configurable,
 on a per-manufacturer basis, to select a particular method for
 generating the "kid" value such that it is compatible with the method
 that the manufacturer expects. Note that the "kid" field always has
 a CBOR byte string (bstr) format.

9.2.2. Signing of Pledge Voucher Request (PVR)

 Like in the RVR, a "kid" (key ID) field is also optionally present in
 the PVR. It can be used to identify the signing key/identity to the
 MASA.

 A Pledge by default SHOULD NOT use a "kid" parameter in its PVR,
 because its signing key is already identified by the Pledge’s unique
 serial number that is included in the PVR and (by the Registrar) in
 the RVR. This achieves the smallest possible PVR data size while
 still enabling the MASA to verify the PVR. Still, when required the
 Pledge MAY use a "kid" parameter in its PVR to help the MASA identify
 the right public key to verify against. This can occur for example
 if a Pledge has multiple IDevID identities. The "kid" parameter in
 this case may be an integer byte identifying one out of N identities
 present, or it may be a hash of the public key, or anything else the
 Pledge vendor decides. A Registrar normally SHOULD ignore a "kid"
 parameter used in a received PVR, as this information is intended for
 the MASA. In other words, there is no need for the Registrar to
 verify the contents of this field, but it may include it in an audit
 log.

 The example in Figure 5 shows a PVR with the "kid" parameter present.

Richardson, et al. Expires 4 September 2024 [Page 31]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 18(/ tag for COSE_Sign1 /
 [
 h’A10126’, / protected COSE header encoding: {1: -7} /
 / which means { "alg": ES256 } /
 {
 4: h’59AB3E’ / COSE "kid" header parameter /
 },
 h’A119’ ... ’3839’, / voucher-request binary content (in CBOR)/
 h’5678’ ... ’7890’ / voucher-request binary Sign1 signature /
]
)

 Figure 5: COSE_Sign1 PVR example with "kid" field present

 The Pledge SHOULD NOT use the "x5bag" structure in the PVR. A
 Registrar that processes a PVR with an "x5bag" structure MUST ignore
 it, and MUST use only the TLS Client Certificate extension for
 authentication of the Pledge.

 A situation where the Pledge MAY use the x5bag structure is for
 communication of certificate chains to the MASA. This would arise in
 some vendor- specific situations involving outsourcing of MASA
 functionality, or rekeying of the IDevID certification authority.

 In Appendix C further examples of signed PVRs are shown.

9.2.3. Signing of voucher by MASA

 The MASA SHOULD NOT use a "kid" parameter in the voucher response,
 because the MASA’s signing key is already known to the Pledge.
 Still, where needed the MASA MAY use a "kid" parameter in the voucher
 response to help the Pledge identify the right MASA public key to
 verify against. This can occur for example if a Pledge has multiple
 IDevID identities.

 The MASA SHOULD NOT include an x5bag attribute in the voucher
 response - the exception is if the MASA knows that the Pledge doesn’t
 pre-store the signing public key and certificate, and thus the MASA
 needs to provide a cert or cert chain that will enable linking the
 signing identity to the pre-stored Trust Anchor (CA) in the Pledge.
 This approach is not recommended, because including certificates in
 the x5bag attribute will significantly increase the size of the
 voucher which impacts operations on constrained networks.

 If the MASA signing key is based upon a PKI (see
 [I-D.richardson-anima-masa-considerations] Section 2.3), and the
 Pledge only pre-stores a manufacturer (root) CA identity in its Trust
 Store which is not the identity that signs the voucher, then a

Richardson, et al. Expires 4 September 2024 [Page 32]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 certificate chain needs to be included with the voucher in order for
 the Pledge to validate the MASA signing CA’s signature by validating
 the chain up to the CA in its Trust Store.

 In BRSKI CMS signed vouchers [RFC8995], the CMS structure has a place
 for such certificates. In the COSE-signed constrained vouchers
 described in this document, the x5bag attribute [RFC9360] is used to
 contain the needed certificates to form the chain. A Registrar MUST
 NOT remove the x5bag attribute from the unprotected COSE header
 parameters when sending the voucher back to the Pledge.

 In Figure 6 an example is shown of a COSE-signed voucher. This
 example shows the common case where the "x5bag" attribute is not
 used.

 18(/ tag for COSE_Sign1 /
 [
 h’A10126’, / protected COSE header encoding: {1: -7}/
 / which means { "alg": ES256 }/
 {}, / unprotected COSE header parameters /
 h’A119’ ... ’3839’, / voucher data (binary CBOR) /
 h’2A2C’ ... ’7FBF’ / voucher binary Sign1 signature by MASA /
]
)

 Figure 6: COSE_Sign1 signed voucher in CBOR diagnostic notation

10. Extensions to Discovery

 It is assumed that a Join Proxy (Section 6.2) seamlessly provides a
 relayed DTLS connection between the Pledge and the Registrar. To use
 a Join Proxy, a Pledge needs to discover it. For Pledge discovery of
 a Join Proxy, this section extends Section 4.1 of [RFC8995] for the
 cBRSKI case.

 In general, the Pledge may be one or more hops away from the
 Registrar, where one hop means the Registrar is a direct link-local
 neighbor of the Pledge. The case of one hop away can be considered
 as a degenerate case, because a Join Proxy is not really needed then.

 The degenerate case would be unusual in constrained wireless network
 deployments, because a Registrar would typically not have a wireless
 network interface of the type used for constrained devices. Rather,
 it would have a high-speed network interface. Nevertheless, the
 situation where the Registrar is one hop away from the Pledge could
 occur in various cases like wired IoT networks or in wireless
 constrained networks where the Pledge is in radio range of a 6LoWPAN
 Border Router (6LBR) and the 6LBR happens to host a Registrar.

Richardson, et al. Expires 4 September 2024 [Page 33]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 In order to support the degenerate case, the Registrar SHOULD
 announce itself as if it were a Join Proxy -- though it would
 actually announce its real (stateful) Registrar CoAPS endpoint. No
 actual Join Proxy functionality is then required on the Registrar.

 That way, a Pledge only needs to discover a Join Proxy, regardless of
 whether it is one or more than one hop away from a relevant
 Registrar. It first discovers the link-local address and the join-
 port of a Join Proxy. The Pledge then follows the cBRSKI procedure
 of initiating a DTLS connection using the link-local address and
 join-port of the Join Proxy.

 Once enrolled, a Pledge itself may function as a Join Proxy. The
 decision whether or not to provide this functionality depends upon
 many factors and is out of scope for this document. Such a decision
 might depend upon the amount of energy available to the device, the
 network bandwidth available, as well as CPU and memory availability.

 The process by which a Pledge discovers the Join Proxy, and how a
 Join Proxy discovers the location of the Registrar, are the subject
 of the remainder of this section. Further details on both these
 topics are provided in [I-D.ietf-anima-constrained-join-proxy].

10.1. Discovery Operations by a Pledge

 The Pledge must discover the address/port and optionally the protocol
 with which to communicate. The present document only defines coaps
 (CoAP over DTLS) as the default protocol for cBRSKI, therefore
 protocol discovery is out of scope.

 For the discovery method, this section only defines unsecured CoAP
 discovery per Section 7 of [RFC7252] as the default method. This
 uses CoRE Link Format [RFC6690] payloads.

 Section 11 briefly mentions other methods that apply to specific
 deployment types or technologies. Details about these deployment-
 specific methods, or yet other methods, new payload formats, or more
 elaborate CoAP-based methods, may be defined in future documents such
 as [I-D.eckert-anima-brski-discovery]. The more elaborate methods
 for example may include discovering only Join Proxies that support a
 particular desired onboarding protocol, voucher format, or cBRSKI
 variant.

Richardson, et al. Expires 4 September 2024 [Page 34]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Note that identifying the format of the voucher request and the
 voucher is currently not a required part of the Pledge’s discovery
 operation. It is assumed that all Registrars support all relevant
 voucher(-request) formats, while the Pledge only supports a single
 format. A Pledge that makes a voucher request to a Registrar that
 does not support that format will receive a CoAP 4.06 Not Acceptable
 status code and the onboarding attempt will fail.

 Using CoAP discovery, a Pledge can discover a Join Proxy by sending a
 link-local multicast discovery message to the All CoAP Nodes address
 FF02::FD. Zero, one, or multiple Constrained Join Proxies may
 respond. The handling of multiple responses and absence of responses
 cases follow the guidelines of Section 4 of [RFC8995]. The discovery
 message is a CoAP GET request on the URI path "/.well-known/core"
 using a URI query "rt=brski.jp". This resource type (rt) is defined
 in Section 8.3 of [I-D.ietf-anima-constrained-join-proxy].

10.1.1. Examples

 Below, a typical example is provided showing the Pledge’s CoAP
 request and the Join Proxy’s CoAP response. The Join Proxy responds
 with a link-local source address, which is the same address as
 indicated in the URI-reference element ([RFC6690]) in the discovery
 response payload. The Join Proxy has a dedicated port 8485 open for
 DTLS connections of Pledges.

 REQ: GET coap://[ff02::fd]/.well-known/core?rt=brski.jp

 RES: 2.05 Content
 <coaps://[fe80::c78:e3c4:58a0:a4ad]:8485>;rt=brski.jp

 The next example shows a Join Proxy that uses the default CoAPS port
 5684 for DTLS connections of Pledges. In this case, the Join Proxy
 host is not using port 5684 for any other purposes, so it has the
 port available for this purpose.

 REQ: GET coap://[ff02::fd]/.well-known/core?rt=brski.jp

 RES: 2.05 Content
 <coaps://[fe80::c78:e3c4:58a0:a4ad]>;rt=brski.jp

 In the following example, two Join Proxies respond to the multicast
 query. The Join Proxies each use a slightly different CoRE Link
 Format ’rt’ value encoding. While the first encoding is more
 compact, both encodings are allowed per [RFC6690]. The Pledge may
 now select one of the two Join Proxies for initiating its DTLS
 connection.

Richardson, et al. Expires 4 September 2024 [Page 35]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 REQ: GET coap://[ff02::fd]/.well-known/core?rt=brski*

 RES: 2.05 Content
 <coaps://[fe80::c78:e3c4:58a0:a4ad]:8485>;rt=brski.jp

 RES: 2.05 Content
 <coaps://[fe80::d359:3813:f382:3b23]:63245>;rt="brski.jp"

10.2. Discovery Operations by a Join Proxy

 A Join Proxy needs to discover a Registrar, either at the moment it
 needs to relay data (of a Pledge) towards the Registrar, or prior to
 that moment. For example, it may start Registrar discovery as soon
 as it is requested to be enabled in a Join Proxy role. It may
 periodically redo this discovery, or periodically or on-demand check
 that the Registrar is still available in the network at the
 discovered IP address.

 Further details on CoAP discovery of the Registrar by a Join Proxy
 are provided in Section 5.1.1 of
 [I-D.ietf-anima-constrained-join-proxy].

11. Deployment-specific Discovery Considerations

 This section details how discovery of a Join Proxy is done by the
 Pledge in specific deployment scenarios. Future work such as
 [I-D.eckert-anima-brski-discovery] may define more details on
 discovery operations in the specific deployments listed here.

11.1. 6TiSCH Deployments

 In 6TiSCH networks, the Constrained Join Proxy (CoJP) mechanism is
 used as described in [RFC9031]. Such networks are expected to use
 [I-D.ietf-lake-edhoc] for key management. This is the subject of
 future work. The Enhanced Beacon has been extended in [RFC9032] to
 allow for discovery of a 6TiSCH-compliant Join Proxy.

11.2. IP networks using GRASP

 In IP networks that support GRASP [RFC8990], a Pledge can discover a
 Join Proxy by listening for GRASP messages. GRASP supports mesh
 networks, and can also be used over unencrypted Wi-Fi.

 Details of GRASP discovery of Constrained Join Proxies are out of
 scope of this document and may be defined in future work.

Richardson, et al. Expires 4 September 2024 [Page 36]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

11.3. IP networks using mDNS

 [RFC8995] defines a mechanism for the Pledge to discover a Join Proxy
 by sending mDNS [RFC6762] queries. This mechanism can be used on any
 IP network which does not have another recommended mechanism. It can
 be used over unencrypted Wi-Fi. This mechanism does support link-
 local Join Proxy discovery in mesh networks. However, it does not
 support Registrar discovery by Join Proxies in mesh networks, because
 the Registrar is typically not reachable by link-local communication
 in that case. For this, another mechanism is needed, which is out of
 scope of this document and may be defined in future work.

 A Pledge uses an mDNS PTR query for the name "_brski-
 proxy._udp.local." to discover link-local Constrained Join Proxies.
 The label "_udp" here indicates a query for cBRSKI Constrained Join
 Proxies, as opposed to "_tcp" defined in [RFC8995] which is for
 discovering BRSKI Join Proxies.

11.4. Thread networks using Mesh Link Establishment (MLE)

 Thread [Thread] is a wireless mesh network protocol based on 6LoWPAN
 [RFC6282] and other IETF protocols. In Thread, a new device
 discovers potential Thread networks and Thread routers to join by
 using the Mesh Link Establishment (MLE)
 [I-D.ietf-6lo-mesh-link-establishment] protocol. MLE uses the UDP
 port number 19788. The new device sends discovery requests on
 different IEEE 802.15.4 radio channels, to which routers (if any
 present) respond with a discovery response containing information
 about their respective network. Once a suitable router is selected
 the new device initiates a DTLS transport-layer secured connection to
 the network’s commissioning application, over a link-local single
 radio hop to the selected Thread router. This link is not yet
 secured at the radio/MAC link layer: link-layer security will be set
 up once the new device is approved by the commissioning application
 to join the Thread network, and it gets provisioned with network
 access credentials.

 The Thread router acts here as a Join Proxy. The MLE discovery
 response message contains UDP port information to signal the new
 device which port to use for its DTLS connection to the Join Proxy
 function. The link-local IPv6 source address of the MLE response
 message indicates the address of the Join Proxy.

12. Design and Implementation Considerations

Richardson, et al. Expires 4 September 2024 [Page 37]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

12.1. Voucher Format and Encoding

 The design considerations for vouchers from Section 8 of [RFC8366bis]
 apply. Specifically for CBOR encoding of voucher data, one key
 difference with JSON encoding is that the names of the leaves in the
 YANG definition do not affect the size of the resulting CBOR, as the
 SID ([I-D.ietf-core-sid]) translation process assigns integers to the
 names.

 To obtain the lowest code size and RAM use on the Pledge, it is
 recommended that a Pledge is designed to only process/generate these
 SID integers and not the lengthy strings. The MASA in that case is
 required to generate the voucher data for that Pledge using only SID
 integers. Yet, this MASA implementation MUST still support both SID
 integers and strings, to be able to process the field names in the
 RVR.

 Any POST request to the Registrar with resource /vs or /es returns a
 2.04 Changed response with empty payload. The client should be aware
 that the server may use a piggybacked CoAP response (ACK, 2.04) but
 may also respond with a separate CoAP response, i.e. first an (ACK,
 0.0) that is an acknowledgement of the request reception followed by
 a (CON, 2.04) response in a separate CoAP message. See [RFC7252] for
 details.

12.2. Use of cBRSKI with HTTPS

 This specification contains two extensions to [RFC8995]: a
 constrained voucher format (COSE), and a constrained transfer
 protocol (CoAP).

 On constrained networks with constrained devices, it make senses to
 use both together. However, this document does not mandate that this
 be the only way.

Richardson, et al. Expires 4 September 2024 [Page 38]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 A given constrained device design and software may be re-used for
 multiple device models, such as a model having only an IEEE 802.15.4
 radio, or a model having only an IEEE 802.11 (Wi-Fi) radio, or a
 model having both these radios. A manufacturer of such device models
 may wish to have code only for the use of the constrained voucher
 format (COSE), and use it on all supported radios including the IEEE
 802.11 radio. For this radio, the software stack to support HTTP/TLS
 may be already integrated into the radio module hence it is
 attractive for the manufacturer to reuse this. This type of approach
 is supported by this document. In the case that HTTPS is used, the
 regular long [RFC8995] resource names are used, together with the new
 "application/voucher+cose" media type described in this document.
 For status telemetry requests, the Pledge may use either one or both
 of the formats defined in Section 6.3.1. A Registrar MUST support
 both formats.

 Other combinations are possible, but they are not enumerated here.
 New work such as [I-D.ietf-anima-jws-voucher] provides new formats
 that may be useable over a number of different transports. In
 general, sending larger payloads over constrained networks makes less
 sense, while sending smaller payloads over unconstrained networks is
 perfectly acceptable.

 The Pledge will in most cases support a single voucher format, which
 it uses without negotiation i.e. without discovery of formats
 supported. The Registrar, being unconstrained, is expected to
 support all voucher formats. There will be cases where a Registrar
 does not support a new format that a new Pledge uses, and this is an
 unfortunate situation that will result in lack of interoperation.

 The responsability for supporting new formats is on the Registrar.

13. Raw Public Key Variant

13.1. Introduction and Scope

 This section introduces a cBRSKI variant to further reduce the data
 volume and complexity of the cBRSKI onboarding. The use of a raw
 public key (RPK) in the pinning process can significantly reduce the
 number of bytes sent over the wire and the number of round trips, and
 reduce the code footprint in a Pledge. But it comes with a few
 significant operational limitations.

 One simplification that comes with RPK use is that a Pledge can avoid
 doing PKIX certificate operations, such as certificate chain
 validation.

Richardson, et al. Expires 4 September 2024 [Page 39]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

13.2. The Registrar Trust Anchor

 When the Pledge first connects to the Registrar, the connection to
 the Registrar is provisional, as explained in Section 5.6.2 of
 [RFC8995]. The Registrar normally provides its public key in a
 TLSServerCertificate, and the Pledge uses that to validate that
 integrity of the (D)TLS connection, but it does not validate the
 identity of the provided certificate.

 As the TLSServerCertificate object is never verified directly by the
 Pledge, sending it can be considered superfluous. So instead of
 using a (TLSServer)Certificate of type X509 (see section 4.4.2 of
 [RFC8446]), a RawPublicKey object (as defined by [RFC7250]) is used.

 A Registrar operating in a mixed environment can determine whether to
 send a Certificate or a Raw Public Key to the Pledge: this is
 signaled by the Pledge. In the case it needs an RPK, it includes the
 server_certificate_type of RawPublicKey. This is shown in section 5
 of [RFC7250].

 The Pledge MUST send a client_certificate_type of X509 (not an RPK),
 so that the Registrar can properly identify the Pledge and distill
 the MASA URI information from its IDevID certificate.

13.3. The Pledge Voucher Request

 The Pledge puts the Registrar’s public key into the proximity-
 registrar-pubk field of the Pledge Voucher Request (PVR). (The
 proximity-registrar-pubk-sha256 can alternatively be used for
 efficiency, if the 32-bytes of a SHA256 hash turns out to be smaller
 than a typical ECDSA key.)

 As the format of this pubk field is identical to the TLS RawPublicKey
 data object, no manipulation at all is needed to insert this field
 into the PVR. This approach reduces the size of the PVR
 significantly.

13.4. The Voucher Response

 A returned voucher will have a pinned-domain-pubk field with the
 identical key as was found in the proximity-registrar-pubk field
 above, as well as being identical to the Registrar’s RPK in the
 currently active DTLS connection. (Or alternatively the MASA may
 include the "pinned-domain-pubk-sha256" field if it knows the Pledge
 supports this field.)

Richardson, et al. Expires 4 September 2024 [Page 40]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Validation of this key by the Pledge is what takes the DTLS
 connection out of the provisional state; see Section 5.6.2 of
 [RFC8995] for more details.

 The received voucher needs to be validated first by the Pledge. The
 Pledge needs to have a public key to validate the signature from the
 MASA on the voucher.

 The MASA’s public key counterpart of the (private) MASA signing key
 MUST be already installed in the Pledge at manufacturing time.
 Otherwise, the Pledge cannot validate the voucher’s signature.

13.5. The Enrollment Phase

 A Pledge that does not support PKIX operations cannot use EST to
 enroll; it has to use another method for enrollment without
 certificates and the Registrar has to support this method also. For
 example, an enrollment process that records an RPK owned by the
 Pledge as a legitimate entity that is part of the domain.

 It is possible that the Pledge will not enroll after obtaining a
 valid voucher, but instead will do only a network join operation (see
 for example [RFC9031]). How the Pledge discovers this method and
 details of such enrollment methods are out of scope of this document.

14. Pledge Discovery of Onboarding and Enrollment Options

 The functionality in this section is optional for a Pledge to
 implement. In typical cases, for a constrained Pledge that only
 supports a single onboarding and enrollment method, this
 functionality is not needed.

14.1. Pledge Discovery Query for All BRSKI Resources

 A Pledge that wishes to discover the available BRSKI onboarding
 options/formats can do a discovery operation using CoAP discovery per
 Section 7 of [RFC7252] and Section 4 of [RFC6690]. It first sends a
 CoAP discovery query to the Registrar over the secured DTLS
 connection. The Registrar then responds with a CoRE Link Format
 payload containing the requested resources, if any.

 For example, if the Registrar supports a short BRSKI URL (/b) instead
 of just the longer "/.well-known" resources, and supports only the
 voucher format "application/voucher+cose" (836), and status reporting
 in both CBOR and JSON formats, a CoAP resource discovery request and
 response may look as follows:

Richardson, et al. Expires 4 September 2024 [Page 41]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 REQ: GET /.well-known/core?rt=brski*

 RES: 2.05 Content
 Content-Format: 40
 Payload:
 ;rt=brski,
 </b/rv>;rt=brski.rv;ct=836,
 </b/vs>;rt=brski.vs;ct="50 60",
 </b/es>;rt=brski.es;ct="50 60"

 The Registrar is under no obligation to provide shorter URLs, and MAY
 respond to this query with only the "/.well-known/brski/<short-name>"
 resources for the short names as defined in Table 1. This case is
 shown in the below interaction:

 REQ: GET /.well-known/core?rt=brski*

 RES: 2.05 Content
 Content-Format: 40
 Payload:
 </.well-known/brski>;rt=brski,
 </.well-known/brski/rv>;rt=brski.rv;ct=836,
 </.well-known/brski/vs>;rt=brski.vs;ct="50 60",
 </.well-known/brski/es>;rt=brski.es;ct="50 60"

 However, for efficiency reasons it would be better if the Registrar
 would return shorter URLs instead.

 When responding to a discovery request for BRSKI resources, the
 Registrar MAY return the full resource paths for all <short-name>
 resources and the content types which are supported by these
 resources (using ct attributes) as shown in the above examples. This
 is useful when multiple content types are specified for a particular
 resource on the Registrar and the discovering Pledge also supports
 multiple.

 Registrars that have implemented shorter URLs MUST process a request
 on the corresponding "/.well-known/brski/<short-name>" URL
 identically. In particular, a Pledge MAY use the longer (well-known)
 and shorter URLs in any combination.

Richardson, et al. Expires 4 September 2024 [Page 42]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

14.2. Pledge Discovery Query for the Root BRSKI Resource

 In case the client queries for only rt=brski type resources, the
 Registrar responds with only the root path for the BRSKI resources
 (rt=brski, resource /b in earlier examples) and no others. (So, a
 query for rt=brski, without the wildcard character.) This is shown
 in the below example. The Pledge in this case requests only the
 BRSKI root resource of type rt=brski to check if BRSKI is supported
 by the Registrar and if short names are supported or not. In this
 case, the Pledge is not interested to check what voucher request
 formats, or status telemetry formats -- other than the mandatory
 default formats -- are supported. The compact response then shows
 that the Registrar indeed supports a short-name BRSKI resource at /b:

 REQ: GET /.well-known/core?rt=brski

 RES: 2.05 Content
 Content-Format: 40
 Payload:
 ;rt=brski

 The Pledge can now start using any of the BRSKI resources /b/<short-
 name>. In above example, the well-known resource present under
 /.well-known/brski is not returned because this is assumed to be
 well-known to the Pledge and would not require discovery anyway.

 As a follow-up example, the Pledge can now start the onboarding by
 sending its PVR:

 REQ: POST /b/rv
 Content-Format: 836
 Accept: 836
 Payload: (binary COSE-signed PVR)

14.3. Usage of ct Attribute

 The return of multiple content-types in the "ct" attribute by the
 Registrar allows the Pledge to choose the most appropriate one for a
 particular operation, and allows extension with new voucher formats.
 Note that only Content-Format 836 ("application/voucher+cose") is
 defined in this document for the voucher request resource (/rv), both
 as request payload and as response payload.

 Content-Format 836 MUST be supported by the Registrar for the /rv
 resource. If the "ct" attribute is not indicated for the /rv
 resource in the CoRE link format description, this implies that at
 least format 836 is supported and maybe more.

Richardson, et al. Expires 4 September 2024 [Page 43]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Note that this specification allows for voucher+cose format requests
 and vouchers to be transmitted over HTTPS, as well as for voucher-
 cms+json and other formats yet to be defined over CoAP. The burden
 for this flexibility is placed upon the Registrar. A Pledge on
 constrained hardware is expected to support a single format only.

 The Pledge and MASA need to support one or more formats (at least
 format 836) for the voucher and for the voucher request. The MASA
 needs to support all formats that the Pledge supports.

 In the below example, a Pledge queries specifically for the brski.rv
 resource type to learn what voucher formats are supported:

 REQ: GET /.well-known/core?rt=brski.rv

 RES: 2.05 Content
 Content-Format: 40
 Payload:
 </b/rv>;rt=brski.rv;ct="836 65123 65124"

 The Registrar returns 3 supported voucher formats: 836, 65123, and
 65124. The first is the mandatory "application/voucher+cose". The
 other two are numbers from the Experimental Use number range of the
 CoAP Content-Formats sub-registry, which are used as mere examples.
 The Pledge can now make a selection between the supported formats.

 Note that if the Registrar only supports the default Content-Formats
 for each BRSKI resource as specified by this document, it may also
 omit the ct attributes in the discovery query response. For example
 as in the following interaction:

 REQ: GET /.well-known/core?rt=brski*

 RES: 2.05 Content
 Content-Format: 40
 Payload:
 ;rt=brski,
 </b/rv>;rt=brski.rv,
 </b/vs>;rt=brski.vs,
 </b/es>;rt=brski.es

14.4. EST-coaps Resource Discovery

 The Pledge can also use CoAP discovery to identify enrollment
 options, for example enrollment using EST-coaps or other methods.
 The below example shows a Pledge that wants to identify EST-coaps
 enrollment options by sending a discovery query:

Richardson, et al. Expires 4 September 2024 [Page 44]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 REQ: GET /.well-known/core?rt=ace.est*

 RES: 2.05 Content
 Content-Format: 40
 Payload:
 </e/crts>;rt=ace.est.crts;ct="62 281 287",
 </e/sen>;rt=ace.est.sen;ct="281 287",
 </e/sren>;rt=ace.est.sren;ct="281 287",
 </e/att>;rt=ace.est.att,
 </e/skg>;rt=ace.est.skg,
 </e/skc>;rt=ace.est.skc

 The response indicates that EST-coaps enrollment (/sen) and re-
 enrollment (/sren) is supported, with a choice of two Content-Formats
 for the return payload: either a PKCS#7 container with a single
 LDevID certificate ("application/pkcs7-mime;smime-type=certs-only",
 content-format 281) or just a single LDevID certificate
 ("application/pkix-cert", content-format 287).

 For the EST cacerts resources (/crts) there are three Content-Formats
 supported: a multipart-core container (62) per Section 6.5.5, a
 PKCS#7 container with all CA certificates (287), or a single (most
 relevant) CA certificate.

 The Pledge can now send a CoAP request to one or more of the
 discovered resources, with the Accept Option to indicate which return
 payload format the Pledge wants to receive.

15. Security Considerations

15.1. Duplicate serial-numbers

 In the absense of correct use of idevid-issuer by the Registrar as
 detailed in Section 8.4, it would be possible for a malicious
 Registrar to use an unauthorized voucher for a device. This would
 apply only to the case where a Manufacturer Authorized Signing
 Authority (MASA) is trusted by different products from the same
 manufacturer, and the manufacturer has duplicated serial numbers as a
 result of a merge, acquisition or mis-management.

Richardson, et al. Expires 4 September 2024 [Page 45]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 For example, imagine the same manufacturer makes light bulbs as well
 as gas centrifuges, and said manufacturer does not uniquely allocate
 product serial numbers. This attack only works for nonceless
 vouchers. The attacker has obtained a light bulb which happens to
 have the same serial-number as a gas centrofuge which it wishes to
 obtain access. The attacker performs a normal BRSKI onboarding for
 the light bulb, but then uses the resulting voucher to onboard the
 gas centrofuge. The attack requires that the gas centrofuge be
 returned to a state where it is willing to perform a new onboarding
 operation.

 This attack is prevented by the mechanism of having the Registrar
 include the idevid-issuer in the RVR, and the MASA including it in
 the resulting voucher. The idevid-issuer is not included by default:
 a MASA needs to be aware if there are parts of the organization which
 duplicates serial numbers, and if so, include it.

15.2. IDevID security in Pledge

 The security of this protocol depends upon the Pledge identifying
 itself to the Registrar using it’s manufacturer installed
 certificate: the IDevID certificate. Associated with this
 certificate is the IDevID private key, known only to the Pledge.
 Disclosure of this private key to an attacker would permit the
 attacker to impersonate the Pledge towards the Registrar, probably
 gaining access credentials to that Registrar’s network.

 If the IDevID private key disclosure is known to the manufacturer,
 there is little recourse other than recall of the relevant part
 numbers. The process for communicating this recall would be within
 the BRSKI-MASA protocol. Neither this specification nor [RFC8995]
 provides for consultation of a Certification Revocation List (CRL) or
 Open Certificate Status Protocol (OCSP) by a Registrar when
 evaluating an IDevID certificate. However, the BRSKI-MASA protocol
 submits the IDevID from the Registrar to the manufacturer’s MASA and
 a manufacturer would have an opportunity to decline to issue a
 voucher for a device which they believe has become compromised.

 It may be difficult for a manufacturer to determine when an IDevID
 private key has been disclosed. Two situations present themselves:
 in the first situation a compromised private key might be reused in a
 counterfeit device, which is sold to another customer. This would
 present itself as an onboarding of the same device in two different
 networks. The manufacturer may become suspicious seeing two voucher
 requests for the same device from different Registrars. Such
 activity could be indistinguishable from a device which has been
 resold from one operator to another, or re-deployed by an operator
 from one location to another.

Richardson, et al. Expires 4 September 2024 [Page 46]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 In the second situation, an attacker having compromised the IDevID
 private key of a device might then install malware into the same
 device and attempt to return it to service. The device, now blank,
 would go through a second onboarding process with the original
 Registrar. Such a Registrar could notice that the device has been
 "factory reset" and alert the operator to this situation. One remedy
 against the presence of malware is through the use of Remote
 Attestation such as described in [I-D.ietf-rats-architecture].
 Future work will need to specify a background-check Attestation flow
 as part of the voucher-request/voucher-response process. Attestation
 may still require access to a private key (e.g. IDevID private key)
 in order to sign Evidence, so a primary goal should be to keep any
 private key safe within the Pledge.

 In larger, more expensive, systems there is budget (power, space, and
 bill of materials) to include more specific defenses for a private
 key. For instance, this includes putting the IDevID private key in a
 Trusted Platform Module (TPM), or use of Trusted Execution
 Environments (TEE) for access to the key. On smaller IoT devices,
 the cost and power budget for an extra part is often prohibitive.

 It is becoming more and more common for CPUs to have an internal set
 of one-time fuses that can be programmed (often they are "burnt" by a
 laser) at the factory. This section of memory is only accessible in
 some priviledged CPU state. The use of this kind of CPU is
 appropriate as it provides significant resistance against key
 disclosure even when the device can be disassembled by an attacker.

 In a number of industry verticals, there is increasing concern about
 counterfeit parts. These may be look-alike parts created in a
 different factory, or parts which are created in the same factory
 during an illegal night-shift, but which are not subject to the
 appropriate level of quality control. The use of a manufacturer-
 signed IDevID certificate provides for discovery of the pedigree of
 each part, and this often justifies the cost of the security measures
 associated with storing the private key.

15.3. Security of CoAP and UDP protocols

 Section 7.1 explains that no CoAPS version of the BRSKI-MASA protocol
 is proposed. The connection from the Registrar to the MASA continues
 to be HTTPS as in [RFC8995]. This has been done to simplify the MASA
 deployment for the manufacturer, because no new protocol needs to be
 enabled on the server.

 The use of UDP protocols across the open Internet is sometimes
 fraught with security challenges. Denial-of-service attacks against
 UDP based protocols are trivial as there is no three-way handshake as

Richardson, et al. Expires 4 September 2024 [Page 47]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 done for TCP. The three-way handshake of TCP guarantees that the
 node sending the connection request is reachable using the origin IP
 address. While DTLS contains an option to do a stateless challenge
 -- a process actually stronger than that done by TCP -- it is not yet
 common for this mechanism to be available in hardware at multigigabit
 speeds. It is for this reason that this document defines using HTTPS
 for the Registrar to MASA connection.

15.4. Registrar Certificate may be self-signed

 The provisional (D)TLS connection formed by the Pledge with the
 Registrar does not authenticate the Registrar’s identity. This
 Registrar’s identity is validated by the [RFC8366bis] voucher that is
 issued by the MASA, signed with an anchor that was built-in to the
 Pledge.

 The Registrar may therefore use any certificate, including a self-
 signed one. The only restrictions on the certificate is that it MUST
 have EKU bits set as detailed in Section 6.1.5 and Section 7.4.

15.5. Use of RPK alternatives to proximity-registrar-cert

 In [RFC8366bis], Part voucher-request-artifact two compact
 alternative fields for proximity-registrar-cert are defined that
 include an RPK: proximity-registrar-pubk and proximity-registrar-
 pubk-sha256. The Pledge can use these fields in its PVR to identify
 the Registrar based on its public key only. Since the full
 certificate of the proximate Registrar is not included, use of these
 fields by a Pledge implies that a Registrar could insert another
 certificate with the same public key identity into the RVR. For
 example, an older or a newer version of its certificate. The MASA
 will not be able to detect such act by the Registrar. But since any
 ’other’ certificate the Registrar could insert in this way still
 encodes its identity the additional risk of using the RPK
 alternatives is neglible.

 When a Registrar sees a PVR that uses one of proximity-registrar-pubk
 or proximity-registrar-pubk-sha256 fields, this implies the Registrar
 must include the certificate identified by these fields into its RVR.
 Otherwise, the MASA is unable to verify proximity. This requirement
 is already implied by the "MUST" requirement in Section 8.1.

15.6. MASA support of CoAPS

 The use of CoAP for the BRSKI-MASA connection is not in scope of the
 current document. The following security considerations have led to
 this choice of scope:

Richardson, et al. Expires 4 September 2024 [Page 48]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 * the technology and experience to build secure Internet-scale HTTPS
 responders (which the MASA is) is common, while the experience in
 doing the same for CoAP is much less common.

 * in many enterprise networks, outgoing UDP connections are often
 treated as suspicious, which could effectively block CoAP
 connections for some firewall configurations.

 * reducing the complexity of MASA (i.e. less protocols supported)
 would also reduce its potential attack surface, which is relevant
 since the MASA is 24/7 exposed on the Internet and accepting
 (untrusted) incoming connections.

16. IANA Considerations

16.1. Resource Type Link Target Attribute Values Registry

 Additions to the sub-registry "Resource Type Link Target Attribute
 Values", within the "CoRE Parameters" IANA registry are specified
 below.

 Reference: [This RFC]

 +===========+==+
 | Attribute | Description |
 +===========+==+
 | brski | Root path of Bootstrapping Remote Secure |
 | | Key Infrastructure (BRSKI) resources |
 +-----------+--+
 | brski.rv | BRSKI request voucher resource |
 +-----------+--+
 | brski.vs | BRSKI voucher status telemetry resource |
 +-----------+--+
 | brski.es | BRSKI enrollment status telemetry |
 | | resource |
 +-----------+--+

 Table 2: Resource Type (rt) link target attribute
 values for IANA registration

16.2. Media Types Registry

 This section registers the media type "application/voucher+cose" in
 the IANA "Media Types" registry. This media type is used to indicate
 that the content is a CBOR voucher or voucher request signed with a
 COSE_Sign1 structure [RFC9052].

Richardson, et al. Expires 4 September 2024 [Page 49]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

16.2.1. application/voucher+cose

 Type name: application
 Subtype name: voucher+cose
 Required parameters: N/A
 Optional parameters: N/A
 Encoding considerations: binary (CBOR)
 Security considerations: Security Considerations of [This RFC].
 Interoperability considerations: The format is designed to be
 broadly interoperable.
 Published specification: [This RFC]
 Applications that use this media type: ANIMA, 6TiSCH, and other
 zero-touch onboarding systems
 Fragment identifier considerations: N/A
 Additional information:
 Deprecated alias names for this type: N/A
 Magic number(s): N/A
 File extension(s): .vch
 Macintosh file type code(s): N/A
 Person & email address to contact for further information: IETF
 ANIMA Working Group (anima@ietf.org) or IETF Operations and
 Management Area Working Group (opsawg@ietf.org)
 Intended usage: COMMON
 Restrictions on usage: N/A
 Author: ANIMA WG
 Change controller: IETF
 Provisional registration? (standards tree only): NO

16.3. CoAP Content-Format Registry

 IANA has allocated ID 836 from the sub-registry "CoAP Content-
 Formats".

 Media type Encoding ID Reference
 ----------------------------- --------- ---- ----------
 application/voucher+cose - 836 [This RFC]

 IANA Note (to be removed by RFC editor): the TEMPORARY registration
 of 836 is made under the old name of "application/voucher-cose+cbor".

16.4. Update to BRSKI Parameters Registry

 This section updates the BRSKI Well-Known URIs sub-registry of the
 IANA Bootstrapping Remote Secure Key Infrastructures (BRSKI)
 Parameters Registry by adding a new column "Short URI". The contents
 of this field MUST be specified for any newly registered URI as
 follows:

Richardson, et al. Expires 4 September 2024 [Page 50]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Short URI: A short name for the "URI" resource that can be used by a
 cBRSKI ([This RFC]) Pledge in a CoAP request to the Registrar. In
 case the "URI" resource is only used between Registrar and MASA, the
 value "--" is registered denoting that a short name is not
 applicable.

 The initial contents of the sub-registry including the new column are
 as follows:

 +=================+=======+=======================+============+
 | URI | Short | Description | Reference |
 | | URI | | |
 +=================+=======+=======================+============+
 | requestvoucher | rv | Request voucher: | [RFC8995], |
 | | | Pledge to Registrar, | [This RFC] |
 | | | and Registrar to MASA | |
 +-----------------+-------+-----------------------+------------+
 | voucher_status | vs | Voucher status | [RFC8995], |
 | | | telemetry: Pledge to | [This RFC] |
 | | | Registrar | |
 +-----------------+-------+-----------------------+------------+
 | requestauditlog | -- | Request audit log: | [RFC8995] |
 | | | Registrar to MASA | |
 +-----------------+-------+-----------------------+------------+
 | enrollstatus | es | Enrollment status | [RFC8995], |
 | | | telemetry: Pledge to | [This RFC] |
 | | | Registrar | |
 +-----------------+-------+-----------------------+------------+

 Table 3: Update of the BRSKI Well-Known URI Sub-Registry

16.5. Structured Syntax Suffixes Registry

 This section registers the "+cose" suffix in the IANA Structured
 Syntax Suffixes Registry based on the [RFC6838] procedure.

Richardson, et al. Expires 4 September 2024 [Page 51]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Name: CBOR Object Signing and Encryption (COSE) object
 +suffix: +cose
 References: the "application/cose" media type [RFC9052]
 Encoding considerations: binary (CBOR)
 Interoperability considerations:
 the "application/cose" media type has an optional parameter
 "cose-type". Any new media type that uses the +cose suffix
 and allows use of this parameter MUST specify this
 explicitly, per Section 4.3 of [RFC6838]. If the parameter
 "cose-type" is allowed, its usage MUST be identical to the
 usage defined for the "application/cose" media type in
 Section 2 of [RFC9052].
 A COSE processor handling a media type "foo+cose" and which
 does not know the specific type "foo" SHOULD use the
 cose-type tag, if present, or cose-type parameter, if
 present, to determine the specific COSE object type during
 processing. If the specific type cannot be determined,
 it MUST assume only the generic COSE object structure and
 it MUST NOT perform security-critical operations using the
 COSE object.
 Fragment identifier considerations: N/A
 Security considerations: see [RFC9052]
 Contact:
 IETF COSE Working Group (cose@ietf.org) or IESG
 (iesg@ietf.org)
 Author/Change controller:
 IETF ANIMA Working Group (anima@ietf.org).
 IESG has change control over this registration.

17. Acknowledgements

 We are very grateful to Jim Schaad for explaining COSE/CMS choices
 and for correcting early versions of the COSE_Sign1 objects.

 Michel Veillette did extensive work on _pyang_ to extend it to
 support the SID allocation process, and this document was among its
 first users.

 Russ Housley , Daniel Franke , Henk Birkholtz , Kathleen Moriarty ,
 Xufeng Liu and Karl Moberg provided review feedback.

 The BRSKI design team has met on many Tuesdays and Thursdays for
 document review. The team includes: Aurelio Schellenbaum , David von
 Oheimb , Steffen Fries , Thomas Werner and Toerless Eckert .

 Darrel Miller , Orie Steele and Manu Sporny provided review feedback
 on the registration of the +cose structured syntax suffix.

Richardson, et al. Expires 4 September 2024 [Page 52]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

18. Changelog

 -24: Rephrased well-known URL requirement in 14.1 (#292, #293); Added
 paragraph on future certificate formats like C509 (#281, #294); Add
 formal specification for CoAP discovery of Join Proxy by Pledge,
 instead of only showing examples (#296, #300); Enable mDNS discovery
 of Join Proxy by Pledge (also in mesh networks) and list service name
 to use (#297, #299); Add requirement to support Content-Format 287 in
 /sen and /sren response (#295, #298).

 -23:
 Removed Update tag for RFC 8366 (#285, #288); Introduced cBRSKI
 acronym (#284, #286); Added Update tag for RFC 9148 (#283, #289);
 Keep CoAP discovery as only mechanism and refer to future discovery
 work (#279, #282, #290); Introduce formal CBOR diagnostics ellipsis
 elision syntax (#281, #287); Support for multi-tier CAs by
 introducing multipart-core /crts format (#275, #291); Terminology
 updated for consistency with RFC 8366-bis (#274, #280); Rename
 voucher media type to application/voucher+cose and register +cose SSS
 (#264, #277); Editorial changes including section restructuring.

 -22:
 Streamlined text to focus mostly on the default flow, with optional
 functions moved to their own sections (#269, #273); For DTLS 1.3
 client, use the record_size_limit extensions RFC 8449 (#270);
 Editorial updates; Reference rfc6125bis updated to RFC 9525.

 -11 to -21:
 (For change details see GitHub issues https://github.com/anima-wg/
 constrained-voucher/issues , related Pull Requests and commits.)

 -10:
 Design considerations extended; Examples made consistent.

 -08:
 Examples for cose_sign1 are completed and improved.

 -06:
 New SID values assigned; regenerated examples.

 -04:
 voucher and request-voucher MUST be signed; examples for signed
 request are added in appendix; IANA SID registration is updated; SID
 values in examples are aligned; signed cms examples aligned with new
 SIDs.

 -03:
 Examples are inverted.

Richardson, et al. Expires 4 September 2024 [Page 53]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 -02:
 Example of requestvoucher with unsigned appllication/cbor is added;
 attributes of voucher "refined" to optional; CBOR serialization of
 vouchers improved; Discovery port numbers are specified.

 -01:
 application/json is optional, application/cbor is compulsory; Cms and
 cose mediatypes are introduced.

 -00:
 Initial version.

19. References

19.1. Normative References

 [ieee802-1AR]
 IEEE Standard, "IEEE 802.1AR Secure Device Identifier",
 2009, <http://standards.ieee.org/findstds/
 standard/802.1AR-2009.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <https://www.rfc-editor.org/rfc/rfc4193>.

 [RFC4210] Adams, C., Farrell, S., Kause, T., and T. Mononen,
 "Internet X.509 Public Key Infrastructure Certificate
 Management Protocol (CMP)", RFC 4210,
 DOI 10.17487/RFC4210, September 2005,
 <https://www.rfc-editor.org/rfc/rfc4210>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/rfc/rfc5280>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <https://www.rfc-editor.org/rfc/rfc5652>.

Richardson, et al. Expires 4 September 2024 [Page 54]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <https://www.rfc-editor.org/rfc/rfc6066>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/rfc/rfc6347>.

 [RFC6762] Cheshire, S. and M. Krochmal, "Multicast DNS", RFC 6762,
 DOI 10.17487/RFC6762, February 2013,
 <https://www.rfc-editor.org/rfc/rfc6762>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/rfc/rfc7250>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/rfc/rfc7252>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/rfc/rfc7950>.

 [RFC7959] Bormann, C. and Z. Shelby, Ed., "Block-Wise Transfers in
 the Constrained Application Protocol (CoAP)", RFC 7959,
 DOI 10.17487/RFC7959, August 2016,
 <https://www.rfc-editor.org/rfc/rfc7959>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8366bis]
 Watsen, K., Richardson, M., Pritikin, M., Eckert, T. T.,
 and Q. Ma, "A Voucher Artifact for Bootstrapping
 Protocols", Work in Progress, Internet-Draft, draft-ietf-
 anima-rfc8366bis-10, 22 August 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-anima-
 rfc8366bis-10>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

Richardson, et al. Expires 4 September 2024 [Page 55]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 [RFC8449] Thomson, M., "Record Size Limit Extension for TLS",
 RFC 8449, DOI 10.17487/RFC8449, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8449>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

 [RFC8710] Fossati, T., Hartke, K., and C. Bormann, "Multipart
 Content-Format for the Constrained Application Protocol
 (CoAP)", RFC 8710, DOI 10.17487/RFC8710, February 2020,
 <https://www.rfc-editor.org/rfc/rfc8710>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/rfc/rfc8949>.

 [RFC8995] Pritikin, M., Richardson, M., Eckert, T., Behringer, M.,
 and K. Watsen, "Bootstrapping Remote Secure Key
 Infrastructure (BRSKI)", RFC 8995, DOI 10.17487/RFC8995,
 May 2021, <https://www.rfc-editor.org/rfc/rfc8995>.

 [RFC9031] Vuini, M., Ed., Simon, J., Pister, K., and M.
 Richardson, "Constrained Join Protocol (CoJP) for 6TiSCH",
 RFC 9031, DOI 10.17487/RFC9031, May 2021,
 <https://www.rfc-editor.org/rfc/rfc9031>.

 [RFC9032] Dujovne, D., Ed. and M. Richardson, "Encapsulation of
 6TiSCH Join and Enrollment Information Elements",
 RFC 9032, DOI 10.17487/RFC9032, May 2021,
 <https://www.rfc-editor.org/rfc/rfc9032>.

 [RFC9052] Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Structures and Process", STD 96, RFC 9052,
 DOI 10.17487/RFC9052, August 2022,
 <https://www.rfc-editor.org/rfc/rfc9052>.

 [RFC9147] Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
 <https://www.rfc-editor.org/rfc/rfc9147>.

Richardson, et al. Expires 4 September 2024 [Page 56]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 [RFC9148] van der Stok, P., Kampanakis, P., Richardson, M., and S.
 Raza, "EST-coaps: Enrollment over Secure Transport with
 the Secure Constrained Application Protocol", RFC 9148,
 DOI 10.17487/RFC9148, April 2022,
 <https://www.rfc-editor.org/rfc/rfc9148>.

 [RFC9360] Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Header Parameters for Carrying and Referencing X.509
 Certificates", RFC 9360, DOI 10.17487/RFC9360, February
 2023, <https://www.rfc-editor.org/rfc/rfc9360>.

 [RFC9525] Saint-Andre, P. and R. Salz, "Service Identity in TLS",
 RFC 9525, DOI 10.17487/RFC9525, November 2023,
 <https://www.rfc-editor.org/rfc/rfc9525>.

19.2. Informative References

 [COSE-registry]
 IANA, "CBOR Object Signing and Encryption (COSE)
 registry", 2017,
 <https://www.iana.org/assignments/cose/cose.xhtml>.

 [I-D.eckert-anima-brski-discovery]
 Eckert, T. T., von Oheimb, D., and E. Dijk, "Discovery for
 BRSKI variations", Work in Progress, Internet-Draft,
 draft-eckert-anima-brski-discovery-01, 23 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-eckert-anima-
 brski-discovery-01>.

 [I-D.ietf-6lo-mesh-link-establishment]
 Kelsey, R., "Mesh Link Establishment", Work in Progress,
 Internet-Draft, draft-ietf-6lo-mesh-link-establishment-00,
 1 December 2015, <https://datatracker.ietf.org/doc/html/
 draft-ietf-6lo-mesh-link-establishment-00>.

 [I-D.ietf-anima-constrained-join-proxy]
 Richardson, M., Van der Stok, P., and P. Kampanakis, "Join
 Proxy for Bootstrapping of Constrained Network Elements",
 Work in Progress, Internet-Draft, draft-ietf-anima-
 constrained-join-proxy-15, 6 November 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-anima-
 constrained-join-proxy-15>.

Richardson, et al. Expires 4 September 2024 [Page 57]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 [I-D.ietf-anima-jws-voucher]
 Werner, T. and M. Richardson, "JWS signed Voucher
 Artifacts for Bootstrapping Protocols", Work in Progress,
 Internet-Draft, draft-ietf-anima-jws-voucher-09, 29 August
 2023, <https://datatracker.ietf.org/doc/html/draft-ietf-
 anima-jws-voucher-09>.

 [I-D.ietf-cbor-edn-literals]
 Bormann, C., "CBOR Extended Diagnostic Notation (EDN):
 Application-Oriented Literals, ABNF, and Media Type", Work
 in Progress, Internet-Draft, draft-ietf-cbor-edn-literals-
 08, 1 February 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-cbor-
 edn-literals-08>.

 [I-D.ietf-core-sid]
 Veillette, M., Pelov, A., Petrov, I., Bormann, C., and M.
 Richardson, "YANG Schema Item iDentifier (YANG SID)", Work
 in Progress, Internet-Draft, draft-ietf-core-sid-24, 22
 December 2023, <https://datatracker.ietf.org/doc/html/
 draft-ietf-core-sid-24>.

 [I-D.ietf-cose-cbor-encoded-cert]
 Mattsson, J. P., Selander, G., Raza, S., Höglund, J., and
 M. Furuhed, "CBOR Encoded X.509 Certificates (C509
 Certificates)", Work in Progress, Internet-Draft, draft-
 ietf-cose-cbor-encoded-cert-07, 20 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-cose-
 cbor-encoded-cert-07>.

 [I-D.ietf-lake-edhoc]
 Selander, G., Mattsson, J. P., and F. Palombini,
 "Ephemeral Diffie-Hellman Over COSE (EDHOC)", Work in
 Progress, Internet-Draft, draft-ietf-lake-edhoc-23, 22
 January 2024, <https://datatracker.ietf.org/doc/html/
 draft-ietf-lake-edhoc-23>.

 [I-D.ietf-rats-architecture]
 Birkholz, H., Thaler, D., Richardson, M., Smith, N., and
 W. Pan, "Remote ATtestation procedureS (RATS)
 Architecture", Work in Progress, Internet-Draft, draft-
 ietf-rats-architecture-22, 28 September 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-rats-
 architecture-22>.

 [I-D.kuehlewind-update-tag]
 Kühlewind, M. and S. Krishnan, "Definition of new tags for
 relations between RFCs", Work in Progress, Internet-Draft,

Richardson, et al. Expires 4 September 2024 [Page 58]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 draft-kuehlewind-update-tag-04, 12 July 2021,
 <https://datatracker.ietf.org/doc/html/draft-kuehlewind-
 update-tag-04>.

 [I-D.richardson-anima-masa-considerations]
 Richardson, M. and W. Pan, "Operational Considerations for
 Voucher infrastructure for BRSKI MASA", Work in Progress,
 Internet-Draft, draft-richardson-anima-masa-
 considerations-08, 9 May 2023,
 <https://datatracker.ietf.org/doc/html/draft-richardson-
 anima-masa-considerations-08>.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", STD 89,
 RFC 4443, DOI 10.17487/RFC4443, March 2006,
 <https://www.rfc-editor.org/rfc/rfc4443>.

 [RFC6282] Hui, J., Ed. and P. Thubert, "Compression Format for IPv6
 Datagrams over IEEE 802.15.4-Based Networks", RFC 6282,
 DOI 10.17487/RFC6282, September 2011,
 <https://www.rfc-editor.org/rfc/rfc6282>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/rfc/rfc6690>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/rfc/rfc6838>.

 [RFC7030] Pritikin, M., Ed., Yee, P., Ed., and D. Harkins, Ed.,
 "Enrollment over Secure Transport", RFC 7030,
 DOI 10.17487/RFC7030, October 2013,
 <https://www.rfc-editor.org/rfc/rfc7030>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/rfc/rfc7228>.

 [RFC8366] Watsen, K., Richardson, M., Pritikin, M., and T. Eckert,
 "A Voucher Artifact for Bootstrapping Protocols",
 RFC 8366, DOI 10.17487/RFC8366, May 2018,
 <https://www.rfc-editor.org/rfc/rfc8366>.

Richardson, et al. Expires 4 September 2024 [Page 59]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 [RFC8990] Bormann, C., Carpenter, B., Ed., and B. Liu, Ed., "GeneRic
 Autonomic Signaling Protocol (GRASP)", RFC 8990,
 DOI 10.17487/RFC8990, May 2021,
 <https://www.rfc-editor.org/rfc/rfc8990>.

 [RFC9053] Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Initial Algorithms", RFC 9053, DOI 10.17487/RFC9053,
 August 2022, <https://www.rfc-editor.org/rfc/rfc9053>.

 [Thread] Thread Group, Inc, "Thread support page, White Papers",
 November 2023,
 <https://www.threadgroup.org/support#Whitepapers>.

Appendix A. Library Support for BRSKI

 For the implementation of BRSKI, the use of a software library to
 manipulate PKIX certificates and use crypto algorithms is often
 beneficial. Two C-based examples are OpenSSL and mbedtls. Others
 more targeted to specific platforms or languages exist. It is
 important to realize that the library interfaces differ significantly
 between libraries.

 Libraries do not support all known crypto algorithms. Before
 deciding on a library, it is important to look at their supported
 crypto algorithms and the roadmap for future support. Apart from
 availability, the library footprint, and the required execution
 cycles should be investigated beforehand.

 The handling of certificates usually includes the checking of a
 certificate chain. In some libraries, chains are constructed and
 verified on the basis of a set of certificates, the trust anchor
 (usually a self signed root CA), and the target certificate. In
 other libraries, the chain must be constructed beforehand and obey
 ordering criteria. Verification always includes the checking of the
 signatures. Less frequent is the checking the validity of the dates
 or checking the existence of a revoked certificate in the chain
 against a set of revoked certificates. Checking the chain on the
 consistency of the certificate extensions which specify the use of
 the certificate usually needs to be programmed explicitly.

Richardson, et al. Expires 4 September 2024 [Page 60]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 A libary can be used to construct a (D)TLS connection. It is useful
 to realize that differences beetween (D)TLS implementations will
 occur due to the differences in the certicate checks supported by the
 library. On top of that, checks between client and server
 certificates enforced by (D)TLS are not always helpful for a BRSKI
 implementation. For example, the certificates of Pledge and
 Registrar are usually not related when the BRSKI protocol is started.
 It must be verified that checks on the relation between client and
 server certificates do not hamper a succeful DTLS connection
 establishment.

A.1. OpensSSL

 From openssl’s apps/verify.c :

Richardson, et al. Expires 4 September 2024 [Page 61]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 <CODE BEGINS>
 X509 *x = NULL;
 int i = 0, ret = 0;
 X509_STORE_CTX *csc;
 STACK_OF(X509) *chain = NULL;
 int num_untrusted;

 x = load_cert(file, "certificate file");
 if (x == NULL)
 goto end;

 csc = X509_STORE_CTX_new();
 if (csc == NULL) {
 BIO_printf(bio_err, "error %s: X.509 store context"
 "allocation failed\n",
 (file == NULL) ? "stdin" : file);
 goto end;
 }

 X509_STORE_set_flags(ctx, vflags);
 if (!X509_STORE_CTX_init(csc, ctx, x, uchain)) {
 X509_STORE_CTX_free(csc);
 BIO_printf(bio_err,
 "error %s: X.509 store context"
 "initialization failed\n",
 (file == NULL) ? "stdin" : file);
 goto end;
 }
 if (tchain != NULL)
 X509_STORE_CTX_set0_trusted_stack(csc, tchain);
 if (crls != NULL)
 X509_STORE_CTX_set0_crls(csc, crls);

 i = X509_verify_cert(csc);
 X509_STORE_CTX_free(csc);

 <CODE ENDS>

A.2. mbedTLS

Richardson, et al. Expires 4 September 2024 [Page 62]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 <CODE BEGINS>
 mbedtls_x509_crt cert;
 mbedtls_x509_crt caCert;
 uint32_t certVerifyResultFlags;
 // ...
 int result = mbedtls_x509_crt_verify(&cert, &caCert, NULL, NULL,
 &certVerifyResultFlags, NULL, NULL);

 <CODE ENDS>

Appendix B. cBRSKI Message Examples

 This appendix extends the EST-coaps message examples from Appendix A
 of [RFC9148] with cBRSKI messages. The CoAP headers are only fully
 worked out for the first example, enrollstatus.

B.1. enrollstatus

 A coaps enrollstatus message from Pledge to Registrar can be as
 follows:

 REQ: POST coaps://192.0.2.1:8085/b/es
 Content-Format: 60
 Payload: <binary CBOR encoding of an enrollstatus map>

 The corresponding CoAP header fields for this request are shown
 below.

Richardson, et al. Expires 4 September 2024 [Page 63]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Ver = 1
 T = 0 (CON)
 TKL = 1
 Code = 0x02 (0.02 is POST method)
 Message ID = 0xab0f
 Token = 0x4d
 Options
 Option (Uri-Path)
 Option Delta = 0xb (option nr = 11)
 Option Length = 0x1
 Option Value = "b"
 Option (Uri-Path)
 Option Delta = 0x0 (option nr = 11)
 Option Length = 0x2
 Option Value = "es"
 Option (Content-Format)
 Option Delta = 0x1 (option nr = 12)
 Option Length = 0x1
 Option Value = 60 (application/cbor)
 Payload Marker = 0xFF
 Payload = A26776657273696F6E0166737461747573F5 (18 bytes binary)

 The Uri-Host and Uri-Port Options are omitted because they coincide
 with the transport protocol (UDP) destination address and port
 respectively.

 The above binary CBOR enrollstatus payload looks as follows in CBOR
 diagnostic notation, for the case of enrollment success:

 {
 "version": 1,
 "status": true
 }

 Alternatively the payload could look as follows in case of enrollment
 failure, using the reason field to describe the failure:

 Payload = A36776657273696F6E0166737461747573F466726561736F6E782A3C
 496E666F726D61746976652068756D616E207265616461626C652065
 72726F72206D6573736167653E (69 bytes binary)

 {
 "version": 1,
 "status": false,
 "reason": "<Informative human readable error message>"
 }

Richardson, et al. Expires 4 September 2024 [Page 64]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 To indicate successful reception of the enrollmentstatus telemetry
 report, a response from the Registrar may then be:

 2.04 Changed

 Which in case of a piggybacked response has the following CoAP header
 fields:

 Ver=1
 T=2 (ACK)
 TKL=1
 Code = 0x44 (2.04 Changed)
 Message ID = 0xab0f
 Token = 0x4d

B.2. voucher_status

 A coaps voucher_status message from Pledge to Registrar can be as
 follows:

 REQ: POST coaps://[2001:db8::2:1]/.well-known/brski/vs
 Content-Format: 60 (application/cbor)
 Payload =
 A46776657273696F6E0166737461747573F466726561736F6E7828496E66
 6F726D61746976652068756D616E2D7265616461626C65206572726F7220
 6D6573736167656E726561736F6E2D636F6E74657874A100764164646974
 696F6E616C20696E666F726D6174696F6E

 The request payload above is binary CBOR but represented here in
 hexadecimal for readability. Below is the equivalent CBOR diagnostic
 format.

 {
 "version": 1,
 "status": false,
 "reason": "Informative human-readable error message",
 "reason-context": { 0: "Additional information" }
 }

 A success response without payload will then be sent by the Registrar
 back to the Pledge to indicate reception of the telemetry report:

 2.04 Changed

Richardson, et al. Expires 4 September 2024 [Page 65]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

Appendix C. COSE-signed Voucher (Request) Examples

 This appendix provides examples of COSE-signed voucher requests and
 vouchers. First, the used test keys and PKIX certificates are
 described, followed by examples of a constrained PVR, RVR and
 voucher.

C.1. Pledge, Registrar and MASA Keys

 This section documents the public and private keys used for all
 examples in this appendix. These keys are not used in any production
 system, and must only be used for testing purposes.

C.1.1. Pledge IDevID private key

 -----BEGIN EC PRIVATE KEY-----
 MHcCAQEEIMv+C4dbzeyrEH20qkpFlWIH2FFACGZv9kW7rNWtSlYtoAoGCCqGSM49
 AwEHoUQDQgAESH6OUiYFRhfIgWl4GG8jHoj8a+8rf6t5s1mZ/4SePlKom39GQ34p
 VYryJ9aHmboLLfz69bzICQFKbkoQ5oaiew==
 -----END EC PRIVATE KEY-----

 Private-Key: (256 bit)
 priv:
 cb:fe:0b:87:5b:cd:ec:ab:10:7d:b4:aa:4a:45:95:
 62:07:d8:51:40:08:66:6f:f6:45:bb:ac:d5:ad:4a:
 56:2d
 pub:
 04:48:7e:8e:52:26:05:46:17:c8:81:69:78:18:6f:
 23:1e:88:fc:6b:ef:2b:7f:ab:79:b3:59:99:ff:84:
 9e:3e:52:a8:9b:7f:46:43:7e:29:55:8a:f2:27:d6:
 87:99:ba:0b:2d:fc:fa:f5:bc:c8:09:01:4a:6e:4a:
 10:e6:86:a2:7b
 ASN1 OID: prime256v1
 NIST CURVE: P-256

C.1.2. Registrar private key

 -----BEGIN PRIVATE KEY-----
 MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgYJ/MP0dWA9BkYd4W
 s6oRY62hDddaEmrAVm5dtAXE/UGhRANCAAQgMIVb6EaRCz7LFcr4Vy0+tWW9xlSh
 Xvr27euqi54WCMXJEMk6IIaPyFBNNw8bJvqXWfZ5g7t4hj7amsvqUST2
 -----END PRIVATE KEY-----

Richardson, et al. Expires 4 September 2024 [Page 66]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Private-Key: (256 bit)
 priv:
 60:9f:cc:3f:47:56:03:d0:64:61:de:16:b3:aa:11:
 63:ad:a1:0d:d7:5a:12:6a:c0:56:6e:5d:b4:05:c4:
 fd:41
 pub:
 04:20:30:85:5b:e8:46:91:0b:3e:cb:15:ca:f8:57:
 2d:3e:b5:65:bd:c6:54:a1:5e:fa:f6:ed:eb:aa:8b:
 9e:16:08:c5:c9:10:c9:3a:20:86:8f:c8:50:4d:37:
 0f:1b:26:fa:97:59:f6:79:83:bb:78:86:3e:da:9a:
 cb:ea:51:24:f6
 ASN1 OID: prime256v1
 NIST CURVE: P-256

C.1.3. MASA private key

 -----BEGIN PRIVATE KEY-----
 MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgrbJ1oU+HIJ2SWYAk
 DkBTL+YNPxQG+gwsMsZB94N8mZ2hRANCAASS9NVlWJdztwNY81yPlH2UODYWhlYA
 ZfsqnEPSFZKnq8mq8gF78ZVbYi6q2FEg8kkORY/rpIU/X7SQsRuD+wMW
 -----END PRIVATE KEY-----

 Private-Key: (256 bit)
 priv:
 ad:b2:75:a1:4f:87:20:9d:92:59:80:24:0e:40:53:
 2f:e6:0d:3f:14:06:fa:0c:2c:32:c6:41:f7:83:7c:
 99:9d
 pub:
 04:92:f4:d5:65:58:97:73:b7:03:58:f3:5c:8f:94:
 7d:94:38:36:16:86:56:00:65:fb:2a:9c:43:d2:15:
 92:a7:ab:c9:aa:f2:01:7b:f1:95:5b:62:2e:aa:d8:
 51:20:f2:49:0e:45:8f:eb:a4:85:3f:5f:b4:90:b1:
 1b:83:fb:03:16
 ASN1 OID: prime256v1
 NIST CURVE: P-256

C.2. Pledge, Registrar, Domain CA and MASA Certificates

 All keys and PKIX certificates used for the examples have been
 generated with OpenSSL - see Appendix D for more details on
 certificate generation. Below the certificates are listed that
 accompany the keys shown above. Each certificate description is
 followed by the hexadecimal representation of the X.509 ASN.1 DER
 encoded certificate. This representation can be for example decoded
 using an online ASN.1 decoder.

C.2.1. Pledge IDevID Certificate

Richardson, et al. Expires 4 September 2024 [Page 67]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 32429 (0x7ead)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: CN = masa.stok.nl, O = vanderstok, L = Helmond,
 C = NL
 Validity
 Not Before: Dec 9 12:50:47 2022 GMT
 Not After : Dec 31 12:50:47 9999 GMT
 Subject: CN = Stok IoT sensor Y-42, serialNumber = JADA123456789
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:48:7e:8e:52:26:05:46:17:c8:81:69:78:18:6f:
 23:1e:88:fc:6b:ef:2b:7f:ab:79:b3:59:99:ff:84:
 9e:3e:52:a8:9b:7f:46:43:7e:29:55:8a:f2:27:d6:
 87:99:ba:0b:2d:fc:fa:f5:bc:c8:09:01:4a:6e:4a:
 10:e6:86:a2:7b
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Key Usage: critical
 Digital Signature, Non Repudiation, Key Encipherment,
 Data Encipherment
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Authority Key Identifier:
 CB:8D:98:CA:74:C5:1B:58:DD:E7:AC:EF:86:9A:94:43:A8:D6:66:A6
 1.3.6.1.5.5.7.1.32:
 hl=2 l= 12 prim: IA5STRING :masa.stok.nl

 Signature Algorithm: ecdsa-with-SHA256
 Signature Value:
 30:45:02:20:4d:89:90:7e:03:fb:52:56:42:0c:3f:c1:b1:f1:
 47:b5:b3:93:65:45:2e:be:50:db:67:85:8f:23:89:a2:3f:9e:
 02:21:00:95:33:69:d1:c6:db:f0:f1:f6:52:24:59:d3:0a:95:
 4e:b2:f4:96:a1:31:3c:7b:d9:2f:28:b3:29:71:bb:60:df

 Below is the hexadecimal representation of the binary X.509 DER-
 encoded certificate:

Richardson, et al. Expires 4 September 2024 [Page 68]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 308201CE30820174A00302010202027EAD300A06082A8648CE3D040302304B31
 15301306035504030C0C6D6173612E73746F6B2E6E6C31133011060355040A0C
 0A76616E64657273746F6B3110300E06035504070C0748656C6D6F6E64310B30
 09060355040613024E4C3020170D3232313230393132353034375A180F393939
 39313233313132353034375A3037311D301B06035504030C1453746F6B20496F
 542073656E736F7220592D3432311630140603550405130D4A41444131323334
 35363738393059301306072A8648CE3D020106082A8648CE3D03010703420004
 487E8E5226054617C8816978186F231E88FC6BEF2B7FAB79B35999FF849E3E52
 A89B7F46437E29558AF227D68799BA0B2DFCFAF5BCC809014A6E4A10E686A27B
 A35A3058300E0603551D0F0101FF0404030204F030090603551D130402300030
 1F0603551D23041830168014CB8D98CA74C51B58DDE7ACEF869A9443A8D666A6
 301A06082B06010505070120040E160C6D6173612E73746F6B2E6E6C300A0608
 2A8648CE3D040302034800304502204D89907E03FB5256420C3FC1B1F147B5B3
 9365452EBE50DB67858F2389A23F9E022100953369D1C6DBF0F1F6522459D30A
 954EB2F496A1313C7BD92F28B32971BB60DF

C.2.2. Registrar Certificate

Richardson, et al. Expires 4 September 2024 [Page 69]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 c3:f6:21:49:b2:e3:0e:3e
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: CN = Custom-ER Global CA, OU = IT, O = "Custom-ER, Inc.",
 L = San Jose, ST = CA, C = US
 Validity
 Not Before: Dec 9 12:50:47 2022 GMT
 Not After : Dec 8 12:50:47 2025 GMT
 Subject: CN = Custom-ER Registrar, OU = Office dept, O = "Custom-ER,
 Inc.", L = Ottowa, ST = ON, C = CA
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:20:30:85:5b:e8:46:91:0b:3e:cb:15:ca:f8:57:
 2d:3e:b5:65:bd:c6:54:a1:5e:fa:f6:ed:eb:aa:8b:
 9e:16:08:c5:c9:10:c9:3a:20:86:8f:c8:50:4d:37:
 0f:1b:26:fa:97:59:f6:79:83:bb:78:86:3e:da:9a:
 cb:ea:51:24:f6
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Key Usage: critical
 Digital Signature, Non Repudiation, Key Encipherment,
 Data Encipherment
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Subject Key Identifier:
 C9:08:0B:38:7D:8D:D8:5B:3A:59:E7:EC:10:0B:86:63:93:A9:CA:4C
 X509v3 Authority Key Identifier:
 92:EA:76:40:40:4A:8F:AB:4F:27:0B:F3:BC:37:9D:86:CD:72:80:F8
 X509v3 Extended Key Usage: critical
 CMC Registration Authority, TLS Web Server Authentication,
 TLS Web Client Authentication
 Signature Algorithm: ecdsa-with-SHA256
 Signature Value:
 30:45:02:21:00:d8:4a:7c:69:2f:f9:58:6e:82:22:87:18:f6:
 3b:c3:05:f0:ae:b8:ae:ec:42:78:82:38:79:81:2a:5d:15:61:
 64:02:20:08:f2:3c:13:69:13:b0:2c:e2:63:09:d5:99:4f:eb:
 75:70:af:af:ed:98:cd:f1:12:11:c0:37:f7:18:4d:c1:9d

 Below is the hexadecimal representation of the binary X.509 DER-
 encoded certificate:

Richardson, et al. Expires 4 September 2024 [Page 70]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 3082026D30820213A003020102020900C3F62149B2E30E3E300A06082A8648CE
 3D0403023072311C301A06035504030C13437573746F6D2D455220476C6F6261
 6C204341310B3009060355040B0C02495431183016060355040A0C0F43757374
 6F6D2D45522C20496E632E3111300F06035504070C0853616E204A6F7365310B
 300906035504080C024341310B3009060355040613025553301E170D32323132
 30393132353034375A170D3235313230383132353034375A3079311C301A0603
 5504030C13437573746F6D2D4552205265676973747261723114301206035504
 0B0C0B4F6666696365206465707431183016060355040A0C0F437573746F6D2D
 45522C20496E632E310F300D06035504070C064F74746F7761310B3009060355
 04080C024F4E310B30090603550406130243413059301306072A8648CE3D0201
 06082A8648CE3D030107034200042030855BE846910B3ECB15CAF8572D3EB565
 BDC654A15EFAF6EDEBAA8B9E1608C5C910C93A20868FC8504D370F1B26FA9759
 F67983BB78863EDA9ACBEA5124F6A3818A308187300E0603551D0F0101FF0404
 030204F030090603551D1304023000301D0603551D0E04160414C9080B387D8D
 D85B3A59E7EC100B866393A9CA4C301F0603551D2304183016801492EA764040
 4A8FAB4F270BF3BC379D86CD7280F8302A0603551D250101FF0420301E06082B
 0601050507031C06082B0601050507030106082B06010505070302300A06082A
 8648CE3D0403020348003045022100D84A7C692FF9586E82228718F63BC305F0
 AEB8AEEC4278823879812A5D156164022008F23C136913B02CE26309D5994FEB
 7570AFAFED98CDF11211C037F7184DC19D

C.2.3. Domain CA Certificate

 The Domain CA certificate is the CA of the owner’s domain. It has
 signed the Registrar (RA) certificate.

Richardson, et al. Expires 4 September 2024 [Page 71]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number: 3092288576548618702 (0x2aea0413a42dc1ce)
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: CN = Custom-ER Global CA, OU = IT, O = "Custom-ER, Inc.",
 L = San Jose, ST = CA, C = US
 Validity
 Not Before: Dec 9 12:50:47 2022 GMT
 Not After : Dec 6 12:50:47 2032 GMT
 Subject: CN = Custom-ER Global CA, OU = IT, O = "Custom-ER, Inc.",
 L = San Jose, ST = CA, C = US
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:97:b1:ed:96:91:64:93:09:85:bb:b8:ac:9a:2a:
 f9:45:5c:df:ee:a4:b1:1d:e2:e7:9d:06:8b:fa:80:
 39:26:b4:00:52:51:b3:4f:1c:08:15:a4:cb:e0:3f:
 bd:1b:bc:b6:35:f6:43:1a:22:de:78:65:3b:87:b9:
 95:37:ec:e1:6c
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 email:help@custom-er.example.com
 X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign
 X509v3 Basic Constraints: critical
 CA:TRUE
 X509v3 Subject Key Identifier:
 92:EA:76:40:40:4A:8F:AB:4F:27:0B:F3:BC:37:9D:86:CD:72:80:F8
 Signature Algorithm: ecdsa-with-SHA256
 Signature Value:
 30:44:02:20:66:15:df:c3:70:11:f6:73:78:d8:fd:1c:2a:3f:
 bd:d1:3f:51:f6:b6:6f:2d:7c:e2:7a:13:18:21:bb:70:f0:c0:
 02:20:69:86:d8:d2:28:b2:92:6e:23:9e:19:0b:8f:18:25:c9:
 c1:4c:67:95:ff:a0:b3:24:bd:4d:ac:2e:cb:68:d7:13

 Below is the hexadecimal representation of the binary X.509 DER-
 encoded certificate:

Richardson, et al. Expires 4 September 2024 [Page 72]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 30820242308201E9A00302010202082AEA0413A42DC1CE300A06082A8648CE3D
 0403023072311C301A06035504030C13437573746F6D2D455220476C6F62616C
 204341310B3009060355040B0C02495431183016060355040A0C0F437573746F
 6D2D45522C20496E632E3111300F06035504070C0853616E204A6F7365310B30
 0906035504080C024341310B3009060355040613025553301E170D3232313230
 393132353034375A170D3332313230363132353034375A3072311C301A060355
 04030C13437573746F6D2D455220476C6F62616C204341310B3009060355040B
 0C02495431183016060355040A0C0F437573746F6D2D45522C20496E632E3111
 300F06035504070C0853616E204A6F7365310B300906035504080C024341310B
 30090603550406130255533059301306072A8648CE3D020106082A8648CE3D03
 01070342000497B1ED969164930985BBB8AC9A2AF9455CDFEEA4B11DE2E79D06
 8BFA803926B4005251B34F1C0815A4CBE03FBD1BBCB635F6431A22DE78653B87
 B99537ECE16CA369306730250603551D11041E301C811A68656C704063757374
 6F6D2D65722E6578616D706C652E636F6D300E0603551D0F0101FF0404030201
 86300F0603551D130101FF040530030101FF301D0603551D0E0416041492EA76
 40404A8FAB4F270BF3BC379D86CD7280F8300A06082A8648CE3D040302034700
 304402206615DFC37011F67378D8FD1C2A3FBDD13F51F6B66F2D7CE27A131821
 BB70F0C002206986D8D228B2926E239E190B8F1825C9C14C6795FFA0B324BD4D
 AC2ECB68D713

C.2.4. MASA Certificate

 The MASA CA certificate is the CA that signed the Pledge’s IDevID
 certificate.

Richardson, et al. Expires 4 September 2024 [Page 73]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 e3:9c:da:17:e1:38:6a:0a
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: CN = masa.stok.nl, O = vanderstok, L = Helmond,
 C = NL
 Validity
 Not Before: Dec 9 12:50:47 2022 GMT
 Not After : Dec 6 12:50:47 2032 GMT
 Subject: CN = masa.stok.nl, O = vanderstok, L = Helmond,
 C = NL
 Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:92:f4:d5:65:58:97:73:b7:03:58:f3:5c:8f:94:
 7d:94:38:36:16:86:56:00:65:fb:2a:9c:43:d2:15:
 92:a7:ab:c9:aa:f2:01:7b:f1:95:5b:62:2e:aa:d8:
 51:20:f2:49:0e:45:8f:eb:a4:85:3f:5f:b4:90:b1:
 1b:83:fb:03:16
 ASN1 OID: prime256v1
 NIST CURVE: P-256
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 email:info@masa.stok.nl
 X509v3 Key Usage: critical
 Digital Signature, Certificate Sign, CRL Sign
 X509v3 Basic Constraints: critical
 CA:TRUE, pathlen:3
 X509v3 Subject Key Identifier:
 CB:8D:98:CA:74:C5:1B:58:DD:E7:AC:EF:86:9A:94:43:A8:D6:66:A6
 Signature Algorithm: ecdsa-with-SHA256
 Signature Value:
 30:46:02:21:00:94:3f:a5:26:51:68:16:38:5b:78:9a:d8:c3:
 af:8e:49:28:22:60:56:26:43:4a:14:98:3e:e1:e4:81:ad:ca:
 1b:02:21:00:ba:4d:aa:fd:fa:68:42:74:03:2b:a8:41:6b:e2:
 90:0c:9e:7b:b8:c0:9c:f7:0e:3f:b4:36:8a:b3:9c:3e:31:0e

 Below is the hexadecimal representation of the binary X.509 DER-
 encoded certificate:

Richardson, et al. Expires 4 September 2024 [Page 74]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 308201F130820196A003020102020900E39CDA17E1386A0A300A06082A8648CE
 3D040302304B3115301306035504030C0C6D6173612E73746F6B2E6E6C311330
 11060355040A0C0A76616E64657273746F6B3110300E06035504070C0748656C
 6D6F6E64310B3009060355040613024E4C301E170D3232313230393132353034
 375A170D3332313230363132353034375A304B3115301306035504030C0C6D61
 73612E73746F6B2E6E6C31133011060355040A0C0A76616E64657273746F6B31
 10300E06035504070C0748656C6D6F6E64310B3009060355040613024E4C3059
 301306072A8648CE3D020106082A8648CE3D0301070342000492F4D565589773
 B70358F35C8F947D9438361686560065FB2A9C43D21592A7ABC9AAF2017BF195
 5B622EAAD85120F2490E458FEBA4853F5FB490B11B83FB0316A3633061301C06
 03551D11041530138111696E666F406D6173612E73746F6B2E6E6C300E060355
 1D0F0101FF04040302018630120603551D130101FF040830060101FF02010330
 1D0603551D0E04160414CB8D98CA74C51B58DDE7ACEF869A9443A8D666A6300A
 06082A8648CE3D0403020349003046022100943FA526516816385B789AD8C3AF
 8E492822605626434A14983EE1E481ADCA1B022100BA4DAAFDFA684274032BA8
 416BE2900C9E7BB8C09CF70E3FB4368AB39C3E310E

C.3. COSE-signed Pledge Voucher Request (PVR)

 In this example, the voucher request (PVR) has been signed by the
 Pledge using the IDevID private key of Appendix C.1.1, and has been
 sent to the link-local constrained Join Proxy (JP) over CoAPS to the
 JP’s join port. The join port happens to use the default CoAPS UDP
 port 5684.

 REQ: POST coaps://[JP-link-local-address]/b/rv
 Content-Format: 836
 Payload: <signed_pvr>

 When the Join Proxy receives the DTLS handshake messages from the
 Pledge, it will relay these messages to the Registrar. The payload
 signed_voucher_request is shown as hexadecimal dump (with lf added)
 below:

 D28443A10126A0587EA11909C5A40102074823BFBBC9C2BCF2130C585B305930
 1306072A8648CE3D020106082A8648CE3D030107034200042030855BE846910B
 3ECB15CAF8572D3EB565BDC654A15EFAF6EDEBAA8B9E1608C5C910C93A20868F
 C8504D370F1B26FA9759F67983BB78863EDA9ACBEA5124F60D6D4A4144413132
 33343536373839584068987DE8B007F4E9416610BBE2D48E1D7EA1032092B8BF
 CE611421950F45B22F17E214820C07E777ADF86175E25D3205568404C25FCEEC
 1B817C7861A6104B3D

 The representiation of signed_pvr in CBOR diagnostic format (with lf
 added) is:

Richardson, et al. Expires 4 September 2024 [Page 75]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 18([h’A10126’, {}, h’A11909C5A40102074823BFBBC9C2BCF2130C585B3059301
 306072A8648CE3D020106082A8648CE3D030107034200042030855BE846910B3ECB1
 5CAF8572D3EB565BDC654A15EFAF6EDEBAA8B9E1608C5C910C93A20868FC8504D370
 F1B26FA9759F67983BB78863EDA9ACBEA5124F60D6D4A41444131323334353637383
 9’, h’68987DE8B007F4E9416610BBE2D48E1D7EA1032092B8BFCE611421950F45B2
 2F17E214820C07E777ADF86175E25D3205568404C25FCEEC1B817C7861A6104B3D’]
)

 The COSE payload is the PVR voucher data, encoded as a CBOR byte
 string. The diagnostic representation of it is shown below:

 {2501: {1: 2, 7: h’23BFBBC9C2BCF213’, 12: h’3059301306072A8648CE3D02
 0106082A8648CE3D030107034200042030855BE846910B3ECB15CAF8572D3EB565BD
 C654A15EFAF6EDEBAA8B9E1608C5C910C93A20868FC8504D370F1B26FA9759F67983
 BB78863EDA9ACBEA5124F6’, 13: "JADA123456789"}}

 The Pledge uses the "proximity" (key ’1’, SID 2502, enum value 2)
 assertion together with an included proximity-registrar-pubk field
 (key ’12’, SID 2513) to inform MASA about its proximity to the
 specific Registrar.

C.4. COSE-signed Registrar Voucher Request (RVR)

 In this example the Registrar’s voucher request has been signed by
 the JRC (Registrar) using the private key from Appendix C.1.2.
 Contained within this voucher request is the voucher request PVR that
 was made by the Pledge to JRC. Note that the RVR uses the HTTPS
 protocol (not CoAP) and corresponding long URI path names as defined
 in [RFC8995]. The Content-Type and Accept headers indicate the
 constrained voucher format that is defined in the present document.
 Because the Pledge used this format in the PVR, the JRC must also use
 this format in the RVR.

 REQ: POST https://masa.stok.nl/.well-known/brski/requestvoucher
 Content-Type: application/voucher+cose
 Accept: application/voucher+cose
 Body: <signed_rvr>

 The payload signed_rvr is shown as hexadecimal dump (with lf added):

 D28443A10126A11820825902843082028030820225A003020102020900C3F621
 49B2E30E3E300A06082A8648CE3D0403023072311C301A06035504030C134375
 73746F6D2D455220476C6F62616C204341310B3009060355040B0C0249543118
 3016060355040A0C0F437573746F6D2D45522C20496E632E3111300F06035504
 070C0853616E204A6F7365310B300906035504080C024341310B300906035504
 0613025553301E170D3232313230363131333735395A170D3235313230353131
 333735395A30818D3131302F06035504030C28437573746F6D2D455220436F6D
 6D65726369616C204275696C64696E6773205265676973747261723113301106

Richardson, et al. Expires 4 September 2024 [Page 76]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 0355040B0C0A4F6666696365206F707331183016060355040A0C0F437573746F
 6D2D45522C20496E632E310F300D06035504070C064F74746F7761310B300906
 035504080C024F4E310B30090603550406130243413059301306072A8648CE3D
 020106082A8648CE3D030107034200042030855BE846910B3ECB15CAF8572D3E
 B565BDC654A15EFAF6EDEBAA8B9E1608C5C910C93A20868FC8504D370F1B26FA
 9759F67983BB78863EDA9ACBEA5124F6A3818730818430090603551D13040230
 00300B0603551D0F0404030204F0301D0603551D0E04160414C9080B387D8DD8
 5B3A59E7EC100B866393A9CA4C301F0603551D2304183016801492EA7640404A
 8FAB4F270BF3BC379D86CD7280F8302A0603551D250101FF0420301E06082B06
 01050507031C06082B0601050507030106082B06010505070302300A06082A86
 48CE3D040302034900304602210091A2033692EB81503D53505FFC8DA326B1EE
 7DEA96F29174F0B3341A07812201022100FF7339288108B712F418530A18025A
 895408CC45E0BB678B46FBAB37DDB4D36B59024730820243308201E9A0030201
 0202082AEA0413A42DC1CE300A06082A8648CE3D0403023072311C301A060355
 04030C13437573746F6D2D455220476C6F62616C204341310B3009060355040B
 0C02495431183016060355040A0C0F437573746F6D2D45522C20496E632E3111
 300F06035504070C0853616E204A6F7365310B300906035504080C024341310B
 3009060355040613025553301E170D3232313230363131333735395A170D3332
 313230333131333735395A3072311C301A06035504030C13437573746F6D2D45
 5220476C6F62616C204341310B3009060355040B0C0249543118301606035504
 0A0C0F437573746F6D2D45522C20496E632E3111300F06035504070C0853616E
 204A6F7365310B300906035504080C024341310B300906035504061302555330
 59301306072A8648CE3D020106082A8648CE3D0301070342000497B1ED969164
 930985BBB8AC9A2AF9455CDFEEA4B11DE2E79D068BFA803926B4005251B34F1C
 0815A4CBE03FBD1BBCB635F6431A22DE78653B87B99537ECE16CA3693067300F
 0603551D130101FF040530030101FF30250603551D11041E301C811A68656C70
 40637573746F6D2D65722E6578616D706C652E636F6D300E0603551D0F0101FF
 040403020186301D0603551D0E0416041492EA7640404A8FAB4F270BF3BC379D
 86CD7280F8300A06082A8648CE3D0403020348003045022100D6D813B390BD3A
 7B4E85424BCB1ED933AD1E981F2817B59083DD6EC1C5E3FADF02202CEE440619
 2BC767E98D7CFAE044C6807481AD8564A7D569DCA3D1CDF1E5E843590124A119
 09C5A60102027818323032322D31322D30365432303A30343A31352E3735345A
 05581A041830168014CB8D98CA74C51B58DDE7ACEF869A9443A8D666A6074823
 BFBBC9C2BCF2130958C9D28443A10126A0587EA11909C5A40102074823BFBBC9
 C2BCF2130C585B3059301306072A8648CE3D020106082A8648CE3D0301070342
 00042030855BE846910B3ECB15CAF8572D3EB565BDC654A15EFAF6EDEBAA8B9E
 1608C5C910C93A20868FC8504D370F1B26FA9759F67983BB78863EDA9ACBEA51
 24F60D6D4A414441313233343536373839584068987DE8B007F4E9416610BBE2
 D48E1D7EA1032092B8BFCE611421950F45B22F17E214820C07E777ADF86175E2
 5D3205568404C25FCEEC1B817C7861A6104B3D0D6D4A41444131323334353637
 38395840B1DD40B10787437588AEAC9036899191C16CCDBECA31C197855CCB6B
 BA142D709FE329CBC3F76297D6063ACB6759EAB98E96EA4C4AA2135AA48A247B
 AC1D6A3F

 The representation of signed_rvr in CBOR diagnostic format (with lf
 added) is:

Richardson, et al. Expires 4 September 2024 [Page 77]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 18([h’A10126’, {32: [h’3082028030820225A003020102020900C3F62149B2E30
 E3E300A06082A8648CE3D0403023072311C301A06035504030C13437573746F6D2D4
 55220476C6F62616C204341310B3009060355040B0C02495431183016060355040A0
 C0F437573746F6D2D45522C20496E632E3111300F06035504070C0853616E204A6F7
 365310B300906035504080C024341310B3009060355040613025553301E170D32323
 13230363131333735395A170D3235313230353131333735395A30818D3131302F060
 35504030C28437573746F6D2D455220436F6D6D65726369616C204275696C64696E6
 7732052656769737472617231133011060355040B0C0A4F6666696365206F7073311
 83016060355040A0C0F437573746F6D2D45522C20496E632E310F300D06035504070
 C064F74746F7761310B300906035504080C024F4E310B30090603550406130243413
 059301306072A8648CE3D020106082A8648CE3D030107034200042030855BE846910
 B3ECB15CAF8572D3EB565BDC654A15EFAF6EDEBAA8B9E1608C5C910C93A20868FC85
 04D370F1B26FA9759F67983BB78863EDA9ACBEA5124F6A3818730818430090603551
 D1304023000300B0603551D0F0404030204F0301D0603551D0E04160414C9080B387
 D8DD85B3A59E7EC100B866393A9CA4C301F0603551D2304183016801492EA7640404
 A8FAB4F270BF3BC379D86CD7280F8302A0603551D250101FF0420301E06082B06010
 50507031C06082B0601050507030106082B06010505070302300A06082A8648CE3D0
 40302034900304602210091A2033692EB81503D53505FFC8DA326B1EE7DEA96F2917
 4F0B3341A07812201022100FF7339288108B712F418530A18025A895408CC45E0BB6
 78B46FBAB37DDB4D36B’, h’30820243308201E9A00302010202082AEA0413A42DC1
 CE300A06082A8648CE3D0403023072311C301A06035504030C13437573746F6D2D45
 5220476C6F62616C204341310B3009060355040B0C02495431183016060355040A0C
 0F437573746F6D2D45522C20496E632E3111300F06035504070C0853616E204A6F73
 65310B300906035504080C024341310B3009060355040613025553301E170D323231
 3230363131333735395A170D3332313230333131333735395A3072311C301A060355
 04030C13437573746F6D2D455220476C6F62616C204341310B3009060355040B0C02
 495431183016060355040A0C0F437573746F6D2D45522C20496E632E3111300F0603
 5504070C0853616E204A6F7365310B300906035504080C024341310B300906035504
 06130255533059301306072A8648CE3D020106082A8648CE3D0301070342000497B1
 ED969164930985BBB8AC9A2AF9455CDFEEA4B11DE2E79D068BFA803926B4005251B3
 4F1C0815A4CBE03FBD1BBCB635F6431A22DE78653B87B99537ECE16CA3693067300F
 0603551D130101FF040530030101FF30250603551D11041E301C811A68656C704063
 7573746F6D2D65722E6578616D706C652E636F6D300E0603551D0F0101FF04040302
 0186301D0603551D0E0416041492EA7640404A8FAB4F270BF3BC379D86CD7280F830
 0A06082A8648CE3D0403020348003045022100D6D813B390BD3A7B4E85424BCB1ED9
 33AD1E981F2817B59083DD6EC1C5E3FADF02202CEE4406192BC767E98D7CFAE044C6
 807481AD8564A7D569DCA3D1CDF1E5E843’]}, h’A11909C5A601020278183230323
 22D31322D30365432303A30343A31352E3735345A05581A041830168014CB8D98CA7
 4C51B58DDE7ACEF869A9443A8D666A6074823BFBBC9C2BCF2130958C9D28443A1012
 6A0587EA11909C5A40102074823BFBBC9C2BCF2130C585B3059301306072A8648CE3
 D020106082A8648CE3D030107034200042030855BE846910B3ECB15CAF8572D3EB56
 5BDC654A15EFAF6EDEBAA8B9E1608C5C910C93A20868FC8504D370F1B26FA9759F67
 983BB78863EDA9ACBEA5124F60D6D4A414441313233343536373839584068987DE8B
 007F4E9416610BBE2D48E1D7EA1032092B8BFCE611421950F45B22F17E214820C07E
 777ADF86175E25D3205568404C25FCEEC1B817C7861A6104B3D0D6D4A41444131323
 3343536373839’, h’B1DD40B10787437588AEAC9036899191C16CCDBECA31C19785
 5CCB6BBA142D709FE329CBC3F76297D6063ACB6759EAB98E96EA4C4AA2135AA48A24
 7BAC1D6A3F’])

Richardson, et al. Expires 4 September 2024 [Page 78]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

C.5. COSE-signed Voucher from MASA

 The resulting voucher is created by the MASA and returned to the
 Registrar:

 RES: 200 OK
 Content-Type: application/voucher+cose
 Body: <signed_voucher>

 The Registrar then returns the voucher to the Pledge:

 RES: 2.04 Changed
 Content-Format: 836
 Body: <signed_voucher>

 It is signed by the MASA’s private key (see Appendix C.1.3) and can
 be verified by the Pledge using the MASA’s public key that it stores.

 Below is the binary signed_voucher, encoded in hexadecimal (with lf
 added):

 D28443A10126A0590288A1190993A60102027818323032322D31322D30365432
 303A32333A33302E3730385A03F4074857EED786AD4049070859024730820243
 308201E9A00302010202082AEA0413A42DC1CE300A06082A8648CE3D04030230
 72311C301A06035504030C13437573746F6D2D455220476C6F62616C20434131
 0B3009060355040B0C02495431183016060355040A0C0F437573746F6D2D4552
 2C20496E632E3111300F06035504070C0853616E204A6F7365310B3009060355
 04080C024341310B3009060355040613025553301E170D323231323036313133
 3735395A170D3332313230333131333735395A3072311C301A06035504030C13
 437573746F6D2D455220476C6F62616C204341310B3009060355040B0C024954
 31183016060355040A0C0F437573746F6D2D45522C20496E632E3111300F0603
 5504070C0853616E204A6F7365310B300906035504080C024341310B30090603
 550406130255533059301306072A8648CE3D020106082A8648CE3D0301070342
 000497B1ED969164930985BBB8AC9A2AF9455CDFEEA4B11DE2E79D068BFA8039
 26B4005251B34F1C0815A4CBE03FBD1BBCB635F6431A22DE78653B87B99537EC
 E16CA3693067300F0603551D130101FF040530030101FF30250603551D11041E
 301C811A68656C7040637573746F6D2D65722E6578616D706C652E636F6D300E
 0603551D0F0101FF040403020186301D0603551D0E0416041492EA7640404A8F
 AB4F270BF3BC379D86CD7280F8300A06082A8648CE3D04030203480030450221
 00D6D813B390BD3A7B4E85424BCB1ED933AD1E981F2817B59083DD6EC1C5E3FA
 DF02202CEE4406192BC767E98D7CFAE044C6807481AD8564A7D569DCA3D1CDF1
 E5E8430B6D4A4144413132333435363738395840DF31B21A6AD3F5AC7F4C8B02
 6F551BD28FBCE62330D3E262AC170F6BFEDDBA5F2E8FBAA2CAACFED9E8614EAC
 5BF2450DADC53AC29DFA30E8787A1400B2E7C832

 The representiation of signed_voucher in CBOR diagnostic format (with
 lf added) is:

Richardson, et al. Expires 4 September 2024 [Page 79]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 18([h’A10126’, {}, h’A1190993A60102027818323032322D31322D30365432303
 A32333A33302E3730385A03F4074857EED786AD4049070859024730820243308201E
 9A00302010202082AEA0413A42DC1CE300A06082A8648CE3D0403023072311C301A0
 6035504030C13437573746F6D2D455220476C6F62616C204341310B3009060355040
 B0C02495431183016060355040A0C0F437573746F6D2D45522C20496E632E3111300
 F06035504070C0853616E204A6F7365310B300906035504080C024341310B3009060
 355040613025553301E170D3232313230363131333735395A170D333231323033313
 1333735395A3072311C301A06035504030C13437573746F6D2D455220476C6F62616
 C204341310B3009060355040B0C02495431183016060355040A0C0F437573746F6D2
 D45522C20496E632E3111300F06035504070C0853616E204A6F7365310B300906035
 504080C024341310B30090603550406130255533059301306072A8648CE3D0201060
 82A8648CE3D0301070342000497B1ED969164930985BBB8AC9A2AF9455CDFEEA4B11
 DE2E79D068BFA803926B4005251B34F1C0815A4CBE03FBD1BBCB635F6431A22DE786
 53B87B99537ECE16CA3693067300F0603551D130101FF040530030101FF302506035
 51D11041E301C811A68656C7040637573746F6D2D65722E6578616D706C652E636F6
 D300E0603551D0F0101FF040403020186301D0603551D0E0416041492EA7640404A8
 FAB4F270BF3BC379D86CD7280F8300A06082A8648CE3D0403020348003045022100D
 6D813B390BD3A7B4E85424BCB1ED933AD1E981F2817B59083DD6EC1C5E3FADF02202
 CEE4406192BC767E98D7CFAE044C6807481AD8564A7D569DCA3D1CDF1E5E8430B6D4
 A414441313233343536373839’, h’DF31B21A6AD3F5AC7F4C8B026F551BD28FBCE6
 2330D3E262AC170F6BFEDDBA5F2E8FBAA2CAACFED9E8614EAC5BF2450DADC53AC29D
 FA30E8787A1400B2E7C832’])

 In the above, the third element in the array is the voucher data
 encoded as a CBOR byte string. When decoded, it can be represented
 by the following CBOR diagnostic notation:

 {2451: {1: 2, 2: "2022-12-06T20:23:30.708Z", 3: false, 7: h’57EED786
 AD404907’, 8: h’30820243308201E9A00302010202082AEA0413A42DC1CE300A06
 082A8648CE3D0403023072311C301A06035504030C13437573746F6D2D455220476C
 6F62616C204341310B3009060355040B0C02495431183016060355040A0C0F437573
 746F6D2D45522C20496E632E3111300F06035504070C0853616E204A6F7365310B30
 0906035504080C024341310B3009060355040613025553301E170D32323132303631
 31333735395A170D3332313230333131333735395A3072311C301A06035504030C13
 437573746F6D2D455220476C6F62616C204341310B3009060355040B0C0249543118
 3016060355040A0C0F437573746F6D2D45522C20496E632E3111300F06035504070C
 0853616E204A6F7365310B300906035504080C024341310B30090603550406130255
 533059301306072A8648CE3D020106082A8648CE3D0301070342000497B1ED969164
 930985BBB8AC9A2AF9455CDFEEA4B11DE2E79D068BFA803926B4005251B34F1C0815
 A4CBE03FBD1BBCB635F6431A22DE78653B87B99537ECE16CA3693067300F0603551D
 130101FF040530030101FF30250603551D11041E301C811A68656C7040637573746F
 6D2D65722E6578616D706C652E636F6D300E0603551D0F0101FF040403020186301D
 0603551D0E0416041492EA7640404A8FAB4F270BF3BC379D86CD7280F8300A06082A
 8648CE3D0403020348003045022100D6D813B390BD3A7B4E85424BCB1ED933AD1E98
 1F2817B59083DD6EC1C5E3FADF02202CEE4406192BC767E98D7CFAE044C6807481AD
 8564A7D569DCA3D1CDF1E5E843’, 11: "JADA123456789"}}

Richardson, et al. Expires 4 September 2024 [Page 80]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 The largest element in the voucher is identified by key 8, which
 decodes to SID 2459 (pinned-domain-cert). It contains the complete
 PKIX (DER-encoded X.509v3) certificate of the Registrar’s domain CA.
 This certificate is shown in Appendix C.2.3.

Appendix D. Generating Certificates with OpenSSL

 This informative appendix shows example Bash shell scripts to
 generate test PKIX certificates for the Pledge IDevID, the Registrar
 and the MASA. The shell scripts cannot be run stand-alone because
 they depend on input files which are not all included in this
 appendix. Nevertheless, these scripts may provide guidance on how
 OpenSSL can be configured for generating cBRSKI certificates.

 The scripts were tested with OpenSSL 3.0.2. Older versions may not
 work -- OpenSSL 1.1.1 for example does not support all extensions
 used.

Richardson, et al. Expires 4 September 2024 [Page 81]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 <CODE BEGINS>
 #!/bin/bash
 # File: create-cert-Pledge.sh
 # Create new cert for: Pledge IDevID

 # days certificate is valid - try to get close to the 802.1AR
 # specified 9999-12-31 end date.
 SECONDS1=‘date +%s‘ # time now
 SECONDS2=‘date --date="9999-12-31 23:59:59Z" +%s‘ # target end time
 let VALIDITY="(${SECONDS2}-${SECONDS1})/(24*3600)"
 echo "Using validity param -days ${VALIDITY}"

 NAME=pledge

 # create csr for device
 # conform to 802.1AR guidelines, using only CN + serialNumber when
 # manufacturer is already present as CA.
 # CN is not even mandatory, but just good practice.
 openssl req -new -key keys/privkey_pledge.pem -out $NAME.csr -subj \
 "/CN=Stok IoT sensor Y-42/serialNumber=JADA123456789"

 # sign csr - it uses faketime only to get endtime to 23:59:59Z
 faketime ’23:59:59Z’ \
 openssl x509 -set_serial 32429 -CAform PEM -CA output/masa_ca.pem \
 -CAkey keys/privkey_masa_ca.pem -extfile x509v3.ext -extensions \
 pledge_ext -req -in $NAME.csr -out output/$NAME.pem \
 -days $VALIDITY -sha256

 # Note: alternative method using ’ca’ command. Currently
 # doesn’t work without ’country’ subject field.
 # openssl ca -rand_serial -enddate 99991231235959Z -certform PEM \
 # -cert output/masa_ca.pem -keyfile keys/privkey_masa_ca.pem \
 # -extfile x509v3.ext -extensions pledge_ext -in $NAME.csr \
 # -out $NAME.pem -outdir output

 # delete temp files
 rm -f $NAME.csr

 # convert to .der format
 openssl x509 -in output/$NAME.pem -inform PEM -out output/$NAME.der \
 -outform DER

 <CODE ENDS>

Richardson, et al. Expires 4 September 2024 [Page 82]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 <CODE BEGINS>
 # File: x509v3.ext
 # This file contains all X509v3 extension definitions for OpenSSL
 # certificate generation. Each certificate has its own _ext
 # section below.

 [req]
 prompt = no

 [masa_ca_ext]
 subjectAltName=email:info@masa.stok.nl
 keyUsage = critical,digitalSignature, keyCertSign, cRLSign
 basicConstraints = critical,CA:TRUE,pathlen:3
 subjectKeyIdentifier=hash
 authorityKeyIdentifier=keyid

 [pledge_ext]
 keyUsage = critical,digitalSignature, nonRepudiation, \
 keyEncipherment, dataEncipherment
 # basicConstraints for a non-CA cert MAY be marked either
 # non-critical or critical.
 basicConstraints = CA:FALSE
 # Don’t include subjectKeyIdentifier (SKI) - see 802.1AR-2018
 subjectKeyIdentifier = none
 authorityKeyIdentifier=keyid
 # Include the MASA URI
 1.3.6.1.5.5.7.1.32 = ASN1:IA5STRING:masa.stok.nl

 [domain_ca_ext]
 subjectAltName=email:help@custom-er.example.com
 keyUsage = critical, keyCertSign, digitalSignature, cRLSign
 basicConstraints=critical,CA:TRUE
 # RFC 5280 4.2.1.1 : AKI MAY be omitted, and MUST be non-critical;
 # SKI MUST be non-critical
 subjectKeyIdentifier=hash

 [registrar_ext]
 keyUsage = critical, digitalSignature, nonRepudiation, \
 keyEncipherment, dataEncipherment
 basicConstraints=CA:FALSE
 subjectKeyIdentifier=hash
 authorityKeyIdentifier=keyid
 # Set Registrar ’RA’ flag along with TLS client/server usage
 # see draft-ietf-anima-constrained-voucher#section-7.3
 # see tools.ietf.org/html/rfc6402#section-2.10
 # see www.openssl.org/docs/man1.1.1/man5/x509v3_config.html
 extendedKeyUsage = critical,1.3.6.1.5.5.7.3.28, serverAuth, \
 clientAuth

Richardson, et al. Expires 4 September 2024 [Page 83]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 <CODE ENDS>

 <CODE BEGINS>
 #!/bin/bash
 # File: create-cert-Registrar.sh
 # Create new cert for: Registrar in a company domain

 # days certificate is valid
 VALIDITY=1095

 # cert filename
 NAME=registrar

 # create csr
 openssl req -new -key keys/privkey_registrar.pem -out $NAME.csr \
 -subj "/CN=Custom-ER Registrar/OU=Office dept/O=Custom-ER, Inc./\
 L=Ottowa/ST=ON/C=CA"

 # sign csr
 openssl x509 -set_serial 0xC3F62149B2E30E3E -CAform PEM -CA \
 output/domain_ca.pem -extfile x509v3.ext -extensions registrar_ext \
 -req -in $NAME.csr -CAkey keys/privkey_domain_ca.pem \
 -out output/$NAME.pem -days $VALIDITY -sha256

 # delete temp files
 rm -f $NAME.csr

 # convert to .der format
 openssl x509 -in output/$NAME.pem -inform PEM -out output/$NAME.der \
 -outform DER

 <CODE ENDS>

Richardson, et al. Expires 4 September 2024 [Page 84]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 <CODE BEGINS>
 #!/bin/bash
 # File: create-cert-MASA.sh
 # Create new cert for: MASA CA, self-signed CA certificate

 # days certificate is valid
 VALIDITY=3650

 NAME=masa_ca

 # create csr
 openssl req -new -key keys/privkey_masa_ca.pem -out $NAME.csr \
 -subj "/CN=masa.stok.nl/O=vanderstok/L=Helmond/C=NL"

 # sign csr
 mkdir output >& /dev/null
 openssl x509 -set_serial 0xE39CDA17E1386A0A -extfile x509v3.ext \
 -extensions masa_ca_ext -req -in $NAME.csr \
 -signkey keys/privkey_masa_ca.pem -out output/$NAME.pem \
 -days $VALIDITY -sha256

 # delete temp files
 rm -f $NAME.csr

 # convert to .der format
 openssl x509 -in output/$NAME.pem -inform PEM -out output/$NAME.der \
 -outform DER

 <CODE ENDS>

Appendix E. Pledge Device Class Profiles

 This specification allows implementers to select between various
 functional options for the Pledge, yielding different code size
 footprints and different requirements on Pledge hardware. Thus for
 each product an optimal trade-off between functionality, development/
 maintenance cost and hardware cost can be made.

 This appendix illustrates different selection outcomes by means of
 defining different example "profiles" of constrained Pledges. In the
 following subsections, these profiles are defined and a comparison is
 provided.

E.1. Minimal Pledge

 The Minimal Pledge profile (Min) aims to reduce code size and
 hardware cost to a minimum. This comes with some severe functional
 restrictions, in particular:

Richardson, et al. Expires 4 September 2024 [Page 85]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 * No support for EST re-enrollment: whenever this would be needed, a
 factory reset followed by a new onboarding process is required.

 * No support for change of Registrar: for this case, a factory reset
 followed by a new onboarding process is required.

 This profile would be appropriate for single-use devices which must
 be replaced rather than re-deployed. That might include medical
 devices, but also sensors used during construction, such as concrete
 temperature sensors.

E.2. Typical Pledge

 The Typical Pledge profile (Typ) aims to support a typical cBRSKI
 feature set including EST re-enrollment support and Registrar
 changes.

E.3. Full-featured Pledge

 The Full-featured Pledge profile (Full) illustrates a Pledge category
 that supports multiple onboarding methods, hardware real-time clock,
 BRSKI/EST resource discovery, and CSR Attributes request/response.
 It also supports most of the optional features defined in this
 specification.

E.4. Comparison Chart of Pledge Classes

 The below table specifies the functions implemented in the three
 example Pledge classes Min (Appendix E.1), Typ (Appendix E.2) and
 Full (Appendix E.3).

Richardson, et al. Expires 4 September 2024 [Page 86]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 +==+=======+=====+======+
 | Functions Implemented | Min | Typ | Full |
 +==+=======+=====+======+
 | *General* | | | |
 +--+-------+-----+------+
 | Support cBRSKI onboarding | Y | Y | Y |
 +--+-------+-----+------+
 | Support other onboarding method(s) | - | - | Y |
 +--+-------+-----+------+
 | Real-time clock and cert time checks | - | - | Y |
 +--+-------+-----+------+
 | *cBRSKI* | | | |
 +--+-------+-----+------+
 | Discovery for rt=brski* | - | - | Y |
 +--+-------+-----+------+
 | Support pinned Registrar public key (RPK) | Y | - | Y |
 +--+-------+-----+------+
 | Support pinned Registrar certificate | - | Y | Y |
 +--+-------+-----+------+
 | Support pinned Domain CA | - | Y | Y |
 +--+-------+-----+------+
 | *EST-coaps* | | | |
 +--+-------+-----+------+
 | Explicit TA database size (#certs) | 0 | 3 | 8 |
 +--+-------+-----+------+
 | Discovery for rt=ace.est* | - | - | Y |
 +--+-------+-----+------+
 | GET /att and response parsing | - | - | Y |
 +--+-------+-----+------+
 | GET /crts format 62 (multiple CA certs) | - | Y | Y |
 +--+-------+-----+------+
 | GET /crts format 281 (multiple CA certs) | - | - | Y |
 +--+-------+-----+------+
 | ETag handling support for GET /crts | - | Y | Y |
 +--+-------+-----+------+
 | Re-enrollment supported | - (*) | Y | Y |
 +--+-------+-----+------+
 | 6.6.1 optimized procedure | Y | Y | - |
 +--+-------+-----+------+
 | Pro-active re-enrollment at own initiative | - | - | Y |
 +--+-------+-----+------+
 | Periodic trust anchor retrieval GET /crts | - (*) | Y | Y |
 +--+-------+-----+------+
 | Supports change of Registrar identity | - (*) | Y | Y |
 +--+-------+-----+------+

 Table 4

Richardson, et al. Expires 4 September 2024 [Page 87]

Internet-Draft Constrained BRSKI (cBRSKI) March 2024

 Notes: (*) means only possible via a factory-reset followed by a new
 cBRSKI onboarding procedure.

Authors’ Addresses

 Michael Richardson
 Sandelman Software Works
 Email: mcr+ietf@sandelman.ca

 Peter van der Stok
 vanderstok consultancy
 Email: stokcons@bbhmail.nl

 Panos Kampanakis
 Cisco Systems
 Email: pkampana@cisco.com

 Esko Dijk
 IoTconsultancy.nl
 Email: esko.dijk@iotconsultancy.nl

Richardson, et al. Expires 4 September 2024 [Page 88]

